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ABSTRACT (250 words)

Understanding core mechanisms common to respiratory tract viral pathogenesis and host-

responses to infections may provide biomarkers for at-risk patient populations that guide 

interventions aimed at reducing morbidity, mortality, and economic costs.  Secreted interferon 

stimulated gene protein products including CXCL10, CXCL11, and TNFSF10 could provide 

early biomarker signals that are prognostic for respiratory tract viral infections.  In the present 

study, we had the overarching goal of defining the expression patterns of CXCL10, CXCL11, 

and TNFSF10 in clinical respiratory mucosal samples for multiple respiratory tract infections 

including respiratory syncytial virus, rhinovirus, influenza A and SARS-CoV-2 to inform the 

development of a host-biomarker point of care lateral flow immunoassay tool. 

Gene expression levels from upper airway samples suggested that CXCL10 and CXCL11 

elevations were consistent across multiple viruses, correlated with higher SARS-CoV-2 viral 

load, and had a lower variance over the course of COVID-19 infection compared to TNFSF10. 

Deep proteomic profiling using mass-spectrometry revealed CXCL10 protein was not detectable 

in oral samples from healthy individuals. CXCL10 levels were measured from the saliva of 

SARS-CoV-2 infected individuals and showed significant elevations in CXCL10 protein 

concentration. A prototype lateral flow immunoassay for detecting CXCL10 protein with a 

sensitivity of 2ng/mL in human saliva is presented. 

Our work provides a foundation for further exploration of CXCL10 as a host biomarker 

relevant in respiratory tract viral infections. Leveraging lateral flow immunoassay technology for 

detection of biomarkers prognostic of respiratory tract infection may provide opportunities to 

intervene selectively and aggressively in those most at risk of poor outcomes.



Introduction

Prior to COVID-19, lower respiratory infections ranked as the 4th leading cause of death 

responsible for ~ 2.6 million fatalities annually [1]. The majority of these deaths occurred in 

children under the age of five and those over the age of 70[1]. The COVID-19 pandemic 

exacerbated the global burden of disease attributable to respiratory infections with more than 6 

million fatalities [2] where age functioned as a significant risk factor that has spared children 

from the greatest morbidity and mortality [3].  

The morbidity and mortality associated with respiratory tract infections are dominant 

aspects that contribute to a global burden calculation, but these measures must also be considered 

in conjunction with the economic costs [4]. Economic costs of respiratory infections can be 

broken down into direct and indirect costs. Direct costs of respiratory infections are incurred 

through interactions with the healthcare system and may include physician visits and medication 

costs. Indirect costs may include absenteeism for patients and caregivers [5]. Total costs of 

pneumonia and acute lower respiratory infections exceed $25 billion annually in the European 

Union for a population of ~450 million people[6]. Extrapolating these costs on a global 

population level estimates ~$400 billion in annual costs across all jurisdictions. When including 

COVID-19, these expenditures are much higher. On a global scale, the economic burden of 

COVID-19 led to a -3.1 % decrease (equal to -$2.4 trillion USD) in the annual global GDP [7], 

with total estimates potentially as high as $16 trillion USD[8]. The COVID-19 pandemic 

demonstrated that in dire circumstances, respiratory infections can cause unprecedented global 

economic recession and massive disruptions to global supply chains[9]. While the economy has 

begun to recover from the COVID-19 pandemic, the risk of novel emerging infectious diseases 

and SARS-CoV-2 variants of concern remains high. The significant direct and indirect costs of 



respiratory infections warrant the development of a diverse set of approaches that can help 

mitigate economic burden.  

Across common respiratory tract viral infections, the young, elderly, individuals with 

chronic respiratory diseases, and expecting mothers have elevated risks for morbidity and 

mortality [10]. Common viral respiratory tract pathogens include rhinoviruses (RV), respiratory 

syncytial virus (RSV), influenza A and B (FluA and FluB), and coronaviruses (CoVs) [3,11]. 

Depending on the pathogen, respiratory viral infections may vary in presentation from a mild 

illness restricted to upper airways that is self-resolving (RV) [12] to acute respiratory distress 

syndrome that requires ventilation and is associated with fatalities (SARS-CoV-2) [3]. Globally 

it has been estimated that 2% of all deaths related to respiratory dysfunction are associated with 

influenza causing approximately ~400 000 deaths every year [13]. RV cause relatively mild 

illness in the majority of the population; although they contribute to a substantial number of 

medical visits and missed work days every year and an increased morbidity is observed in 

immunocompromised individuals [14] . RV infections contribute to a substantial number of 

acute asthma exacerbations in the community [15]. RSV is a common viral infection in children 

under 5 years old that is associated with hospitalizations and bronchiolitis [16,17]. In a 

longitudinal study of 92 children, all but one had an RSV infection before the age of 2, 

suggesting that a large proportion of children are susceptible to becoming infected with RSV 

[18]. In 2015, there were approximately 33 million RSV infections globally which resulted in 

three million hospitalizations and ~ 60,000 deaths in children younger than 5 years old [19]. 

Both RV and RSV infections pose as risk factors for subsequent development of wheeze and 

childhood asthma [20,21]. Understanding core mechanisms common to respiratory tract viral 



pathogenesis and host-responses to infections may provide biomarkers for at-risk patient 

populations that guide interventions aimed at reducing morbidity, mortality, and economic costs.  

To combat respiratory tract viral infections, the respiratory mucosa participates in a wide 

range of innate and adaptive immune responses to control and eliminate pathogens. Innate 

immune responses of the respiratory mucosa are initiated by germ-line encoded pattern 

recognition receptors (PRRs) that bind to molecular motifs that are associated with extrinsic 

pathogen associated molecular patterns (PAMPS) or intrinsic damage associated molecular 

patterns (DAMPS). PRR recognition of non-self PAMPS or self-DAMPS initiates intracellular 

signaling cascades that upregulate host-defence mechanisms defined by temporally specific gene 

expression patterns [22]. Although these processes are broadly applicable to all respiratory tract 

viral infections, diversity in host responses exist and are influenced by the infectious pathogen 

and its ability to subvert host immune responses in an attempt to replicate and spread [23,24]. 

Core host innate immune responses that are shared between respiratory tract viral infections may 

provide diagnostic and prognostic potential beyond simple pathogen detection alone [25,26]. 

Importantly, host innate immune responses are not merely beneficial and can contribute to 

pulmonary damage via uncontrolled inflammation and immunopathology [27]. 

The dominant innate immune response induced upon respiratory tract viral infection and 

downstream of PRR signaling is the induction of interferon stimulated genes (ISGs) through 

Type I and Type III interferons [24]. When a virus enters the respiratory system, viral PAMPs 

are recognized by the host’s PRRs, and this triggers the production of interferons (type I and III) 

and activates the interferon antiviral response. Type I IFNs act in a paracrine and endocrine 

fashion through the Type I IFN receptor (IFNAR) while Type III IFNs signal through IFNLR1 

[24].  Downstream signaling from these receptors merges on the JAK family of kinases and 



STAT family of transcription factors, leading to transcriptional activation[28]. The interferon 

antiviral response induces a number of different ISGs that generate protein products that inhibit 

distinct parts of viral life cycles [24,28]. Aspects that the interferon antiviral response may 

coordinate include cellular defences to virus binding, internalization, replication, packaging, and 

release. Importantly, in conjunction with ISG products produced within the cell to combat viral 

life cycle, other ISG products are released outside the cell to signal to non-infected cells in the 

local and systemic environment. Secreted ISG protein products that are also chemokines may 

provide early biomarker signals that are prognostic for respiratory tract viral infections. Three of 

these chemokines include Tumour Necrosis Factor-related Apoptosis-Inducing Ligand (TRAIL) 

and the CXC Chemokines: CXCL10 and CXCL11 which are all induced by interferon [23]. 

Previous research has found these three proteins to be induced by several respiratory viral 

infections both in-vitro and in-vivo experiments [29–31]. Together, these three genes CXCL10, 

CXCL11 and TNFSF10 are cytokines that are also stimulated by the IFN response and may be 

useful biomarkers for respiratory tract viral infections.

