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Abstract

The novel coronavirus (COVID-19) pandemic, first identified in Wuhan China in December
2019, has profoundly impacted various aspects of daily life, society, healthcare systems, and global
health policies. There have been more than half a billion human infections and more than 6 million
deaths globally attributable to COVID-19. Although treatments and vaccines to protect against
COVID-19 are now available, people continue being hospitalized and dying due to COVID-19
infections. Real-time surveillance of population-level infections, hospitalizations, and deaths has
helped public health officials better allocate healthcare resources and deploy mitigation strategies.
However, producing reliable, real-time, short-term disease activity forecasts (one or two weeks into
the future) remains a practical challenge. The recent emergence of robust time-series forecasting
methodologies based on deep learning approaches has led to clear improvements in multiple re-
search fields. We propose a recurrent neural network model named Fine-Grained Infection Forecast
Network (FIGI-Net), which utilizes a stacked bidirectional LSTM structure designed to leverage
fine-grained county-level data, to produce daily forecasts of COVID-19 infection trends up to two
weeks in advance. We show that FIGI-Net improves existing COVID-19 forecasting approaches
and delivers accurate county-level COVID-19 disease estimates. Specifically, FIGI-Net is capable
of anticipating upcoming sudden changes in disease trends such as the onset of a new outbreak
or the peak of an ongoing outbreak, a skill that multiple existing state-of-the-art models fail to
achieve. This improved performance is observed across locations and periods. Our enhanced
forecasting methodologies may help protect human populations against future disease outbreaks.

1 Introduction

Since 2019, the SARS-CoV-2 coronavirus has spread in human populations and causing a disease
called COVID-19. Its rapid spread, from several countries to the global stage, prompted the World
Health Organization (WHO) to declare it a global pandemic in early 2020 [13]. With over half a
billion infections and more than 6 million deaths recorded worldwide [15], COVID-19 has significantly
reshaped society, national healthcare systems, and the global economy. Due to its fast mutation
rate, new outbreaks of COVID-19 have continued to emerge within a span of a few months, making
forecasting the trends of these COVID-19 waves a crucial task that helps public health officials to
regulate public healthcare policies and efficiently manage medical resources to prevent and control
future outbreaks [17].

Epidemic forecasting in this context has presented a formidable challenge, driving the development
of numerous methods to address this complexity. With the advent of the COVID-19 pandemic, the need
for efficient preventive measures and accurate forecasting models tailored to this emerging infectious
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disease became increasingly critical. Within the field of epidemiology, Susceptible–Infected–Removed
(SIR) models and their variations are extensively utilized to assess the spread of infections [27, 23].
These epidemiological models allow us to deduce crucial parameters such as infection and death rates,
enabling the forecast of disease transmission trends. Several COVID-19 studies have demonstrated
practical insights and forecasts by employing SIR-like models in various regions worldwide [33, 28, 34,
14, 38, 2, 40, 4, 21, 9, 46, 54, 10, 29]. However, spatial and temporal heterogeneity known to exist
across locations, such as socioeconomic and demographic factors, the diverse implementation of local
mitigation policies, and the emergence of new variants, are often very challenging to incorporate and
appropriately update in these models. As a result, these methods often fall short in capturing essential
local heterogeneities in infection dynamics [12, 48].

In contrast, data-driven methods may excel in this context by implicitly incorporating the influence
of diverse local policies, new variants, demography, and socioeconomic factors, by learning directly
from the reported data. Notably, the United States displays highly diverse vaccination rates, adding
complexity to the accurate characterization and prediction of disease spread. Hence, alternative data-
driven models could offer complementary insights into disease dynamics [52].

Data-driven machine learning models have been extensively applied in disease forecasting [8, 49, 50].
For instance, Sujath et al. conducted a comparison of linear regression, multilayer perceptron (MLP),
and vector autoregression, with the MLP model demonstrating superior performance [51]. Ardabili et
al. integrated genetic algorithms with SIR and SEIR models to predict outbreak trends [3]. Hernandez
et al. utilized an Auto-regressive Integrated Moving Average (ARIMA) [20] model with polynomial
functions for global COVID infection trend predictions, using cumulative datasets [22]. Additionally,
Lu et al. compared and integrated various approaches, combining statistical linear and nonlinear mod-
els to estimate the cumulative number of weekly confirmed cases [36]. Many of these models rely on
assumptions about the real-time availability of reliable data, a stable non-evolving pathogen, and/or
population-level adherence to specific behaviors during epidemic outbreaks. However, the dynamics of
COVID-19 have been in constant flux, influenced by factors such as virus characteristics and heteroge-
neous population adherence to mitigation policies such as recommendations to stay at home or mask
wearing [30]. Consequently, COVID-19 forecasting has become an exceptionally challenging endeavor.

Deep learning’s feature-learning ability holds promise for addressing challenges stemming from the
local heterogeneity of infection dynamics, especially after enough observations to train models have
been recorded. Several studies have utilized deep learning methods to predict COVID-19 data, incorpo-
rating related time series models such as Long Short-Term Memory (LSTM) networks, Convolutional
Neural Networks (CNN), and hybrid approaches that combine deep learning with traditional methods.
Rodriguez et al. utilized a feed-forward network to generate short-term forecasts of COVID-19, demon-
strating the responsive capacity of their models to adapt to sparse data situations. Bandyopadhyay et
al. used LSTM with a gate circulation network to estimate COVID-19 cases [16], while Huang et al.
employed CNNs to predict cumulative COVID-19 deaths [32]. Ruifang et al. combined LSTM with
a Markov method for national cumulative COVID-19 predictions [37]. ArunKumar et al. compared
the performance of deep learning models (GRU and LSTM) with traditional models like ARIMA and
SARIMA, concluding that deep learning models were better suited for non-linear datasets [5]. Addi-
tionally, Transformer models, known for their proficiency in natural language processing, have been
utilized in COVID-19 forecasting. Soumyanil et al. developed a graph transformer network with syn-
chronous temporal and spatial information [6], while Kapoor et al. used a similar approach to predict
COVID-19 confirmed cases [26]. However, these models were based on limited national or state-level
datasets, where the local heterogeneity of COVID-19 infections was averaged out. Consequently, de-
spite the impressive capabilities of deep learning, their forecasting results were restricted, especially
during the rapidly changing outbreak of the COVID-19 variants such as Omicron.