CXCL10, also called interferon-γ inducible protein 10 kDa (IP-10), is a secreted ISG and 

plays a key role in fighting viral infections [32]. This chemokine has been shown to have altered 

mRNA expression levels in RV, RSV, and SARS-CoV-2 infections [33–35]. In addition, serum 

samples revealed high levels of CXCL10 protein in H5N1 influenza infection and SARS-CoV-2 

[36,37]. Lorè et al. 2021 showed CXCL10 serum levels were a robust predictor of COVID-19 

outcomes, with higher levels being related to increased mortality. CXCL11, also known as C-X-

C motif chemokine ligand 11, is another chemokine which shares the same CXCR3 receptor as 

CXCL10 and is also secreted[38]. Both CXCL10 and CXCL11 play a role in recruitment of T 

cells and NK cells as part of the immune response [38]. CXCL11 has shown a similar trend of 



upregulation in SARS-CoV-2 infections in-vitro [39] and in-vivo [35,40]. TRAIL produced from 

the gene TNFSF10, is a secreted protein which can induce apoptosis and plays a role in the 

immune response to destroy virally infected cells [41]. TNFSF10 has been found to be 

upregulated during viral infection [42]. 

Respiratory tract infections caused by viruses have sought a massive burden on health 

care system for years and the recent COVID-19 pandemic has exacerbated this exponentially. 

The COVID-19 pandemic has ushered in a new era of rapid diagnostics, including the use of 

lateral flow assays (LFAs) in settings other than hospitals, such as schools and workplaces. LFAs 

are useful for testing directly on-site rather than operating through a centralized testing 

laboratory. The advantages of LFA tests are that they are quick, inexpensive, and easy to use. 

Despite their lower sensitivity and specificity, they are typically preferred as a screening method 

and require a confirmation test such as PCR [43]. SARS-CoV-2 rapid tests such as the Abbott 

Panbio™ detect the SARS-CoV-2 pathogen but do not provide any insight into the individual’s 

host response and disease trajectory. However, orthogonal tests, such as Roche's Elecsys® IL-6 

test, which employs an electrochemiluminescence immunoassay (ECLIA) to measure IL-6 levels 

in blood, have demonstrated promising use for the early detection of severe disease progressions 

in COVID-19 patients [44]. Leveraging LFA technology for detection of biomarkers prognostic 

of respiratory tract infection may provide opportunities to intervene selectively and aggressively 

in those most at risk of poor outcomes. 

ISGs play a major role in the antiviral defense and measuring extracellular protein 

products of ISGs could be potential biomarkers of infection. CXCL10, CXCL11 and TNFSF10 

are involved in the antiviral immune response during a variety of respiratory infections. 

However, the feasibility and performance of these ISGs as useful and measurable clinical 



biomarkers from an easily accessible sample format remains unknown. In the present study, we 

had the overarching goal of defining the expression patterns of the secreted ISG products 

CXCL10, CXCL11, and TNFSF10 in respiratory mucosal samples for multiple respiratory tract 

infections including RSV, RV, influenza A and SARS-CoV-2 to inform the development of a 

host-biomarker point of care LFA tool. Gene expression levels from upper airway samples 

suggested that CXCL10 and CXCL11 elevations were consistent across multiple viruses, 

correlated with higher SARS-CoV-2 viral load, and had a lower variance over the course of 

COVID-19 infection compared to TNFSF10. Deep proteomic profiling using mass-spectrometry 

revealed CXCL10 protein was not detectable in oral samples from healthy individuals. CXCL10 

levels were measured from the saliva of SARS-CoV-2 infected individuals and showed 

significant elevations in CXCL10 protein concentration. We proceeded to develop a prototype 

LFA for CXCL10 protein with a sensitivity of 2ng/mL in human saliva. Our work provides a 

foundation for further exploration of CXCL10 as a host biomarker relevant in respiratory tract 

viral infections with potential diagnostic and prognostic value. 

Materials and Methods

Human ethics: Procurement of nasopharyngeal swab (NPS) and saliva samples from consented 

study subjects was approved by Hamilton integrated Research Ethics Board (HiREB 4914T, 

5099T, and 10771). 

Data Resources: A combination of publicly available gene and protein datasets (Table 1) and 

in-house generated gene datasets from Hamilton Regional Laboratory Medicine Program and 

Sunnybrook Hospital were used for present study. 

Table 1: Publicly Available Data Resources Accessed for Analysis



Overview of Publicly Available Accessed Datasets: 

In-vitro cell culture experiments: In-vitro, pre-processed transcriptomic datasets were examined 

using the Harmonizome resource (https://maayanlab.cloud/Harmonizome/ [45]. From 

Harmonizome, the dataset labelled “GEO Signatures of Differentially Expressed Genes for Viral 

Infections” was accessed for hypothesis testing for differential expression of in CXCL10, 

CXCL11, and TNFSF10 following viral exposure in vitro from a variety of experimental 

conditions. For each dataset, Harmonizome’s “Standard Value” reports the strength of 

association as a -log10(p-value) with the sign indicating up (+) or down (-) expression, 

respectively. The “GEO Signatures of Differentially Expressed Genes for Viral Infections” 

https://maayanlab.cloud/Harmonizome/


dataset contained 366 individual datasets of mRNA expression profiles using microarray 

technology for cell lines or tissues after viral infection. These were filtered down to 199 

microarray datasets as all non-human experiments and non-respiratory viruses were excluded. 

The remaining 199 datasets came from 17 GSE studies including the following viruses: influenza 

A, human coronavirus, SARS-CoV like virus isolated from bats, a mouse-adapted SARS-

coronavirus, SARS-CoV mutant strain that does not express the accessory protein open reading 

frame 6 (delta ORF6), human metapneumovirus, wild-type infectious clone-derived SARS-CoV, 

measles, RSV and RV, with time points ranging from 0- 96 hours post inoculation. In-vitro cell 

systems included but were not limited to Calu-3, HAE, and A549 cell lines (Supplementary 

Table 1). From the 199 microarray datasets, the studies in which CXCL10, CXCL11 and 

TNFSF10 were in the top 300 or bottom 300 differentially expressed were counted. The Standard 

Value (strength of association) and number of datasets were plotted. This Harmonizome method 

of data retrieval is a conservative representation of the number of datasets where the candidate 

genes are differentially regulated as they must be in the top or bottom 300 differentially 

expressed genes. ACTB, TUBB and GADPH were analyzed as housekeeping genes in parallel to 

demonstrate the stochastic nature intrinsic to the approach used for our genes of interest. 

Upper Airway Sampling: Four datasets of upper airway swabs (NPS or nasal mid-turbinate) 

samples were curated to determine CXCL10, CXCL11 and TNFSF10 gene expression under 

different respiratory viral infections. 

Host transcriptomic data on RV and RSV infections were from pediatric populations between 3 

months and 18 years admitted to hospital for acute respiratory illness and had confirmed PCR 

detection of pathogen [46]. All subjects had not received any immunosuppressants for 30 days or 

antibiotics for 7 days. Control subjects were of the same age but present in the hospital setting 



for ambulatory surgery for non-acute conditions. Microarray gene expression analysis was 

performed on the mid-turbinate nasal swab with data retrieved from GSE117827. A total of 6 

RSV positive (2 males, 4 females), 12 RV positive (8 males and 4 females) and 6 negative 

control (6 males) samples were analyzed.

Host transcriptomic data on SARS-CoV-2 infections were from adult populations from three 

studies that each had distinct subject enrolment strategies and demographics available. In the first 

dataset, a total of 430 SARS-CoV-2 positive (176 males, 201 females, 53 unknown) and 54 

negative control (30 males, 24 females) were analyzed from GSE152075 [35]. For the second 

dataset, a total of 93 SARS-CoV-2 positive (no other pathogenic respiratory virus) (50 females, 

43 unknown) , 41 other viral acute respiratory infection (19 females, 22 unknown), and 100 non-

viral acute respiratory infection (55 females, 45 unknown) were analyzed from GSE156063 [47]. 

For the third dataset, SARS-CoV-2 status was determined by RT-PCR and other respiratory 

viruses were detected by metagenomic sequencing. The non-viral acute respiratory infection 

group included bacterial infections and other non-infectious respiratory diseases. A total of 216 

SARS-CoV-2 and 519 negative samples were analyzed from Genotypes and Phenotypes dbGAP 

(accession #38851 and ID phs002258.v1.p1) [40].

To determine the association between positive SARS-CoV-2 status and CXCL10, CXCL11 and 

TNFSF10 expression, GSE152075 and GSE156063 were accessed. To determine the association 

between SARS-CoV-2 viral load and CXCL10, CXCL11 and TNFSF10 expression a web portal 

for an RNA-sequencing dataset was accessed (https://covidgenes.weill.cornell.edu/). We 

extracted the log2 fold change and q values for CXCL10, CXCL11 and TNFSF10 for positive vs 

negative comparison group and “Viral Level Continuous” comparison group using SVA 

correction and included all reads. “Viral Level Continuous” comparison group converted SARS-

https://covidgenes.weill.cornell.edu/


CoV-2 qRT-PCR cycle threshold (Ct) values into a continuous variable by converting Ct values 

where Ct of 15 is equal to 1.0 and a Ct over 40 is taken as 0.0 (see - 

https://covidgenes.weill.cornell.edu/). The goal of this was to determine if CXCL10, CXC11 or 

TNFSF10 gene expression correlated with SARS-CoV-2 viral load.

Oral Sampling: To determine the expression level of CXCL10, CXCL11, and TNFSF10 at the 

protein level in healthy individuals, an ultra-deep liquid chromatography-mass spectrometry-

based analysis of the human saliva proteome was accessed that included 8 subjects (4 males and 

4 females) (PXD 003028) [48]. All subjects were healthy and asymptomatic with no oral 

inflammation, pathologies, or prescribed medications. Each subject was sampled twice, once in 

the morning and once after breakfast. 

Overview of Analysis of In-House Datasets:  

Upper Airway Sampling: Three datasets of NPS upper airway samples were generated to 

determine CXCL10, CXCL11 and TNFSF10 gene expression under influenza A and SARS-CoV-

2 infection. For influenza A infections, NPS samples from patients suspected of respiratory tract 

infection were collected in the first 6 months of 2020 through the Hamilton Regional Laboratory 

Medicine Program (HRLMP) during COVID-19 screening. NPS swabs (Copan, Italia) were 

collected and stored in universal transport media prior to multiplex PCR analysis for a panel of 

respiratory tract infections. A total of 8 influenza A positive (5 males, 3 females) and 14 negative 

control (7 males, 7 females) samples were analyzed. For comparison of fatal and non-fatal 

SARS-CoV-2 infections, NPS samples from positive for COVID-19 were collected in the first 6 

months of 2020 through the Sunnybrook Hospital during regional COVID-19 testing programs. 

NPS swabs (Copan, Italia) were collected and stored in universal transport media prior to RNA 

isolation. A total of 6 fatal (5 males, 1 female) and 19 non-fatal (9 males, 10 females) samples 

https://covidgenes.weill.cornell.edu/


were analyzed. For determining the variability of CXCL10, CXCL11, and TNFSF10 over time 

following a positive SARS-CoV-2 test, PCR confirmed COVID-19 positive patients underwent 

repeated NPS sampling followed by storage in McMaster Molecular Medium and RNA isolation. 

A total of n = 6 subjects (5 females, 1 male) were analyzed over the period in which each subject 

was an inpatient (range from 12 to 26 days). All RNA isolation was performed using New 

England Biolabs Monarch Total RNA Miniprep Kit according to manufacturer directions. RNA 

concentration and integrity number was assessed by Agilent Bioanalzyer according to the 

manufacturer’s directions. Gene expression profiling was performed using the Human Clariom D 

microarray assay (Applied Biosystems). 

Oral sampling: To determine the suitability for measuring CXCL10 protein in saliva as a 

surrogate for CXCL10 gene in upper airway samples, we assessed CXCL10 protein by multiplex 

cytokine array (Eve Technologies, Calgary, Alberta) in COVID-19 inpatients processed by the 

Infectious Disease Research Group at Research St. Joseph’s - Hamilton. Neat saliva samples 

were provided from SARS-CoV-2 positive inpatients (n = 3) and SARS-CoV-2 negative healthy 

controls (n = 6). Samples were spun down at 1000g for 5 minutes to pellet the mucus in samples 

with a supernatant isolated for downstream analysis and kept frozen at -80°C until use. Saliva 

cytokine levels were quantified using Human Cytokine Array / Chemokine Array 71-plex (Eve 

Technologies, Calgary, Alberta, Canada). 

Bioinformatic Processing and Statistical Analysis:

For microarray datasets, raw intensity values and annotation data were downloaded. Probe 

definition files for the Clariom D human microarray chip were retrieved from Bioconductor and 

probes were annotated with Ensembl IDs in R (version 4.1.0). All gene expression data from a 

given study were unified into a single data matrix that was then normalized by robust multiarray 



average (RMA) normalization. Normalized expression levels for CXCL10, CXCL11, and 

TNFSF10 were extracted.

For RNA-seq datasets, raw count values and annotation data were downloaded directly from the 

corresponding author’s GitHub. Counts were normalized using the limma package in R (version 

3.14) with the design matrix including virus, sex, and age annotation data. Normalized 

expression levels for CXCL10, CXCL11, and TNFSF10 were extracted. Differential expression 

analysis was performed using the DESeq2 package in R (version 3.14). 

Gene expression levels were tested for significant differences between viral infections or other 

phenotypic data of interest via pairwise Student’s t-tests with Benjamini–Hochberg multiple 

testing correction or via ANOVA followed by Tukey Honest Significant Difference post-hoc 

tests using the stats R package (version 3.6.2). Gene expression box plots were generated with 

GraphPad Prism 9 (GraphPad Software Inc., USA) and heat maps were generated using 

pheatmap R package (version 1.0.12). For heat maps, normalized expression levels are scaled by 

gene. Gene expression box plots were expressed as mean and standard errors of the mean (SEM) 

with unpaired t-tests performed to compare the means of two groups. Where three groups were 

compared, a one-way ANOVA was performed with a Bonferroni correction for multiple 

comparisons. To determine variance in CXCL10, CXCL11, and TNFSF10 gene expression over 

time with SARS-CoV-2 infection, the host gene of interest was expressed as percent change 

from first period of inpatient sampling (set as time = 0) for each individual patient. Line graphs 

and box plots were generated with GraphPad Prism 9 (GraphPad Software Inc., USA). 

Differences were considered statistically significant when p < 0.05.

To assess protein levels in healthy human saliva, quantitative proteomic data corresponding to 

ProteomeXchange dataset PXD003028 [48] were downloaded from the MaxQB Database [49]. 



Reverse hits, common contaminants including keratins, and low confidence hits were removed, 

and data consistency verified using Pearson's correlation analysis within the Perseus platform 

[50]. Label free quantification intensities were subsequently summed to give a robust read-out 

for average protein levels for the 5551 proteins quantified. More than 95% proteins were 

identified in at least 3 samples, and nearly 80% across all 8 samples. 

CXCL10 LFA Prototype Development: 

Antibody pair selection process: Commercially available antibodies and reagents were selected 

for assay development to ensure reproducibility and robustness between labs. Antibody pairs for 

detection of CXCL10 were identified from commercially available sources that were amenable 

to ELISA applications. A recombinant anti-human CXCL10 mouse IgG-monoclonal 

(MAB2661), anti-mouse IgG goat-polyclonal (AF-266-NA), and recombinant CXCL0 protein 

(Product 266-IP) were selected from R&D Systems (Toronto, Ontario, Canada).

Conjugation of monoclonal CXCL10 antibody to 40nm gold: Conjugation was performed by 

using an N-Hydroxysuccinimide (NHS) coupling kit from Cytodiagnostics following 

manufacturer directions (Product CGN5K-40-2, Burlington, Ontario, Canada). Briefly, the 

monoclonal CXCL10 antibody was rehydrated in the supplied Protein Resuspension Buffer to a 

final concentration of 0.5 mg/mL. A single conjugation reaction was performed by addition of 

the supplied Reaction Buffer and CXCL10 solution to the lyophilized NHS-activated gold 

nanoparticle pellet. The reaction was gently mixed for 1 hr before adding 10 μL of the supplied 

Quencher Solution followed by 10 μL of 10% bovine serum albumin dissolved in distilled water. 