In response to these challenges, we present a novel deep learning approach that harnesses extended
time series data covering the entire span of the COVID-19 pandemic in the United States, including the
Omicron wave. Our model, built on the foundation of Long Short-Term Memory (LSTM) networks
and incorporating stacked bidirectional components, capitalizes on temporal relation awareness to
adeptly manage abrupt shifts in infection dynamics. This ensures precise short-term predictions, vital
for shaping future epidemic prevention and control strategies. Our method, named FIGI-Net (Fine-
Grained Infection Forecast Network), delves into fine-grained time series of COVID-19 infection data
at the county level in the U.S.. This approach leverages LSTM capabilities with a stacked bidirectional
component, enhancing the model’s capacity to discern diverse global infection trends. Subsequently,
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upon identifying clusters of counties with similar COVID-19 temporal patterns, we applied transfer
learning from the global biLSTM model trained on segmented historical daily confirmed cases of U.S.
counties, and trained specific cluster-based biLSTM models. This cluster transfer learning concept
preserves the model’s inherent capabilities [47, 55, 44, 25, 45] while empowering it to swiftly adapt
to short-term trend changes locally, refining forecasting accuracy. Using our proposed FIGI-Net, we
conducted predictions for future COVID-19 infection cases, encompassing both short-term and mid-
term forecasts spanning from the next day to the next 15 days. The key contributions of our framework
are summarized as follows:

• We provide a practical approach to determine the minimum amount of observations –length of
the initial training time period – needed for deep learning-based machine learning models to
deliver reliable daily disease activity forecasts in the context of a novel and emerging disease
outbreak.

• We introduce FIGI-Net (Fine-Grained Infection Forecast Network), a deep learning pipeline
that leverages COVID-19 infection time series data of U.S. counties, and is capable of forecasting
COVID-19 confirmed cases up to 15 days ahead. Harnessing bidirectional temporal feature learn-
ing and transfer learning techniques, our model was trained with infectious clusters of COVID-19
temporal data. The structure of the proposed framework is detailed in Figure 1 and more details
are presented in Section 4.C.

• Given the explicit need to produce a model responsive and adaptive to dynamic changes of disease
transmission due to a diverse set of factors – changes in human behavior, availability of vaccines,
and testing capabilities, our model is dynamically re-trained on a moving-window that only uses
the most recent trends as input. This time window is chosen prior to evaluating our model’s
forecasts in a strictly out-of-sample fashion.

• Focusing on U.S. county-level COVID-19 time series data, we show FIGI-Net’s efficiency and
accuracy in forecasting sharp changes in COVID-19 activity, both in short-term (up to 1 day)
and mid-term (up to 2 weeks) forecasting scenarios.

• Furthermore, our methodology is extended to national and state-level forecasts using weekly time
periods. The results highlight the superiority of our FIGI-Net, showcasing more than a 40%
error reduction during critical time periods compared to other state-of-the-art models designed
for COVID-19 infection forecasting tasks.

Results

We implemented a collection of machine-learning based models to generate out-of-sample predictions
for the number of COVID-19 confirmed cases, as reported by the Centers for Disease Control and
Prevention (CDC), for the time period between October 18th, 2020 and April 15th, 2022. These
models included the model we propose: FIGI-Net, as well as Autoregressive statistical models, a
collection of neural network based models (GRU, LSTM), a stacked bidirectional LSTM (biLSTM),
a set of LSTM-based models incorporating temporal clustering (TC-LSTM and TC-biLSTM), and a
”naive” (Persistence) model to be used as a baseline.

We used our models to retrospectively produce daily forecasts for multiple time horizons, h, ranging
from h = 1, 2..., 15 days ahead. Visual representations of our predictions, alongside the actual observed
COVID-19 confirmed cases, are presented in Figures 3, 4, and 5 for county, state and national levels.
We evaluated our model’s performance by comparing our out-of-sample predictions with subsequently
observed reported data in each time horizon h using multiple error metrics that include: the root
mean square error (RMSE), relative RMSE (RRMSE), and mean absolute percentage error (MAPE)
metrics, as detailed in Section 4.D. In addition, we compared the prediction performance of our model
with a diverse set of statistical and machine learning models, including state-of-the-art forecasting
methodologies reported by the CDC (a comprehensive list of these models is provided in Section 2.G).
Finally, we assessed our model’s ability to anticipate the onset of multiple outbreaks during our studied
time periods.

3

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 25, 2024. ; https://doi.org/10.1101/2024.01.13.24301248doi: medRxiv preprint 

https://doi.org/10.1101/2024.01.13.24301248
http://creativecommons.org/licenses/by-nc-nd/4.0/


(a) (b)

Figure 1: Our proposed model, FIGI-Net, architecture for COVID-19 infection prediction. (a) A
diagram that visualizes our methodology’s framework, consisting of a clustering and a time series deep
learning component. In the clustering section, auto-correlation and cross-correlation were used to
extract similar features from the pre-cleaning infection cases and fatality rate data. Then, we applied
a clustering technique to the extracted features to identify similar COVID-19 dynamics. The temporal
deep learning model utilized the given clusters along with the infection case data to predict the trend
of COVID-19. (b) The architecture of the proposed bidirectional stacked LSTM model. This model
learns the feature dependencies of input sequential data in both forward and backward directions and
can effectively deal with short-term state changes. The σ function represents the merging function.

Figure 2: Comparison of training day length identification for the proposed model in 1 and 2 weekly
horizons. The figure shows the RRMSE values and R2 scores (represented by the blue line) achieved
by the proposed model using different training day lengths from first 6-month dataset (from April to
Oct, 2020). Here For the 1 weekly horizon, 75-day and 90-day training lengths result in lower RRMSE
prediction errors, with a median value below 20 and an approximate R2 score of 0.95. Moreover,
increasing the training day length beyond 75 days leads to a 26.3% reduction in RRMSE for 2 weekly
ahead prediction but does not further improve performance with longer training periods. These findings
highlight the significant impact of training day length on short-term infection forecasting.

Determining the Length of Moving Time Windows for Training

Given that neural network based models typically need a large amount of data to be trained [31, 56],
we first investigated the minimum amount of data that would be necessary for our model to produce
robust and reliable forecasts. We investigated the length of the moving window for training necessary to
yield forecasts responsive to changes in disease dynamics due to changes in human behavior over time,
vaccination adherence and vaccine availability, different transmission intensities for different variants
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Figure 3: A summary of the comparative performance of FIGI-Net at the county level, for the 1-day
and 7-day ahead horizon tasks from Oct. 18th, 20 to Apr. 15th, 22. (A) Performance of each model
over all 3143 counties presented as a box plot. The median is highlighted in red along with the 5th and
95th percentile whiskers. The models are ordered in decreasing order, with the most accurate model
(lowest RRMSE) appearing on the rightmost side. Notably, FIGI-Net exhibits the lowest RRMSE
compared to other models for both tasks, as confirmed by the two-sided Wilcoxon rank sum test. (B)
Error Reduction between each model with Persistence model. Compared to other models, FIGI-Net
provides the fewest erroneous forecasting results. (C) Performance comparison of FIGI-Net against
Persistence (our baseline model).Comparison is shown as a set of violin plots across the different
time horizons. Our model consistently displays a narrower distribution of prediction errors (RMSE)
compared to the Persistence model. (D) shows Daily prediction results of our model in 1-day, 7-day
and 14-day horizons in Suffolk county. The example demonstrates our model’s ability to provide highly
accurate predictions for diverse locations and various time periods.
∗∗: p-value ¡ 0.001
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Figure 4: A comparative analysis of FIGI-Net’s performance at the state level. (A) At state level, FIGI-
Net still exhibits the lowest RRMSE compared to other models for the 1-day and 7-day ahead horizon
tasks. (B) Error Reduction at state level displays that FIGI-Net provides lower forecasting errors than
other models and reduced errors by at least 53% compared to the Persistence model. (C) Performance
comparison of FIGI-Net against Persistence at state level. This comparison also represents that our
model consistently displays a much narrower distribution of prediction errors (RMSE) and provides
much lower forecasting errors during the first four days.
∗∗: p-value ¡ 0.001

of concern (e.g. omicron), among other factors. Using observations from April 18th, 2020 to October
17th, 2020 we identified a time window size of 75 days to be a good compromise between reliable
forecasting performance (shown in Figure 2) and a short enough time period that would allow the
model to continuously learn new transmission patterns. For more details, please refer to the Section
Discussion.