The 40 nm gold conjugate was pelleted by centrifugation (1300x g); the supernatant was 

removed, and 1 mL of Conjugate Buffer was added to resuspend and wash the conjugate before 



re-centrifugation to pellet the product. After removing the supernatant, the product was 

resuspended, and the OD adjusted to 10 using the provided Conjugate Buffer.

Preparation of lateral flow dipsticks: A control line solution (150uL) was prepared using 0.2 

mg/mL of the anti-mouse IgG antibody reconstituted in a capture buffer (10 mM HEPES, pH 

7.4, 0.1% BSA, 0.5% Methanol). The test line solution (150uL) was prepared with a polyclonal 

CXCL10 antibody at 0.1 mg/mL in capture buffer. Hi-FlowTM Plus 135 (Catalog 

#HF135MC100, 60mm x 301 mm) nitrocellulose membranes were purchased from EMD 

Millipore Corporation, Burlington Massachusetts. The test and control solutions were striped in 

parallel across the non-pre-treated nitrocellulose membranes using a syringe pump set to 

2.2mL/min connected to Claremont Bio’s Automated Lateral Flow Reagent Dispenser set at 3V. 

The resulting membranes were allowed to fully dry at room temperature for 18 hours before 

assembly with the wicking pad (Cellulose fibre sample pad, product #CFSP223000, EMD 

Millipore; Billerica, Massachusetts, USA) and cut into 4 mm wide strips by a CM5000 

Guillotine Cutter. Batches of approximately 150 completed LF strips were made and stored at 

room temperature for up to 6 months without loss of sensitivity (data not shown). 

Lateral flow sensitivity testing: Solutions for LFA sensitivity testing were prepared with 90% (by 

volume) lateral flow buffer (10mM HEPES, 150 mM NaCl, 0.1% Tween-20, 1% BSA, and 0.5% 

PEG 8000) and 10% (1 OD final concentration) monoclonal anti-human CXCL10 antibody 

40nm gold conjugate. Standards of known concentration were generated by adding recombinant 

CXCL10 to Reconstitution Buffer (1X PBS pH 7.4, 0.1% bovine serum albumin) to generate 50, 

20, 10, 5, and 2 ng/mL final concentrations along with a 0 ng/mL negative control.

Solutions for LFA testing with artificial saliva (product #1700-0316, ASTM E2721-16 with 

Mucin, pH 7.0; Pickering Laboratories, Mountain View, California, USA) were prepared with 



45% (by volume) lateral flow buffer and 45% artificial saliva. Monoclonal anti-human CXCL10 

antibody 40nm gold conjugate was added to a final concentration of 1 OD (or 10% by volume). 

Standards of known concentration were generated by adding recombinant CXCL10 to 

Reconstitution Buffer (1X PBS pH 7.4, 0.1% BSA) to generate 400, 50, 20, 10 and 5 ng/mL final 

concentrations along with a 0 ng/mL negative control.

For sensitivity studies in ideal buffer or artificial saliva, five unique replicates of standards were 

generated with 50ul of the solutions added to a 96-well plate. The solution was allowed to flow 

completely through the dipstick for 15 min and imaged with band intensity quantification 

performed using an IUL IPeak lateral flow strip reader (Product # 100033000; Barcelona, Spain) 

programmed to identify test and control bands.

Testing of LFA with human saliva from healthy subjects: Saliva was collected from healthy 

subjects with no symptoms of upper or lower respiratory tract infections. Subjects were asked to 

wash their mouth with water and discard into a sink, followed by 5 minutes of collection of 5 ml 

of collection (whichever came first). Samples were analyzed as is without centrifugation to 

represent a real-world point of care setting. Aliquots from 7 individuals were generated to create 

neat samples and CXCL10 spiked samples (10ng/mL). LFAs were completed by adding 50ul of 

sample to a 96 well plate followed by insertion of the dipstick for 15 minutes with qualitative 

visualization and photo capture completed.

Results

To first investigate the potential association between CXCL10, CXCL11, and TNFSF10 with 

viral infection, pre-processed transcriptomic datasets were examined using the Harmonizome 

resource (https://maayanlab.cloud/Harmonizome/)[45]. 366 processed microarray datasets under 



the category "GEO Signatures of Differentially Expressed Genes for Viral Infections"[51,52] 

were curated and filtered to include only datasets from experiments that used respiratory viruses 

and in-vitro human samples (Figure 1A). This filtering reduced the total number of GSE studies 

to 17 and corresponding microarray datasets to 199. From the 17 different studies, two were 

from a single time-point and the remaining 15 of the studies were time-series data. A variety of 

respiratory tract viral pathogens were used in the datasets including influenza A, SARS-CoV 

variants, human metapneumovirus, measles, RSV and RV (See Supplementary Table 1). The 

Harmonizome database extracted 600 differentially expressed genes following viral infection for 

each of the 199 microarray datasets which included the top 300 genes with increased expression 

and bottom 300 genes with decreased expression. Of the 199 datasets, there were more datasets 

with upregulation of CXCL10, CXCL11, and TNFSF10 gene transcript relative to datasets where 

these genes were downregulated. CXCL10 was found to be upregulated (Harmonizome 

association value > 1) in 39 datasets and downregulated (Harmonizome association value < -1) 

in 1 (Figure 1B). CXCL11 was upregulated in 33 datasets. TNFSF10 was upregulated in 36 

datasets and downregulated in 3. Among the three genes, CXCL10 was upregulated in the 

greatest number of viral infection datasets. The common housekeeping genes GAPDH, TUBB 

and ACTB were analyzed in all 199 datasets to provide context for the observed upregulation of 

CXCL10, CXCL11, and TNFSF10. (Figure 1C). The three housekeeping genes showed altered 

expression in fewer datasets than for CXCL10, CXCL11, and TNFSF10. These results provide 

evidence that CXCL10, CXCL11, and TNFSF10 are upregulated agnostic to human cell type and 

pathogen type when filtered for human respiratory tract viral infections and provided a rationale 

to explore the candidates further with samples of patients with clinically diagnosed respiratory 

viral infections.



Figure 1: CXCL10, CXCL11 and TNFSF10 show increased expression in-vitro after 

viral infection. 

A: Schematic of workflow. Pre-processed transcriptomic datasets using the 

Harmonizome resource (Rouillard et al., 2006) database of processed microarray 

datasets under the category "GEO Signatures of Differentially Expressed Genes for 

Viral Infections" (Edgar et al., 2002; Barrett et al., 2013) was accessed for hypothesis 

testing for elevations in CXCL10, CXCL11, and TNFSF10 following viral exposure in 

vitro from a variety of experimental conditions. This dataset contained 366 individual 

datasets of mRNA expression profiles using microarray technology. All non-human 

experiments and non-respiratory viruses were excluded which filtered down to 199 

microarray datasets. The studies in which CXCL10, CXCL11 and TNFSF10 appeared to 

be differentially expressed were counted (*Found in the top 300 or bottom 300 

differentially expressed genes with a Harmonizome standard value greater than 1 (up-

regulated) or below -1 (down-regulated).) Datasets included but not limited to Calu-3 

cell lines, HAE cultures infected with respiratory viruses including but not limited to 

FluA, SARS-CoV and Human metapneumovirus. B: CXCL10 was found to be 

upregulated in 39 independent viral infection datasets, and downregulated in one. 

CXCL11 was upregulated in 33 viral infection datasets. TNFSF10 was upregulated in 36 

and downregulated in 3. C: The housekeeping genes GAPDH, TUBB and ACTB were 

analyzed in all 199 and showed different expression levels in fewer datasets than for 

CXCL10, CXCL11, and TNFSF10. GADPH was found to be upregulated in 1 

independent viral infection datasets, and downregulated in 6. TUBB was down in 3 viral 

infection datasets. ACTB was upregulated in 5 and downregulated in 9.



To interrogate the expression of CXCL10, CXCL11, and TNFSF10 in clinical samples, we 

analyzed a combination of publicly available and in-house datasets from upper airway samples 

taken during studies of respiratory tract infections that included RSV, RV, influenza A and 

SARS-CoV-2 with corresponding non-infected negative controls (Figure 2A). CXCL10 and 

CXCL11 were upregulated with RSV infection relative to non-infected controls (Figure 2B – 

orange bars, p < 0.05) and to samples from RV infected subjects (p < 0.05). CXCL10, CXCL11 

and TNFSF10 were not differentially expression between NPS samples collected from RV 

infected subjects relative to non-infected controls (Figure 2B – blue bars, p > 0.05). No 

significant difference was found between NPS samples from influenza A infected individuals 

relative to non-infected controls for CXCL10, CXCL11 and TNFSF10 (Figure 2C, p > 0.05). 