FIGI-Net Forecasting Performance at County Level

For each forecasting horizon h, we computed FIGI-Net’s prediction error metrics (RMSE and RRMSE)
across all counties, over the time period: 10/18/2020 - 4/15/2022. Table 1 shows the prediction error
values (and percentage of error reduction with respect to the Persistence model) of all the models for
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Figure 5: Summary of forecasting results at the state and national level. (A) Relative RMSE perfor-
mance among US states in the 7-day horizon at the state level is determined by the average relative
RMSE of the last 7 days of each time period, compared to the national reported infection trend. The
relative RMSE increased during the early period (April 2020 to May 2020) of the first upward trend,
the time period (June 2021 to July 2021) before the Delta outbreak, and the increasing period (De-
cember 2021 to January 2022) of the Omicron COVID-19 outbreak. Missouri, Montana, and Nebraska
have large relative RMSE values during March 2021 to May 2021. We can observe that the RRMSE
errors often increase before the early stage of the next outbreaks or when the infection trend rapidly
increases (red rectangle) (B) Daily prediction infection trends during different days ahead at the na-
tional level. It can be observed that the daily predicted infection trends at 1-day and 7-day ahead
horizons show similarity to the reported data, while the 14-day ahead trend exhibits some fluctuations.
(C) Daily predicted infection trends of the proposed model during Alpha-variant, Delta-variant, and
Omicron-variant outbreaks with different days ahead predictions. The proposed FIGI-Net model can
provide a curve of predicted trends matching the observed report. The range of margin of error became
larger when the trend of Omicron-variant outbreak increased.
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1-day, 7-day and 14-day horizons. Based on the experiments regarding training length influence, we
evaluated all comparative models using an optimal training length of 75 days in the following eighteen
months of data. Our results demonstrate that FIGI-Net model has the greatest error reduction across
all horizons (90%, 83%, and 45% RMSE reduction, correspondingly), Followed by the biLSTM model
(85% in horizon 1-day, 75% in horizon 7-day, and 44% in horizon 14-day RMSE reduction). To assess
the significance of these error reductions, we performed the two-sided Wilcoxon rank sum test [42] over
the entire outcomes of tasks.

In Figure 3.A, we visualize the forecasting ability of each model for both the 1-day and 7-day ahead
task, including classic models such as Persistence (a naive rule stating yt+1 = yt) and Autoregressive
models(AR) [7], and deep learning-based models such as GRU or LSTM architectures. We used the
median RMSE score for each model as a means to order them in decreasing order (leftmost model with
the worst performance, and rightmost with the best). Our first observation is that FIGI-Net scored
the lowest median RMSE and relative RMSE scores across all models for both the 1-day ahead and
the 7-day ahead prediction task (approximately 6.98% at 1-day ahead, and 9.92% at 7-day ahead),
followed by deep learning models with bidirectional components (TC-biLSTM with a reduction of
17.08% and 23.03% and biLSTM with a reduction of 9.83% and 14.28%, respectively). Generally
speaking, all network based models improved over Persistence (with an error of 83.13% and 50.48%)
and the Autoreggressive models (81.57% and 83.87%). For a detailed description of the performance
of each model, please refer to Table 1.

Figure 3.B focuses on the performance of FIGI-Net against Persistence. For each time horizon, we
generated a violin plot to visualize the RMSE scores of FIGI-Net (in blue) and Persistence (in orange)
across all counties. Our results show that FIGI-Net has a higher concentration of scores between
the 0-20 range across all time-horizons, in comparison to Persistence, where the scores of the orange
distribution are widely spread. The main error difference between FIGI-Net and Persistence occur
at the horizon 1, with a mean RMSE score of 9.97, in comparison to 79 from Persistence (a 89%
reduction).

Figure 3.C showcases a visualization of the forecasts of our model for the county of Suffolk, Mas-
sachusetts, for the 1-day, 7-day and 14-day ahead tasks. Additionally to the full time period of the
experiment, three periods from May to August 2020, October 2020 to February 2021, and December
2021 to March 2022, are also displayed. FIGI-Net accurately forecasted the daily infection trends in
1-day and 7-day ahead horizons in diverse counties, even when these counties exhibited contrasting
infection trends, as shown for the country of Suffolk during the initial outbreak stages. However, we
observed that the 14-day ahead forecasting trend yielded larger errors, particularly in cases where the
infection numbers fluctuated significantly.

Forecasting Performance at State Level

Similar to our county level experiment, we compared the performance of FIGI-Net against state-of-the-
art models for the state-level geographical resolution. For FIGI-Net, which is a model that leverages
high volumes county-level activity as part of its design, we decided to aggregate the county level
forecasts into state level (details regarding the performance of FIGI-Net, trained on state-level data,
can be found in our supplementary materials Table S1). For the rest of the models, we trained them
using State level data to obtain state-level outcomes. Then, we computed the RRMSE for each state
across 1-day, 7-day, and 14-day ahead horizons, as shown in Figure 5.A. Our results, also shown in
Figure 4 and summarized in Table 2, show that FIGI-Net was able to score 1149.66±1850.66 and
1935.36±3458.21 in terms of RMSE for the 7-day and 14-day horizon, correspondingly. On the other
hand, the score of the Persistence model was 2571.9±5409.64 and 3330.82±6072.91 (resulting in an
error reduction of 54%, and 39% in each case). Next to FIGI-Net, we can see the biLSTM (with
a score of 1198.43±1806.38 and 1940.18±3216.91) and TC-biLSTM models (1338.63±2324.23 and
2225.14±4116.09 in RMSE).