With the COVID-19 pandemic, a variety of studies from SARS-CoV-2 infected subjects and 

non-infected controls have become publicly available. Probing a dataset by Lieberman et al., 

2020, we observed increases in CXCL10, CXCL11 and TNFSF10 in upper airway samples from 

SARS-CoV-2 infected subjects compared to non-infected negative controls (Figure 2D, p < 

0.001). Similarly, analyzing data from Mick et al., 2020, we observed increases in CXCL10, 

CXCL11 and TNFSF10 in samples from SARS-CoV-2 infected subjects compared to non-

infected negative controls (Figure 2E, p < 0.001). Collectively, these data from multiple 

respiratory tract viral infections suggest that CXCL10, CXCL11 and TNFSF10 positively 

correlate with infection status, with a robust and validated increase observed during SARS-CoV-

2 infection. 

Figure 2. CXCL10, CXCL11 and TNFSF10 expression in nasopharyngeal swab and 

nasal mid-turbinate samples from subjects with different viral respiratory tract 

infections including SARS-Cov-2, FluA, Respiratory Syncytial Virus, Rhinovirus. 



A: Schematic of workflow. B: From Yu et al., 2019 - GSE117827:  CXCL10, CXCL11 

and TNFSF10 gene expression was compared from the mid-turbinate nasal swab of 

pediatric subjects with RSV, RV and negative controls. Clustered heatmap of log2 

expression levels annotated by symptomatic, sex and infection with blue representing 

decreased expression and red increased expression. On the right, boxplot of RMA 

normalized expression (log2) (n = 24). There was no significant difference when 

comparing rhinovirus infected NPS to healthy control gene expression for CXCL10, 

CXCL11 and TNFSF10 (p > 0.05). CXCL10 and CXCL11 up-regulation was positively 

correlated with Respiratory Syncytial Virus (RSV) when compared to healthy control (p 

= 0.016, p = 0.006). C: Hamilton Regional Laboratory Medicine Program (HRLMP) 

microarray data: CXCL10, CXCL11 and TNFSF10 gene expression was compared from 

the NPS of subjects with influenza A (FluA) and negative controls. Clustered heatmap 

of log2 expression levels annotated by sex and infection status with blue representing 

decreased expression and red increased expression. On the right, boxplot of RMA 

normalized expression (log2) (n = 22). No significant difference between CXCL10, 

CXCL11 and TNFSF10 expression in FluA infection compared to negative control (p > 

0.05). D: From Lieberman et al., 2020 - GSE152075:  CXCL10, CXCL11 and TNFSF10 

gene expression was compared from the NPS of individuals with suspected SARS-CoV-

2 infection. Clustered heatmap of log2 expression levels annotated by sex and infection 

status with blue representing decreased expression and red increased expression. On the 

right, boxplot of RMA normalized expression (log2) (n = 484). CXCL10, CXCL11 and 

TNFSF10 expression was significantly upregulated SARS-Cov-2 infection compared to 

those who tested negative (p < 0.001). E: From Mick et al., 2020 - GSE156063: 



CXCL10, CXCL11 and TNFSF10 gene expression was compared from the NPS of 

subjects SARS-CoV-2 positive, SARS-CoV-2 negative but positive for another 

respiratory virus and no respiratory virus detected by metagenomic next generation 

sequencing (i.e., non-viral ARI such as bacterial infection). Clustered heatmap of log2 

expression levels annotated by sex and infection status with blue representing decreased 

expression and red increased expression. On the right, boxplot of RMA normalized 

expression (log2) (n = 234). CXCL10, CXCL11 and TNFSF10 expression was 

significantly upregulated SARS-Cov-2 infection compared to healthy control (p < 

0.001).  * = p < 0.05, ** p < 0.01 and *** = p < 0.001. 

The observation that elevations in CXCL10, CXCL11 and TNFSF10 transcripts from upper 

airway swab samples strongly associated with COVID-19 infection, prompted further 

exploration with additional SARS-CoV-2 study samples with data features of viral load and 

mortality (Figure 3A). Using a dataset from 735 subjects (519 PCR confirmed SARS-CoV-2 

negative and 216 PCR confirmed SARS-CoV-2 positive) that included metadata on Ct cycle for 

indication of viral load, we observed that CXCL10, CXCL11 and TNFSF10 gene expression 

showed trends for increasing with greater SARS-CoV-2 viral load quantified by PCR Ct value 

(Figure 3B). Pooling all SARS-CoV-2 positive samples together and comparing to SARS-CoV-

2 negative samples, CXCL10 showed an upregulation of log2 fold change of 3.4 (adjusted p value 

(q value) = 7.38E-31), CXCL11 showed an upregulation of 2.9 (q value = 4.43E-22) and 

TNFSF10 showed an upregulation of 1.0 (q value = 9.39E-23). Conversion of SARS-CoV-2 RT-

PCR cycle threshold (Ct) values into a continuous variable showed highly significant 

correlations between this measure of viral copy number and the three candidate biomarkers 

(CXCL10 - q value = 1.23E-54, CXCL11 - q value = 5.17 E-47, and TNFSF10 - q value = 4.26E-



38). Individuals who tested positive for other respiratory viral infections, under subclass “Other 

viral infection” appeared to also correlate with higher expression of CXCL10, CXCL11 and 

TNFSF10 (Figure 3B – pink bar for metadata on virus subclass), although no metadata on the 

other infection status was available. As viral load may not be an accurate indicator of infection 

severity in COVID-19 [53,54], we quantified CXCL10, CXCL11 and TNFSF10 transcript levels 

in fatal COVID-19 inpatients via microarray gene chip. Using a dataset of 25 subjects (19 PCR 

confirmed SARS-CoV-2 positive survivors and 6 PCR confirmed SARS-CoV-2 positive deaths) 

the mean RMA gene expression value for fatal vs non-fatal COVID cases was 4.3 (SD 1.8) vs 

3.5 (SD 1.11) for CXCL10, 3.7 (SD 0.4) vs 3.3 (SD 0.4) for CXCL11 and 6.0 (SD 1.5) vs 6.3 (SD 

0.8) for TNFSF10. In this limited sample size, mean values were higher in COVID-19 fatal cases 

for CXCL10 and CXCL11 but were not significantly different (Figure 3C, p > 0.05). No trends 

were observed for TNFSF10. 

Figure 3: The CXCL10/CXCL11/TNFSF10 gene signature in nasopharyngeal swab 

samples is positively correlated with SARS-CoV-2 viral load. 

A: Schematic of workflow. B: SARS-CoV-2 viral sequencing reads and qPCR cycle 

thresholds correlate with the CXCL10/CXCL11/TNFSF10 gene signature. (N = 735). 

The “Viral Level Continuous” comparison group converted qRT-PCR cycle threshold 

(Ct) values into a continuous variable by inverting CT values where Ct = 15 is equal to 

1.0 and a Ct > 40 is 0, CXCL10 showed an upregulation of log2 fold change of 6.2 (q 

value = 1.23E-54), CXCL11 showed an upregulation of log2 fold change of 6.0 (q value 

= 5.17 E-47) and TNFSF10 showed an upregulation of log2 fold change of 1.9 (q value 

= 4.26E-38). Data and Figure from Butler et al. 2021 - For research purposes only. All 

rights reserved. © Mason Lab and Weill Cornell Medicine, 2020). C: Mortality of 



COVID-19 patients is associated with only modest changes in the 

CXCL10/CXCL11/TNFSF10 gene signature at the time of original patient sampling. No 

significant correlation was found (p > 0.05).