During the early stages of the pandemic, we observe the RRMSE values of FIGI-Net were notably
higher. For instance, based on Figure 5.A, Missouri, Montana, and Nevada displayed larger prediction
errors between March to May 2021, as shown from the deep red color in the center of the RRMSE
matrix. During this period, these states experienced a significant spike in COVID-19 activity, deviating
from both previous months and the overall national trend. Alternatively, the red rectangle in Figure
5.A illustrates that the RRMSE errors often increase before the outbreaks or when the infection trend
rapidly increases. This observation suggests that the proposed FIGI-Net model may provide early
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Table 1: Performance metrics with error reduction for the 1-day, 7-day and 14-day ahead tasks at the
county level.

Model
RMSE RRMSE(%) Error Reduction

1st day 7th day 14th day 1st day 7th day 14th day 1st day 7th day 14th day
Persistence 45.11±176.33 29.71±133.62 36.56±152.9 83.13±111.19 50.48±48.18 65.48±69.41 — — —

Autoregressive 44.43±209.3 49.15±9.68x104 65.91±3.17x109 81.57±95.71 83.87±3.18x104 103.16±8.72x108 1.01±1.13 1.5±702.98 1.54±1.12x107

GRU 18.62±101.65 19.23±106.35 23.75±118.99 33.26±24.04 34.45±25.11 43.61±25.27 0.49±0.3 0.68±0.4 0.7±0.33
LSTM 18.44±91..71 18.01±104.53 22.83±118.66 31.29±24.09 33.37±25.08 42.04±24.9 0.46±0.3 0.64±0.4 0.7±0.33

TC-LSTM 19.03±105.94 19.22±112.28 23.56±123.17 33.19±23.1 35.09±26.23 43.84±25.97 0.49±0.3 0.7±0.4 0.72±0.34
TC-biLSTM 10.47±59.91 12.96±80.49 23.66±115.85 17.08±20.25 23.03±30.25 44.33±37.06 0.25±0.24 0.43±0.51 0.73±0.4
biLSTM 6.53±34.9 8..29±62.98 20.51±98.42 9.83±18.41 14.28±34.5 40.01±34.98 0.15±0.22 0.25±0.54 0.66±0.4
FIGI-Net 4.34±26.44 5.98±61.22 19.79±100.08 6.98±17.73 9.92±37.31 39.73±34.99 0.1±0.22 0.17±0.57 0.65±0.42

Table 2: Performance metrics with error reduction for the 1-day, 7-day and 14-day ahead tasks at the
state Level.

Model
RMSE RRMSE(%) Error Reduction

1st day 7th day 14th day 1st day 7th day 14th day 1st day 7th day 14th day
Persistence 3563.29±7636.32 2571.9±5409.64 3330.82±6072.91 92.03±29.74 64.74±21.38 79.85±15.76 — — —

Autoregressive 3856.01±8189.29 4023.77±1.26x106 5932.29±3.29x1010 92.47±28.45 107.09±1.61x104 160.23±4.82x108 1.03±0.32 1.62±217.8 2.23±5.72x106

GRU 1411.09±3827.44 1460.49±3947.68 1991.35±4503.38 43.29±16.38 43.51±15.36 56.06±14.06 0.53±0.19 0.71±0.18 0.67±0.12

LSTM 1332.83±3342.72 1782.58±3796.64 2028.5±4462.46 38.02±16.33 42.08±15.37 53±15.53 0.49±0.19 0.7±0.17 0.67±0.13

TC-LSTM 1311.08±4059.58 1947.45±4131.61 2021.77±4686.08 39.06±16.69 45.5±14.64 52.98±13.81 0.47±0.17 0.73±0.21 0.68±0.11

TC-biLSTM 550.36±1557.85 1338.63±2324.23 2225.14±4116.09 15.36±17.16 33.9±14.38 54.94±15.75 0.18±0.17 0.56±0.15 0.67±0.16

biLSTM 371±1047.57 1189.43±1806.38 1940.18±3216.91 12.44±15.04 28.9±14.01 49.46±17.18 0.13±0.15 0.46±0.18 0.63±0.22

FIGI-Net 290.31±908.81 1149.66±1850.66 1935.36±3458.21 9.17±13.59 26.94±14.48 49.12±16.47 0.11±0.13 0.46±0.15 0.61±0.21

Table 3: Performance metrics with error reduction for the 1-day, 7-day and 14-day ahead tasks at the
national Level.

Model
RMSE RRMSE(%) Error Reduction

1st day 7th day 14th day 1st day 7th day 14th day 1st day 7th day 14th day

Persistence 94151.72 71901.03 109661.49 51.93 39.65 60.48 — — —

Autoregressive 91127.52 1.334x108 8.8278x1011 50.26 73574.39 4.869x108 0.968 1855.33 8.05x106

GRU 41298.1 38823.91 57823.73 22.78 21.41 31.89 0.439 0.54 0.527

LSTM 32536.62 39022.06 60314.95 17.94 21.52 33.26 0.346 0.543 0.55

TC-LSTM 37139.2 41291.44 55759.71 20.48 22.77 30.75 0.394 0.574 0.508

TC-biLSTM 16426.44 35465.95 62286.61 9.06 19.56 34.35 0.174 0.493 0.568

biLSTM 13569.52 27533.97 51447.97 7.48 15.18 28.37 0.144 0.382 0.469

FIGI-Net 12726.38 28045.28 50654.95 7.02 15.47 27.94 0.135 0.39 0.462

prediction outcomes for outbreaks. Similar trends are also evident in other day-ahead forecasting
instances (shown in Figure S4).

National Forecasting Performance

Figure 5.B represents national level COVID-19 official reports contrasted with our model predictions
across three different horizons. Similar to the observations in Figure 3.C, our predictions were highly
accurate at the 1-day and 7-day ahead horizons, with the RRMSE of 7.02% and 15.47%, respectively,
compared to the national official reports. However, at the 14-day horizon, the discrepancies between
predicted values and ground truth grew during high infection periods, resulting in an RRMSE of
27.94%. Table 3 shows the performance between FIGI-Net and other models at national level. Com-
pared to our benchmark models, FIGI-Net improved forecast capacity can lead to a 86.5% reduction
at 1-day horizon, a 60.98% reduction at 7-day horizon, and a 53.8% reduction at 14-day horizon in
RRMSE score.

Additionally, we analyzed the daily performance of FIGI-Net at the national level across three
main outbreak waves: the Alpha-variant wave (October 15th, 2020 to March 15th, 2021), Delta-
variant wave (July 15th, 2021 to November 1st, 2021), and Omicron-variant outbreak wave (November
15th, 2021 to March 31st, 2022). By aggregating our county-level forecasts, we depicted the national
prediction trends during these waves (Figure 5.C). Our model demonstrated an accurate prediction
direction, maintaining an average error range of 12.17 infection cases at a confidence level of 95%
during the Alpha-variant and Delta-variant waves. During the Omicron-variant wave, the forecasting
trend exhibited a wide range of confidence intervals. However, our model still successfully predicted
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Figure 6: Geographical distribution of infection prediction errors of the proposed model during different
time periods. The figure shows the infection prediction distribution of the proposed model during
different time periods at county level. The early half of August 2020, August 2021, and January 2022
are represented in (a), (b), and (c), respectively. The first column of (a), (b), and (c) show the observed
daily confirmed cases. The second column represent the 7-day (1-week) ahead prediction results, and
the corresponding RRMSE score maps are shown in the last column. The proposed model provided the
predictions that are similar to the observed daily reports of infection cases and had low RRMSE values
in most counties. However, it had higher RRMSE values in the counties where the number of infection
cases rapidly increased. Additionally, our model indicated higher RRMSE values in the counties of
Kansas and Louisiana at these time periods. The counties in Michigan and Florida represented much
higher RRMSE values during time periods (b) and (c) when the status of infections in these two states
were severe.

trends up to the 14-day horizon. These above outcomes underscore the robustness of our FIGI-Net
model in addressing substantial variations in infection numbers.