A limitation of leveraging swab samples at the time of diagnosis and examining host responses is 

that all samples are not collected at the same time during the course of infection. As host 

responses and antiviral responses will vary throughout an infection, we set out to quantify 

CXCL10, CXCL11, and TNFSF10 gene expression and variance over the course of SARS-CoV-2 

infection by serial NPS sampling over the period of hospitalization. Using an inpatient cohort of 

6 subjects (5 females, 1 male – 72.8 years mean age +/-13.3 years), serial samples were collected 

when study subjects felt well enough to provide a sample (Figure 4A). CXCL10, CXCL11 and 

TNFSF10 transcripts were quantified in all samples provided until the patient was discharged 

from the inpatient unit (range from 12 to 26 days). Variance for CXCL10 was 0.213, CXCL11 

was 0.172, and TNFSF10 was 1.679 (Figure 4B-C). The variance for each gene was calculated 

per patient and averaged for each gene (grey bars), with statistically lower variance observed for 

CXCL10 and CXCL11, with both genes having lower variance than TNFSF10 (p<0.05). The data 

from the studies analyzed thus far suggest that CXCL10 and CXCL11 are elevated with SARS-

CoV-2 infection, track with viral copy number, and are stable throughout the progression of 

COVID-19 infection. These data suggest that CXCL10 and CXCL11 may be relevant 

biomarkers that could be useful for tracking respiratory tract viral infections. 

Figure 4: CXCL10/CXCL11/TNFSF10 gene signature expression over the course of 

COVID-19 infection as measured by serial nasopharyngeal swab sampling over 

period of hospitalization.  



A: Schematic of workflow.  B: CXCL10, CXCL11, and TNFSF10 expression over time 

in hospitalized COVID-19 positive patients expressed as % change from first sampling 

(set as time=0). The data was collected from 6 independent patients (COVXXX) who 

had distinct sampling counts dependent on clinical management of COVID-19 

infection. COV005 = 5 measurements, COV006 = 3 measurements, COV007 = 5 

measurements, COV010 = 6 measurements, COV011 = 10 measurements, COV013 = 

11 measurements. C: To determine which gene fluctuated the least of the course 

sampling, the variance of RMA values for CXCL10/CXCL11/TNFSF10 were calculated 

for each patient (colours) and averaged (grey). CXCL11 variance = 0.17, CXCL10 

variance = 0.21 and TNFSF10 variance = 1.68. * p < 0.05 relative to mean variance for 

CXCL10 and CXCL11.

The data presented identify that CXCL10 gene demonstrates the greatest magnitude of change 

during SARS-COV-2 infection in upper airway samples collected via NPS. NPS are not 

routinely self-administered and present a problematic sampling site for at-home or healthcare 

resource deficient settings, which has preference to shallow nasal swabs or oral swabs or 

combination[55]. NPS collected during viral screening are frequently stored in transport medias 

that are optimized for nucleic acid stabilization and isolation relative to protein stability[56]. Oral 

sampling has emerged during the COVID-19 pandemic as a useful surrogate for the upper 

respiratory tract that can be performed by non-healthcare professionals at a point of care/need 

that is amenable to both nucleic acid or protein detection strategies [57]. We therefore explored 

the utility of detecting CXCL10 protein in oral sampling using saliva collections as a sample 

format. To be a useful biomarker for monitoring respiratory tract infections, CXCL10 protein 

should not be detectable in healthy subject samples and only appear once a clinically meaningful 



infection occurs. Using a mass spectrometry-based proteomics dataset from 8 subjects (4 males 

and 4 females) that were sampled immediately after waking and again after first meal, we probed 

the healthy saliva proteome for CXCL10 (Figure 5A). In a list of 5551 proteins identified by 

label free quantification (Figure 5B and Supplement Table 2) CXCL10 protein was not found 

at any ranking. A table of the 15 most abundant identified proteins lists amylase as the top hit, 

confirming our analysis pipeline (Figure 5C). We next quantified the expression of CXCL10 

protein in the saliva from a cohort of PCR-confirmed COVID-19 inpatients and healthy 

uninfected controls using a human cytokine/chemokine biomarker assay (Eve Technologies). 

The mean concentration of CXCL10 was 86.4 pg/mL (SD = 109.6) in healthy saliva and 1186.6 

pg/mL (SD = 1252.3) in COVID-19 inpatients (Figure 5D, p < 0.05). 

Figure 5: CXCL10 protein is not present in healthy saliva samples and elevated 

during infection in saliva from COVID-19 patients. 

A: Schematic of workflow. B-C: From Grassl et al., 2016 ultra deep analysis of the 

healthy saliva proteome, the CXCL10 protein was not found amongst the list of 5562 

identified proteins (Supplementary Table 2). D: CXCL10 Levels in saliva of SARS-

CoV-2 in hospitalized COVID-19 patients quantified using the Human Cytokine Array / 

Chemokine Array 71-plex (Eve Technologies, Calgary, Alberta, Canada). Healthy 

volunteers without symptoms of a respiratory infection were used as the control group. 

Mean concentration of CXCL10 in saliva was 86.4 pg/mL (SD = 109.6, n = 6) in 

healthy subjects, while a mean of 1186.6 pg/mL (SD = 1252.3) was observed in 

COVID-19 patients. The COVID-19 group showed a significantly greater CXCL10 

concentration (* = p < 0.05).   



The low levels of CXCL10 protein in saliva of healthy subjects but elevated levels in COVID-19 

subjects is amenable to conventional LFA development that detects the upregulation of a 

mediator of interest. LFAs have become widely accepted tools for self-testing during the 

COVID-19 pandemic and represent a technology platform useful for at-home and healthcare 

deficient settings. Therefore, we next pursued the development of an open-source CXCL10 LFA 

using commercially available reagents (Figure 6A). A recombinant anti-human CXCL10 mouse 

IgG-monoclonal and anti-mouse IgG goat-polyclonal were selected as an antibody pair for 

CXCL10 detection. Assay development was validated in ideal buffer demonstrating a sensitivity 

of 2ng/mL (Figure 6B-C). Assay testing in commercially available artificial saliva reproduced 

the sensitivity of 2ng/mL (Figure 6D-E). Lastly, the assay detected 10ng/mL CXCL10 protein 

spiked into real human saliva from healthy controls that was not detected in control /non-spiked 

samples from the same donors (Figure 6F). These results demonstrate the sensitivity of an open-

source CXCL10 LFA prototype for self-administered point of care saliva testing with potential 

applications in respiratory tract viral infection monitoring. 

Figure 6: CXCL10 protein detection is feasible in fresh human saliva. 

A: Schematic of workflow. B-C: Sensitivity development and validation in ideal buffer 

(10mM HEPES, 150 mM NaCl, 0.1% Tween-20, 1% BSA, and 0.5% PEG 8000 - see 

methods for more details). Limit of detection of CXCL10 using a hand-held reader. A 

positive signal is generated at 2ng/mL with n = 5. D-E: Sensitivity test in artificial 

saliva (product #1700-0316, ASTM E2721-16 with Mucin, pH 7.0; Pickering 

Laboratories, Mountain View, California, USA) prepared with equal parts lateral flow 

buffer and artificial saliva - see methods for more details. F: Real world testing in 



human saliva from healthy control without (neat) and with (spiked) CXCL10 (10ng/mL) 

addition. 

Discussion

ISGs play a key role in defence against viral infections and measuring their expression 

levels during respiratory infections may provide diagnostic and prognostic information beyond 

measurement of a pathogen alone. In the present paper, we characterize three ISGs of interest 

that result in secreted protein products amenable to extracellular detection strategies: CXCL10, 

CXCL11 and TNFSF10. We quantify CXCL10, CXCL11 and TNFSF10 expression levels in the 

context of multiple respiratory tract viral pathogens including RSV, RV, influenza A and SARS-

CoV-2. Gene expression levels from upper airway samples suggested that CXCL10 elevations 

were consistent across multiple viruses, had qualitative positive trends with measures of severity 

of infection (e.g., viral load), and had the lowest variance over course of COVID-19 infection of 

the three candidates examined. To transition from upper airway samples collected by a 

healthcare professional to a self-collected sample format, we next explored CXCL10 levels in 

oral samples. A published deep proteomic profiling of healthy human saliva suggested low to 

absent levels of CXCL10 protein in healthy subjects. In contrast, saliva from SARS-CoV-2 

infected individuals resulted in elevations in CXCL10. Leveraging this relative binary behaviour 

of CXCL10 in healthy vs SARS-CoV-2 infected sample groups, we developed a prototype LFA 

for CXCL10 protein with a sensitivity of 2ng/mL in human saliva. Collectively, our work adds to 

the growing importance of examining host biomarkers during respiratory tract infections for 

diagnostic and prognostic value and demonstrates the feasibility of using self-administered 

qualitative LFA detection methods.  