Geographical Distribution of COVID-19 Infection Predictions of US Coun-
ties

In this section, we conducted a geo-spatial analysis with the objective to identify possible geographical
patterns in the performance of FIGI-Net. Figure 6 illustrates various geographical maps of US counties.
The first column of Sections a, b, and c presents the average number of cases occurring for 3 distinct
1-week periods: the first halves of August 2020, August 2021, and January 2022 (periods just before
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the Alpha-variant, Delta-variant, and Omicron-variant waves began, respectively). With the objective
to demonstrate the forecasting capacity of FIGI-Net, the second column presents the forecast average
over the same time time periods. Finally, the last column shows the relative RMSE incurred by FIGI-
Net. FIGI-Net successfully predicted the COVID-19 activity shown in the 7-day ahead prediction
maps compared to the observation maps. However, some counties had larger errors, as observed from
the relative RMSE maps (the last column of Figure 6). During these time periods, counties in Kansas
and Louisiana displayed higher errors despite low or mild infection levels. Moreover, the counties in
Oklahoma, Iowa, Michigan, and Florida exhibited larger prediction errors preceding the Delta-variant
wave. Particularly in Florida, while the epidemic situation was severe, errors increased. Our model
demonstrated higher accuracy and lower RRMSE values in the west coast and northeast regions during
these time periods (see, for example, the third column of Figure 6, while mid-west and south regions of
the U.S. tended to display higher errors as the pandemic progressed (refer to Movie S.1 for the details
of geographical distribution prediction and error maps in 1-day, 7-day, and 14-day ahead across all
time periods from April 2020 to April 2022).

Comparison between FIGI-Net and the CDC Ensemble Model in COVID-19
Forecasts

To further evaluate our approach, we compared the performance of our proposed FIGI-Net model
with the COVIDhub ensemble model [11] (also known as the CDC model). The CDC model employs
an ensemble methodology that combines the output of several disease surveillance teams across the
United States, generating forecasts for the number of COVID-19 infections at the county, state and
national levels. We collected the 1-week and 2-week ahead forecasts of the CDC model at county and
state level, and compared them against FIGI-Net’s forecasts. Given the CDC model is an aggregated
forecast (i.e. the total number of reported activity over the next 7 and 14 days, rather than a daily
forecast over the same periods), we aggregated our daily predictions for the 1 to 7-day and 1 to 14-day
horizons to facilitate a fair comparison between both models. A Persistence model of this task was
also included as baseline.

Shown in Figure 7.A, the CDC model exhibited significantly higher average RMSE and RRMSE
values at the county level compared to our FIGI-Net model. Our model achieved an approximate
reduction of 58.5% in averaged RMSE and 53.28% in averaged RRMSE over the 1 and 2-week ahead
horizons, respectively (see Table 4). At the state level (Figure 7.B), our proposed model consistently
maintained the averaged reduction of 64.55% RMSE value and 64.48% RRMSE value (compared to the
CDC ensemble and Persistence models, as shown in Table 5). Notably, the CDC model demonstrated
better performance than the Persistence model in terms of lower error predictions for both 1 and
2-week horizons.

We also conducted comparative analyses between the COVID-19 forecasts of FIGI-Net with fore-
casting models officially reported on the CDC website [11] (we selected models, including Microsoft-
Deep, JHU CSSE DECOM, Karlen-pypm, CovidAnalytics-DELPHI, and MIT ISOLAT-Mixtures, that
provided sufficient infection prediction outcomes for 1-week and 2-week ahead horizons). Following
the CDC weekly reporting criteria [1], we aggregated the daily prediction cases into weekly prediction
values. Specifically, we focused on three reported infection wave time periods and presented 1-week
and 2-week prediction results of our model at the national level alongside those of other models (Fig-
ure 8.A). Our findings revealed that most models can accurately predict infection numbers during
decreasing trends, but struggle to forecast the correct trend direction and COVID-19 official infection
numbers during increasing trends. Interestingly, our FIGI-Net model correctly predicted the increasing
direction of the infection trend before the wave began, from November 2021 to March 2023. Figure
8.B illustrates the examples of the predicted infection trends in Massachusetts and New York states by
our FIGI-Net model and other forecasting models in 1-week and 2-week horizons. The results showed
that the our model’s infection prediction trends are much closer to the reported data across different
weeks ahead at the state level, and most of other models predicted accurate infection numbers when
the infection trend increases. It is important to note that some models did not provide outcomes at
some weekly time points, leading to 0 values in those models, which were subsequently removed in
further comparison and analysis.
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Figure 7: Comparison of weekly COVID-19 infection forecasting performance among Persistence model,
CDC model, and our proposed model. (A) The RMSE and relative RMSE values of the three models at
the county level. (B) The comparison of prediction errors among these three models at the state level.
Our proposed FIGI-Net model outperforms the Persistence model and CDC model in terms of lower
prediction RRMSE errors. This indicates its enhanced capability to capture the complex dynamics
of COVID-19 infection spread, with approximate 4.76% averaged reduction in errors observed across
various prediction horizons. (C) The error reduction comparison between the CDC model and FIGI-
Net. At the county level, FIGI-Net outperforms the CDC model, with errors approximately 58.5%
lower than those of the Persistence model. At the state level, FIGI-Net continues to provide a 13%
lower error reduction compared to the CDC model.

Comparative Analysis of COVID-19 Forecasting Models During Critical
Time Periods

Given that identifying the beginning of a major outbreak is a crucial task in disease forecasting, we
assessed the performance of our FIGI-Net model in early COVID-19 prevention and forecasting by
measuring its ability to anticipate critical time periods marked by exponential growth of COVID-
19 infection cases. We compared our model’s performance with other state-of-the-art COVID-19
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Figure 8: Comparison of FIGI-Net model with other state-of-the-art prediction models in predicting
weekly and critical time infections. (A) Comparison of the forecasting results among different fore-
casting models during three different outbreak time periods at the national level. (B) Examples of
COVID-19 infection prediction trends of different state-of-the-art forecasting models at the state level.
The critical time period, which indicates a significant increase in COVID-19 infections, is highlighted in
light grey color. (C) Performance evaluation of the forecasting methods during the critical time periods
of COVID-19 infection in 1-week and 2-week horizons across the states. Slope Similarity, RRMSE,
and MAPE were measured to assess the prediction number and trend accuracy of each model. Our
proposed FIGI-Net model provided lower prediction errors in both 1-week and 2-week horizons during
the critical time and may efficiently forecast the infection number and trend direction before the se-
vere transmission of COVID-19. Here we also ranked them from high to low evaluation or error values
according to the median values.
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Table 4: Comparison of FIGI-Net with CDC and Persistence Models at County Level

Model
1 week 2 week

RMSE RRMSE(%) Error Reduction P-value RMSE RRMSE(%) Error Reduction P-value
Persistence 81.24±302.06 37.38±14.77 — 0 125.12±510.7 61.67±11.62 — 0

CDC ensemble 157.49±1285.95 76.24±78.71 4.63±2.59 0 157.58±1090.97 76.49±66.24 2.83±1.98 0
FIGI-Net 34.16±190.24 17.13±16.49 0.36±0.3 — 58.43±282.14 29.36±21.21 0.47±0.3 —

Table 5: Comparison of FIGI-Net with CDC and Persistence Models at State Level

Model
1 week 2 week

RMSE RRMSE(%) Error Reduction P-value RMSE RRMSE(%) Error Reduction P-value
Persistence 6969.06±11363.25 35.65±11.22 — 8.65x10−9 11019.9±20085.45 62.27±9.51 — 2.1x10−9

CDC ensemble 3275.07±4823.08 18.93±22.94 0.48±0.23 0.0021 5112.93±8774 26.7±19.18 0.49±0.16 0.0233
FIGI-Net 3053.46±8315.92 12.54±11.29 0.34±0.36 — 4519.95±10700.57 23.57±12.97 0.37±0.29 —

forecasting models during this critical time period, using weekly data from July 20th, 2020 to April
11th, 2022. First, we identified these ”critical” time periods as periods where the trend λ of COVID-19
activity (estimated as the coefficient of a linear model yt = λyt−1) remained above 1, indicating a
sustained multiplicative growth for an extended period (Figure S5 to S7 for more details). Examples
of such periods for Massachusetts and New York states are shown in Figure 8.B. We compared the
ground truth and predicted results of the models using slope similarity, RMSE, and MAPE values
(see Section 4.D for a definition to calculate slope similarity). Our FIGI-Net model efficiently and
accurately predict infection case numbers and trend direction for 1-week and 2-week horizons during
critical time periods (Figure 8.C). Table 6 and 7 presented the forecasting performance details among
the prediction models and the statistical significance between our model and the others. Comparing
with Persistence model, FIGI-Net model improved the RMSE value by at least 43% reduction in 1-
week ahead and at least 57% reduction in RMSE in 2-week ahead forecasts. Additionally, our model
achieved at least a 45% MAPE reduction in both week horizons and exhibited around 83% similarity
in the slope of infection trend. These results indicate that FIGI-Net model can effectively adapt and
refine forecasting trends when the pandemic intensities suddenly.

Discussion

In this work, we have introduced FIGI-Net, a deep learning-based model that utilizes fine-grained
county level infection time-series data for short-term forecasting up to two weeks. We evaluated
the forecasting ability of FIGI-Net against state-of-the-art methodologies, including autoreggressive
models, recurrent network architectures such as GRU and LSTMs, and more advanced deep-learning
architectures such as TC-LSTM and bidirectional LSTMs. Our strictly out-of-sample analysis, from
October 18th, 2020 to April 15th, 2022, shows that FIGI-Net represents an improvement over existing
state-of-the-art models, successfully predicting COVID-19 dynamics at the county, state, and national
levels, across multiple time horizons, reaching error reductions of up to 90%, 89.3% and 86.48% in
RRMSE, accordingly.

At the county level, FIGI-Net successfully predicted COVID-19 activity, scoring error reductions
of up to 90% in comparison to the baseline model, Persistence. FIGI-Net consistently placed as a
top 1 performer across the multiple time horizons based on error metrics (RMSE and RRMSE), as
presented in Table 1. At the state level, we compared FIGI-Net predictions against state-of-the-
art models for the 1-day, 7-day and 14-day horizon. Our results showed that FIGI-Net achieved
error reductions of 89.3%, 53.76%, and 41.1539.42% in RMSE accordingly, when compared to the
Persistence estimate (see Table 2). Finally, at the national level, our model successfully presented an
error reduction of up to 86.48% over the Persistence estimates. We attribute the success of FIGI-
Net across multiple geographical resolutions to the pre-trained model component in our framework,
which captures meaningful patterns across global infection dynamics. This clustering-based approach
utilizes global spatio-temporal features learnt a priori, enabling subsequently fine-tuned sub-models to
mitigate the influence of noise or irrelevant information and increase its own predictive power. This
innovative framework better captures the rapidly changing dynamics (see, for example, Figure 3),
ensuring accurate forecasts up to 2 weeks into the future.

Furthermore, we conducted training on several models exclusively utilizing State-level data and
compared the results with those derived from our model, as shown in Figure S1. According to this
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Table 6: Performance of different forecasting models during critical time periods in 1-week ahead
Model Persistence FIGI-Net CDC Karlen CovidAnalysis JHU MIT Microsoft

Slope Dissimilarity 0.316±0.079 0.127±0.076 0.273±0.108 0.5±0.147 0.57±0.136 0.269±0.134 0.606±0.166 0.421±0.137

RMSE 7015.59±15176.43 3964.97±6690.04 7773.23±14058.41 13056.12±14803.5 10394.45±21478.21 7241.44±9418.22 11170.42±22911.14 12775.19±26537.04

MAPE 19.96±3.7 11.15±2.97 24.48±27.51 49.08±76.09 46.45±23.76 21.07±57.56 42.64±29.46 33.64±47.7

P-value(v.s. FIGI-Net) 1.99x10−9 - 4.89x10−8 9.31x10−10 5.15x10−10 1.92x10−6 5.45x10−13 5.15x10−10

Table 7: Performance of different forecasting models during critical time periods in 2-week ahead
Model Persistence FIGI-Net CDC Karlen CovidAnalysis JHU MIT Microsoft

Slope Dissimilarity 0.316±0.079 0.205±0.093 0.419±0.116 0.515±0.147 0.635±0.138 0.501±0.12 0.727±0.182 0.588±0.172

RMSE 12141.1±25299.09 5126.55±9211.25 10087.22±22735.07 13032.49±17830.7 14211.7±30659.77 6969.87±10211.86 19078.33±40946.07 18664.36±38065.72

MAPE 30.05±3.98 13.28±3.9 33.38±19.77 53.98±78.8 55.88±21.28 30.63±51.35 57.81±24.24 43.47±44.71

P-value(v.s. FIGI-Net) 3.73x10−9 - 7.74x10−9 3.94x10−9 1.57x10−9 0.001 1.32x10−11 1.25x10−9

comparative analysis, the deep learning-based model requires a sufficient amount of effective data size
to help reinforce its response to sudden changes in forecasting. Leveraging County-level data provides
an ample amount of training information to generate predictive outcomes at a small scale, which can
then be aggregated to yield enhanced precision in forecasting at a coarser scale.