Our study used a combination of publicly available datasets and de novo generated 

datasets. Consequently, the results are heavily dependent on the annotation of the data provided 

for each study. Differences in study design and the definition of control groups may contribute to 

potential biases and limitations in the data. Commercially available or bespoke PCR-based 

respiratory panels were used in several of the studies to annotate positive and negative subjects 

in individuals suspected of respiratory tract viral infection. PCR-based detection strategies can 

diagnose several viruses simultaneously while having greater challenges for diagnosing bacterial 

respiratory infections [58]. The challenges with bacterial diagnostic decisions in the respiratory 

tract are rooted into the commensal nature of bacteria in the nasopharynx such as Streptococcus 

pneumoniae and Haemophilus influenzae [59,60]. For example, up to 10% of adults are carriers 

of Streptococcus pneumoniae, creating a challenge to determine whether this organism is causing 

pathology or is simply part of the individual’s microbiome [59]. The potential for viral and 

bacterial co-infections as well as the presence of complex commensal communities can create 

limitations in analyzing data when only the viral infection status is provided. Any underlying 

virus or bacterial respiratory tract infection would impact host gene expression patterns that may 

include CXCL10, CXCL11, and TNFSF10. Furthermore, studies focused only on a single virus 

may not report the outcomes for other viruses detected in a multi-plex PCR assay. The publicly 

available COVID-19 negative labelled samples were generated during routine public SARS-

CoV-2 testing campaigns. As a result, although an individual may be labelled as SARS-CoV-2 

negative, they may have had an underlying viral or bacterial infection not quantified and 

recorded. Although the incidence of influenza A was low during COVID-19 [61,62], there 

remained the possibility that other respiratory tract viral or bacterial infections were present in 

individuals that tested negative for SARS-CoV-2 [40]. In Lieberman et al., 2020, patients 



suspected of SARS-CoV-2 infection were confirmed by RT-PCR result while those testing 

negative became the controls although no confirmations for other viral or bacterial respiratory 

tract infections were performed. Mick et al., 2020 took a distinct approach by using 

metagenomic RNA-sequencing and separating their cohort into three groups – 1) SARS-CoV-2 

positive - no other viral RTI 2) SARS-CoV-2 negative - positive for another virus and 3) SARS-

CoV-2 negative - no other RTI viruses detected. Metagenomic RNA-sequencing can 

simultaneously identify host genes and microbial RNA and can allow for an unbiased approach 

to labelling control groups and create further transparency when sharing data publicly [63]. 

Metagenomic molecular diagnostic strategies have been optimized for upper airway samples and 

are likely to be useful strategies moving forward with host-pathogen diagnostic approaches and 

be informative for future pandemics [64].

A variety of publicly available datasets and databases exist and are increasing in 

accessibility. Notable examples of databases include the NCBI resources Gene Expression 

Omnibus, the Broad Institute’s Connectivity Map, and the Cancer Genome Atlas. The diversity 

of these databases has been consolidated in meta-databases to attempt to harmonize publicly 

available resources. Harmonizome is a publicly accessible meta-database of 112 datasets from 65 

resources (https://maayanlab.cloud/Harmonizome/about). We leveraged the consolidation 

performed by Harmonizome to determine the expression of CXCL10, CXCL11, and TNFSF10 

across transcriptomic datasets defined by “GEO Signatures of Differentially Expressed Genes for 

Viral Infections”. Annotation of the datasets under this search term revealed some non-human 

datasets and datasets derived from non-respiratory tract viral infections, which were 

subsequently removed to maintain focus on host-biomarkers to respiratory tract infections. A 

limitation of the datasets curated by Harmonizome is that they are pre-clinical studies that 

https://maayanlab.cloud/Harmonizome/about


include multiple different viruses from multiple different cell-lines in addition to different time-

points post-infection. Despite the potential for extensive variation in experimental conditions 

between datasets, a significant signal for an increase in CXCL10, CXCL11, and TNFSF10 was 

observed across the meta-database, without observing the same for three common housekeeping 

genes, ACTB, GADPH and TUBB. Although Harmonizome contains multiple datasets and 

databases, an absence of well-annotated samples from respiratory tract viral infections in humans 

required additional dataset generation and curation to extend and validate observations of 

CXCL10, CXCL11, and TNFSF10 elevations.

NPS and mid-turbinate swabs are standard clinical sampling strategies for analysis of 

respiratory tract viral infections and are amenable to PCR and transcriptomic based readouts 

[55,64,65]. Historically, the small sample amounts collected from upper airway swabs have 

limited the ability to perform transcriptomic analysis which resulted in a focus on multi-plex 

PCR technologies [66]. The development of microarray technologies for small amounts of input 

material and the reduction in sequencing costs that affords greater sequencing depth have 

increased accessibility to transcriptomics. Prior to COVID-19 pandemic, relatively few studies of 

respiratory tract viral infections capitalized on technological advances for transcriptomics on 

upper airway samples. A seminal study demonstrating the ability to perform unbiased 

transcriptomics on upper airway samples was performed on a pediatric cohort of individuals with 

suspected and subsequent confirmation of respiratory tract infection via PCR [46]. We explored 

this publicly available host transcriptomic dataset from a cohort of 24 subjects. Independent of 

data that defines the time of initial infection, CXCL10 and CXCL11 up-regulation was positively 

correlated with RSV infection when compared to control. In contrast to RSV, no significant 

differences were observed for CXCL10, CXCL11 and TNFSF10 when comparing upper airway 



swabs from RV infected individuals to controls. The small sample size of this study precludes 

drawing conclusions about the absence of signal for our candidate host biomarkers with RV 

infection. Related to sample sizes of publicly available host-transcriptomic datasets from upper 

airway samples, the COVID-19 pandemic stimulated the mass adoption of molecular sequencing 

technologies and has since demonstrated the feasibility and utility of pursuing this approach, 

laying the foundation for a future state of host-pathogen diagnostics [35,40,47,64]. A limitation 

of leveraging clinical samples taken during diagnostic processes for research purposes is that 

there is lack of control over the time of initial infection, which could impact host gene expression 

signatures, particularly of ISGs which are time-sensitive [23]. This limitation may be overcome 

in the future with specific research study designs that could include prospectively following 

cohorts in a surveillance design to capture natural infections [66] or controlled human studies 

with viral challenges [67] with informed sample size calculations made based on the emerging 

publicly available datasets.

The presence of an elevated host biomarker during a confirmed respiratory tract viral 

infection may provide utility in determining stratifying those individuals at risk of morbidity and 

mortality, which could help inform treatment options at the time of first diagnosis [25,26]. To 

explore the possibility that either CXCL10, CXCL11 and TNFSF10 could function as a 

prognostic biomarker for disease severity, we explored expression levels in the context of SARS-

CoV-2 viral copy number and COVID-19 mortality as datasets from other respiratory tract viral 

infections and viral copy are not publicly available. CXCL10 and CXCL11 have been shown to 

significantly increase in expression in NPS samples from SARS-CoV-2 patients compared with 

control[68]. Using a large publicly available host transcriptomic dataset with PCR confirmed 

SARS-CoV-2 positive cases and reported Ct values, thus CXCL10, CXCL11 and TNFSF10 are 



quantitatively observed to correlate with viral copy number 

(https://covidgenes.weill.cornell.edu/). The correlation between SARS-CoV-2 viral load in nasal 

samples tracking with severe disease has been supported in most but not all cases. In a 

prospective study, lower Ct values (i.e. higher viral load) correlated with severe disease in 

hospitalized patients. Although, there was no significant correlation between lower Ct values (i.e. 

higher viral load) for the risk of being hospitalized for SARS-COV-2 when adjusted for the time 

of symptoms onset [53]. A longitudinal study found increased SARS-CoV-2 viral load correlated 

with a higher risk of death, and increased inflammatory markers CRP and IL-6 [54]. Conversion 

of viral copy Ct value to a continuous variable (> 40 = 0, < 15 = 1) resulted in a statistically 

significant correlation between CXCL10, CXCL11 and TNFSF10 and amount of virus present. 