The analysis of FIGI-Net predictive power against the CDC’s official ensemble predictions showed
notable improvements seen as substantial reduction in error rates produced by FIGI-Net. At the
county level, our model demonstrated more than 50% error reduction, while at the state level, the
reduction was at least 63% (see Table 4 and 5). This success is indicative of our model’s adaptation
capacity, particularly at the granular county level — a domain where the CDC’s ensemble predictions
exhibited comparatively poorer performance. This suggests the potential of our model not only in
refining county-level forecasts, but also in addressing the nuances that contribute to more accurate
forecasting, highlighting its utility in augmenting current predictive methodologies.

The forecasts from FIGI-Net presented in this work were created using a training moving window
consisting of 75 days of data in length. Our choice of training window is based on an experimental
analysis on the predictive power of FIGI-Net as a function of the training window size. Figure 2
illustrates that longer length of training data positively influenced our model’s performance, as assessed
and identified through the initial six-month dataset for robust evaluation. Particularly, there is a small
change in 2-week horizon’s performance when the training data length exceeded 75 days, whereas a
longer training data length shows enhanced performance for a 1 week horizon. Based on our 1 and 2
week horizon’s performances (presented in Figure 7), we determined the optimal training data length
to be 75 days. This time period is short enough to capture changes in disease transmission in a
responsive way.

Upon analyzing the geographical distribution maps presented in Figure 6, which illustrate our
county-level predictions and errors across the U.S., it is evident that variations in reporting values
might arise from changes in epidemic prevention policies in different regions. These differences in
data format can significantly complicate the accurate prediction of COVID-19 infections and lead to
a substantial increase in errors. For example, during the Delta-variant wave, as shown in Figure 6(b),
the RMSE for counties in Kansas exceeded that of neighboring states, even though the pandemic risk
in those areas was relatively mild. This pattern is also noticeable in Iowa during the Omicron-variant
wave, as depicted in Figure 6(c). We attribute these observations to two factors: (1) the relationship
between low daily reported infection cases and higher predicted outcomes, leading to larger errors. For
instance, if a county reports 2 infection cases while the prediction is 4 cases, this discrepancy results in
a larger RMSE. (2) State governments change their recording policies from daily to weekly at certain
periods, introducing inconsistencies and irregularities in the data format that could impact model
predictions. This policy change points out the importance of consistent instructions and practices
for specific epidemiological diseases, ensuring effective management of public healthcare information
and promoting accurate disease analysis, prediction, and prevention. Further studies are necessary to
explore and address these issues in order to enhance the accuracy and reliability of infection predictions.

As depicted in Figure 8.A and B, most assessed forecasting models struggled to predict the direction
of future infection trends accurately during multiple time periods, perhaps due to the highly variable
transmission rates of the multiple COVID-19 variants. Importantly, FIGI-Net predicted appropriately
the trend direction during the initial days of each of the three outbreaks that were studied. This
capability is attributed to our model’s daily prediction of infection case numbers, which has allowed
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for the early detection and response to sudden changes. Furthermore, utilizing county-level data with
clustering allows the identification of early regional variations and swift adjustment of the forecasting
trend by the proposed sub-models. These features enable our model to efficiently adapt to dynamically
various changes in infection numbers and trends during COVID-19 outbreaks. Moreover, our model
exhibited a higher slope similarity score (See Table 6 and 7), lower RMSE and MAPE scores than
others. These results indicate that the proposed model excels at predicting the direction of forecasting
trend, facilitating early implementation of COVID-19 transmission prevention. Our study underscores
the robustness and effectiveness of time-series deep learning-based methods in handling dynamic and
sudden changes in infection numbers during short-term time periods.

Based on the experiments, our proposed model has certain limitations. Firstly, our deep learning-
based model requires a longer training time, compared to linear models, due to the complexity and
computational demands. Although our model can automatically obtain optimal hyperparameters, this
leads to extended convergence times. Additionally, each cluster has its trained model to enhance fore-
casting outcomes, but this increases computational time for predicting a single time period. Another
limitation is the requirement for an adequate amount of training data. Deep learning models need
large volumes of diverse and representative data to learn underlying patterns effectively and make
accurate predictions. Limited data can compromise the model’s performance. Therefore, ensuring a
substantial amount of high-quality training data is essential for our model’s effectiveness. This could
be achieved by increasing the granularity of infection case data, such as building town-level datasets.
Addressing these limitations is crucial for the model’s real-world application. Future research ought
to overcome some of these challenges.

In conclusion, the FIGI-Net model represents an improvement in the field of COVID-19 infection
forecasting and may serve as a template for future pandemic events. By employing temporal clustering
and a stacked structure of biLSTM, our model achieves accurate and efficient COVID-19 infection fore-
casts from fine-grained county level datasets. Accurate and early predictions of COVID-19 outbreaks
at the county, state, and federal levels is of paramount importance for effective public health manage-
ment. Our model’s ability to provide early warning of potential outbreaks allows prompt and targeted
public health interventions. The potential applications of our model in public health management and
epidemiological disease prevention are substantial and could profoundly impact mitigating the effects
of future infectious disease outbreaks.

Data and Methods

Data Collection and Cleaning

The data utilized in this study includes the daily COVID-19 cumulative infectious and death cases of
U.S. counties, obtained from the Johns Hopkins Center for Systems Science and Engineering (CSSE)
Coronavirus Resource Center between January 21st, 2020 and April 16th, 2022[15]. It is important
to note that each county or state government may have different policies for pandemic recording and
reporting, which can make the CSSE data difficult to evaluate and analyze. Additionally, cumulative
data may not efficiently differentiate regional variation. To address these issues, we utilized a 7-day
average method to denoise the daily official COVID-19 cases [35]. We average the case number of the
current day and the preceding six days to obtain the denoised value. Because CSSE data occasionally
had abnormal or missing-data observations, we selected valid data, including only counties within the
continental United States and verified confirmed case data, of U.S. counties, including 3143 counties
between February 2020 to March 2022, as the ground truth for further evaluation. Due to the rapid
changes in the COVID-19 situation, we partitioned the dataset into 48 time intervals, each spanning
approximately 15 days in length, to train our models separately.