Despite the reports that SARS-CoV-2 viral copy number may relate to severity of COVID-19 

disease, differences in the measure of severity and the populations chosen in independent studies 

have contributed to ambiguous conclusions. In addition to viral copy number, host responses 

have been measured throughout the COVID-19 pandemic and have been demonstrated to have 

predictive value for determining severity. Indeed, host responses to SARS-CoV-2 infection 

including serum IL-6 and C-Reactive Protein have been evaluated and demonstrated prognostic 

value in triaging COVID-19 patients [69,70]. In parallel to analyses relating viral copy number to 

host responses, we investigated death as an unambiguous measure of severity. In a cohort of 25 

intensive care unit admitted subjects, each with PCR-confirmed SARS-CoV-2 infection, the 

upper airway swab sample taken at time of diagnosis showed no significant differences in 

magnitude of CXCL10, CXCL11 and TNFSF10 gene transcript between fatal and non-fatal 

COVID-19 cases. Previous research in blood samples of COVID-19 patients looked at 53 

potential biomarkers and found CXCL10 as the best predictor of death [37]. They also observed 

https://covidgenes.weill.cornell.edu/


that CXCL10 levels were increased in patients with ICU care compared to without ICU and 

CXCL10 levels decreased in COVID-19 survivors who were discharged from the hospital [37]. 

However, this study used a different sample type, blood, and they used a Bio-Plex Pro™ Human 

Cytokine 27-plex assay to determine CXCL10 protein concentrations. In addition to Lorè et al., 

2021, several other studies using blood samples found CXCL10 was associated with COVID-19 

disease severity [71,72]. These data suggest that focusing on blood as the sample type may 

provide a greater differentiating signature than upper airway gene transcripts. To date, point of 

care blood sampling for host biomarkers has received little traction in the infectious disease 

space. In contrast, self-administered LFAs for detection of protein in oral and upper airway 

samples provide a strategy for implementing point of care monitoring of host biomarkers 

relevant in respiratory tract infections.  

The significant limitation of being blind to the time-point of initial infection is intrinsic to 

cross-sectional studies performed on individuals during initial diagnosis. To overcome this 

limitation, time-series studies may be performed to capture natural infections in the community, 

or the time course of infection can be monitored once an individual is admitted to the healthcare 

system, with admission becoming a baseline for the given study subject [66]. We took this 

secondary approach of defining baseline as the time of hospital admission and analyzed the 

variance in CXCL10, CXCL11 and TNFSF10 over the course of hospitalization. Analysis of 

variance for each biomarker in study subjects repeatedly sampled during their hospitalization 

was completed with each individual’s expression levels at admission functioning as their 

baseline. We quantified variance for each gene over time to identify which candidate may 

function as a more robust measure of host response to SARS-CoV-2 infection that is independent 

of the time of first sampling and diagnosis. The observation that CXCL10 and CXCL11 had 



lower variance over TNFSF10 supported excluding the latter as a robust biomarker stable 

throughout the course of an infection. The stability of CXCL10 and CXCL11 that we observed in 

upper airway samples has been observed in serial blood and serum samples from COVID-19 

patients [71,72]. Previous in-vitro studies found CXCL10 and CXCL11 expression in SARS-

CoV-2 infected Calu-3 human lung cells peaked at 72 hours post infection [39]. CXCL10 

showed greater log fold change and remained significantly elevated from 12-72 hours post-

infection and CXCL11 elevated 18-72 hours post-infection [39]. Collectively, these data support 

the utility of CXCL10 protein as a prognostic biomarker for COVID-19 and provided a rationale 

for our focus on this mediator for downstream LFA development for self-administered testing.  

Self-administered saliva testing for respiratory tract viral infections has become a reality 

through the COVID-19 pandemic [57]. The qualitative nature of LFA has been challenged in the 

popular and academic circles [73] with the net result being the widespread adoption of the 

technology on a global scale to provide a degree of diagnostic capacity previously not available 

to the general public. The possibility that other saliva-based tests relevant in infectious disease 

may emerge has therefore increased and may include host biomarkers of clinical importance 

[74]. The qualitative nature of LFAs requires a clear binary response of presence and absence for 

the test to be practical. Our a priori decision to characterize CXCL10, CXCL11, and TNFSF10 

were based on the assumption of their extracellular secretion with infection and low levels during 

times of no infection. In a deep proteomic profiling dataset of healthy human saliva from males 

and females with repeated measures, CXCL10 was not identified in a list of 5551 proteins 

detected, with 95% of the proteins identified in at least 3 samples and nearly 80% across all 8 

samples. In contrast to deep proteomic profiling, we used a multiplex cytokine array from Eve 

Technologies and were able to detect CXCL10 with a mean concentration of 86.43 pg/mL (SD = 



109.6, n = 6) in saliva from healthy subjects. Although these data may appear in conflict, an 

alternative explanation is that even deep proteomic profiling may not achieve the sensitivity of 

commercially available established multiplex cytokine arrays. Importantly, an elevation in 

CXCL10 protein was observed when analyzing saliva samples from COVID-19 infected 

subjects. The observed elevation of saliva CXCL10 protein provides a rationale to explore LFA 

technology for point of care detection and provides guidance on the sensitivity requirements for 

distinguishing samples from negative non-infected individuals and positive SARS-CoV-2 

infected individuals. Leveraging commercially available reagents for LFA development 

including detection and capture antibodies, nitrocellulose membranes, and absorbent wicking 

material, we developed a prototype CXCL10 protein detection assay with a sensitivity of 2 

ng/mL in artificial and healthy saliva. To our knowledge, this was the first CXCL10 LFA 

designed for human saliva samples. A previous study developed a CXCL10 LFA for amniotic 

fluid as a marker of intra-amniotic inflammation with sensitivity of 100 pg/mL (0.1 ng/mL)[75]. 

This study was able to achieve greater sensitivity, suggesting that the prototype presented could 

be optimized for detection of CXCL10 levels relevant during respiratory tract infections but not 

during periods of health. Importantly, if the sensitivity of a CXCL10 LFA were to be reduced to 

a level that can detect protein in healthy subjects, the utility of the test would be reduced as it 

would not help differentiate elevated levels of CXCL10 that may predict COVID-19 severity. 

Consistent with this requirement, CXCL10 protein levels peaked at around 60 ng/mL on day 2 of 

RV infection in adult nasal lavage samples which is within the range of our prototype CXCL10 

LFA [33]. The concentration of CXCL10 measured with ELISA on the day of intubation from 

infants with RSV was observed to be around 33 ng/mL from bronchoalveolar lavage samples 

which is also within the range of our CXCL10 LFA [31].



Our characterization of CXCL10 gene expression in several datasets and development of 

a prototype CXCL10 responsive LFA amenable to saliva sampling represent first steps in a 

process towards biomarker validation and demonstration of clinical utility. Future utility could 

include examining the ability of CXCL10 protein levels in saliva to aid in discrimination of viral 

vs. bacterial respiratory tract infections, which would aid in rapid decision making for antibiotic 

administration as part of antibiotic stewardship practices. Future studies from clinically 

phenotyped subjects with respiratory tract bacterial infections in the absence of viral infections 

or bacterial/viral co-infections are required for this important research question to be answered. 

Perhaps closer to the clinic due could be the prognosis of COVID-19 during SARS-CoV-2 

infection. Previous research has found CXCL10 to play a key role in predicting ICU admission 

using blood sample [37,71,72]. To validate CXCL10 in saliva as a biomarker of SARS-CoV-2 

severity, further longitudinal research into time series data would be required. This would need 

to prove that CXCL10 levels are increased in a time frame where appropriate intervention is 

possible. It would not be useful to measure CXCL10 to predict severity if there are other more 

obvious clinical symptoms already present. 

To conclude, we present data that characterizes CXCL10, CXCL11 and TNFSF10 gene 

expression in upper airway samples from individuals with respiratory tract viral infections. We 

provide a justification that CXCL10 protein product is amenable to LFA testing in a point of care 

setting. Further clinical validation of CXCL10 gene and protein as a biomarker of respiratory 

tract viral infections is required and should be complemented with study cohorts that include 

bacterial infections in the absence of viral infections. The utility of measuring CXCL10 at the 

point of care for diagnostic and prognostic purposes will grow as the appreciation that both host 



and pathogen molecular markers are important for optimal clinical care and healthcare system 

utilization. 
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