Temporal Clustering

Based on the evidence that neighboring COVID-19 dynamics may highly influence local dynamics (see
Noor et al [43]), our methodology incorporates a two-step spatio-temporal clustering procedure that
aims to identify both global and local similarities between the COVID-19 activity within each county in
the U.S.. The outcome of this analysis guides our framework to train sub-models that are fit only on the
most relevant dynamics for each county. The procedure consists in the following steps: 1) Creating a set
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Figure 9: An example of temporal clustering in a specific time period. (A) The UMAP method is
utilized to map the correlated temporal features, which are then grouped to form initial clusters. The
largest cluster (highlighted by the red-dashed rectangle) is further subdivided to obtain subclusters,
and a total of 8 clusters are reordered based on the average infection number of the last 7 days within
each cluster. (B) The geographical distribution across US counties exhibits how temporal clustering
captures the relationship between time-series and spatial information. The infection curves of the
training data (with a duration of 75 days) for the clusters, along with a 95% confidence interval,
illustrate that this approach provides a collection of highly related yet distinct subclusters to help the
sub-model efficiently learn and make accurate predictions.

of feature vectors representing the similarity between each county, 2) Compressing the representation
of this features via a dimensionality-reduction procedure (in this case, we apply UMAP), and 3) A 2-
level clustering procedure over the resulting lower dimensional version of combined correlation feature
vectors.

Creating the feature vectors For each time period, we computed the autocorrelation [53] of
COVID-19 daily confirmed cases and fatality rates, and obtained the cross-correlation between these
two data. These two correlation features were concatenated per county, resulting in feature vectors
representing the combined correlation information for each county.

Dimensionality reduction Given our feature vectors are of dimension 301 given the number of
counties within the us, a lighter representation of this feature vectors is necessary. We transformed
our feature vectors using the UMAP method [39]. UMAP is dimensionality reduction technique to
effectively prevent and handle global and local nonlinear structure in a lower-dimensional space. We
selected UMAP as our dimensionality-reduction step given its ability to make an optimal choice for
preserving both local and global relationships during the reduction process. The resulting outcome in
this step is a feature vector of dimension 2.

2-level clustering To identify temporal clusters, we used the unsupervised DBScan method [18]
to extract initial clusters, followed by selecting the largest cluster to obtain the subclusters via spectral
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clustering [41]. Figure 9 shows a representative example illustrating the process of temporal cluster-
ing. The initial clustering identifies the global differences in county trends, and the subclustering
distinguishes local differences from similar reporting trends. By seeking similar temporal features, we
identified the clusters that include counties from different geographical locations, enabling the provision
of relevant local information. Subsequently, the list of cluster labels was rearranged in descending order
of infection risk based on the average infection count over last 7 days within each cluster. According
to the results of our experiments, we determined the optimal number of clusters to be 8 for facilitating
further submodel training. When the number of clusters was too small, the submodel may learn irrel-
evant infection features that could adversely impact local predictions. Conversely, if we identified too
many clusters, the size of training data becomes smaller and may not provide enough training data for
submodel training. We found that 8 clusters achieve a good balance between providing relevant local
information for accurate predictions and ensuring an adequate amount of training data.

Training sub-models through transfer learning from a global model

Due to the dynamic and rapid changes in the trend of COVID-19, the use of time series forecasting
models has become essential. The LSTM model, developed from the recurrent neural network, is
particularly useful in handling time series forecasting problems [24]. In order to address the short-term
infection variability, we implemented a bidirectional stacked LSTM (biLSTM) model for predicting
infection case trends, and the architecture of the proposed model is shown in Figure 1(b). It leverages
the bidirectional method to learn the variability of the future sequence trends over time and strengthens
the ability to handle unexpected sudden changes. Furthermore, the stacked structure helps our model
recognize the similarity and relevance of the entire historical trend of each time period among counties.

To achieve accurate and efficient forecasts in each time period, we introduced transfer learning
to deal with the rapid variability and transmission of COVID-19. We collected 75-day length raw
data of all counties before the time period for forecasting and used a 60-day length sliding window,
consisting of 45-day length for training inputs and 15-day length for predicted labels, to generate the
training dataset of all counties and the counties in each temporal cluster, respectively. We used the
training dataset to train the global model to learn universal infection features to address possible
trend changes. Then we transferred the parameters of this pre-trained global model to train 8 sub-
models for each temporal cluster, and each sub-model was fine-tuned by using the county data of each
temporal cluster. During each model training, the training data was randomly split into training (80%)
and validation sets (20%). The temporal clustering provides highly relevant historical information,
enabling the training of local submodels by optimizing the parameters of the global pre-trained model.
This approach ensures accurate forecasting of county-level infection numbers. We used the Adam
optimization algorithm, with a learning rate of 10−3 and 100 epochs during the training process.

Model evaluation

Daily forecasting error is assessed using the RMSE and RRMSE, defined as:

RMSE =

√∑ (y − ŷ)2

N
× 100

RRMSE =

√
1
N

∑
(y − ŷ)2√

1
N

∑
y2

× 100

,where y, ŷ, and N represent the observation, the predicted values, and the number of U.S. counties,
respectively. Also, to assess the consistency and generalization of the model over time, we use MAPE
and error reduction, defined as:

MAPE =
1

N

∑
|y − ŷ

y
| × 100.

Error Reduction =
RMSEModel

RMSEPersistence
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We also evaluated the similarity of slope score, which indicate the difference of trend directions
between observations and forecasting models, to measure the accuracy of predicted directions in each
time point. The range of slope score is from 0 to 1 and the function is defined as follows,

Slope Difference =
2× | tan−1 (Slope Observation)− tan−1 (Slope Prediction) |

π

A lower score represents a predicted trend direction that aligns with the ground truth at a specific
time point. We employed the linear regression method [19] to calculate the slope of each point by
using short time interval, which includes the two points before and after the specific point. These
measurement methods were used to assess the accuracy of the forecasting model in reflecting rapid
trend changes.

For statistical evaluation, the two-sided Wilcoxon rank sum test, known as the Mann-Whitney
U test, was utilized to test statistical significance among the model performances [42]. This testing
approach is frequently employed for handling performance metrics without assuming a normal distri-
bution of the data and without specifying the direction of the difference. Additionally, to quantify the
variability of forecasting, the function of error range for confidence interval was used and is shown as:

margin of error = Z × σ√
n

,where σ and n represent standard deviation of samples and the size of samples, respectively. Z is set
to 1.96 for a confidence level of 95% [42].

Data Availability Statement

The data used in this study are publicly available and consist of daily COVID-19 cumulative infectious
and death cases reported for U.S. counties. The dataset was obtained from the Johns Hopkins Center
for Systems Science and Engineering (CSSE) Coronavirus Resource Center, spanning from January
21st, 2020, to April 16th, 2022 [15]. The dataset can be directly accessed from the Johns Hopkins
CSSE Coronavirus Resource Center website (https://github.com/CSSEGISandData/COVID-19). Re-
searchers interested in utilizing the data for further analysis can refer to the original source for detailed
documentation on data collection methods and definitions. For additional information or inquiries
about the dataset, please visit the website or contact the Johns Hopkins CSSE Coronavirus Resource
Center.
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results. All code is shared under the MIT License and can be freely accessed and reused for academic
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