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Abstract 
Cardiovascular diseases (CVD), primarily coronary heart disease and stroke, rank amongst 
the leading causes of long-term disability and mortality. Providing accurate disease risk 
predictions and identifying genes associated with CVD are crucial for prevention, early 
intervention, and the development of novel medications. 

The recent availability of UK Biobank Proteomics data enables the investigation of the blood 
proteome and its association with a wide variety of diseases. We employed the Explainable 
Boosting Machine (EBM), an interpretable machine learning model, for CVD risk prediction. 
The EBM model using proteomics outperforms traditional clinical models with an 
AUROC of 0.767 and an AUPRC of 0.2405. Adding clinical features further improves the 
AUROC to 0.785 and the AUPRC to 0.2835. Our models demonstrate consistent 
performance across sexes and ethnicities. 

While most prior studies using proteomics data for disease prediction have primarily 
focused on maximizing the accuracy at the population level, our model provides additional 
enriched insights into individualized disease risk predictions and in-depth biological insights 
into biomarkers. Our analysis also uncovers nonlinear risks linked to varying feature values. 
We further corroborate our findings using statistical approaches and evidence from the 
literature. 

In conclusion, we present a highly accurate and explanatory framework for proteomics data 
analysis, offering comprehensive and in-depth molecular and clinical insights. Our findings 
support future approaches that prioritize individualized disease risk prediction and the 
identification of target genes for drug development. 
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Introduction 
Cardiovascular disease (CVD), primarily coronary heart disease and stroke, collectively 
rank among the leading causes of death worldwide. The primary pathology underlying these 
diseases is atherosclerosis, which is characterized by the build-up of plaque in major 
arteries.  CVD impacts people in both developed and developing countries, encompassing 
individuals from diverse ethnic backgrounds and has an increasing impact on women and 
younger individuals (Libby, 2021). Current treatment approaches include lifestyle 
adjustments, regular medical monitoring, and pharmaceutical interventions targeting major 
risk factors such as elevated cholesterol (statins) and blood pressure (Charo & Taub, 2011; 
Chen, et al., 2022). To enhance existing treatments, identify individuals at risk of disease, 
and improve preventative measures, current approaches may be augmented by accurate 
personal disease risk predictions. Traditional clinical predictors, such as blood pressure, 
BMI, cholesterol levels, and medical and family history, have been employed to estimate 
individual disease risk, but their accuracy remains limited (Singh, Pilkerton, Shrader, & 
Frisbee, 2018; Huang, et al., 2022). Therefore, there is a need for developing more precise 
predictive methods incorporating state-of-the-art omics technologies such as proteomics. 

The UK Biobank recruited over 500,000 participants to gather comprehensive baseline data 
and long-term follow-up of health outcomes (Bycroft, et al., 2018). To promote an in-depth 
understanding of disease biology and accelerate drug development, proteomics data were 
collected from over 54,000 participants (Sun, et al., 2023). The circulating concentration of 
3,072 plasma proteins was quantified using Proximity Extension Assay with the Olink 
Explore Platform. This proteomics data can be utilized for drug target and biomarker 
discovery, to improve disease understanding, and to inform patient stratification as well as 
disease prediction. Here, we focus on building machine learning models for two primary 
objectives: predicting disease risk and identifying genes associated with it.  

Previous studies have used proteomics to predict cardiovascular events (Helgason, et al., 
2023), type II diabetes (Gadd, et al., 2023), and chronic kidney disease (Avram, 2023). 
Incorporating additional information, such as clinical (Williams, et al., 2022), lipidomics 
(Nurmohamed, et al., 2023), and metabolomics data (Nightingale Health Biobank 
Collaborative Group, et al., 2023) has been demonstrated to further enhance the predictive 
capabilities of disease risk. Apart from predicting disease risk, some machine learning 
models also excel in extracting in-depth insights of feature importance and individualized 
risk predictions from high-dimensional and complex datasets. For instance, 
Schuermans et al. recently applied LASSO regression to predict common cardiac diseases 
in the initial proteomics data released by the UK Biobank, identifying 820 potential protein-
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disease associations (Schuermans, et al., 2023). However, such linear models may not fully 
capture non-linear relationships between predictors and outcomes. 

Explainable Boosting Machines (EBMs) are interpretable and non-linear machine learning 
models that belong to the family of Generalized Additive Models (GAMs) (Hastie & Tibshirani, 
1987). These models involve a response variable that depends linearly on shape functions, 
which are unknown smooth functions of predictor variables. EBMs use bagged ensembles 
of boosted depth-restricted trees to represent these shape functions (Lou, Caruana, & 
Gehrke, 2013). In simpler terms, EBMs use a combination of simple, single-feature models 
to accurately represent how each of the features (e.g., age or plasma level of a protein) 
predict an outcome (disease risk) by using a technique called boosting. In boosting models, 
simple models are created sequentially, with each new model trying to correct the errors 
made by the previous ones. This process helps to create a robust final model that can 
provide accurate and reliable predictions. When the final model is built, the per-feature 
models get combined into the shape functions, which provide valuable insights into the risk 
profile for subranges of features’ values. EBM models offer both local and global 
explanations. Local explanations predict the features (e.g., molecular or clinical factors) 
that are important for each participant. For instance, the local explanation for a participant’s 
prediction might show that a particular protein is an important predictor of disease risk, 
based on its expression level in that participant. On the other hand, global explanations 
focus on the importance of features across a spectrum of values. For instance, the global 
explanation for a specific protein would show how risk changes across the different 
expression levels observed in the whole cohort. For comparison, we also considered 
predictive models using other gradient boosting approaches popular in the literature in 
addition to EBM. Gradient boosted trees are well-established strong baselines for tabular 
data (Grinsztajn, Oyallon, & Varoquaux, 2022). Moreover, they are robust to uninformative 
features and outperform other methods on skewed data distributions. Coupled with 
SHapley Additive exPlanation (SHAP) values (Lundberg & Lee, 2017), these classifiers 
provide a way to explain the global and local feature importance as well. 

In this study, we showcase not only the high predictive power of our machine learning 
models for CVD risk but also their explainability. Specifically, we apply the EBM, an 
explainable machine learning framework, for predicting CVD risk. Our analysis reveals 
insights into three aspects of explainability: (1) features with high predictive power; (2) 
participant-specific risk factors; and (3) distinct risks associated with varying feature values. 
We further substantiate our findings through statistical approaches and reviewing existing 
literature.  
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Results 
Model accuracy of cardiovascular disease risk prediction 
Using data from the UK Biobank participants with proteomics measurements, we aimed to 
predict the risk of a primary cardiovascular disease (CVD) event occurring within 10 years of 
the initial assessment center visit, in which blood samples were collected (see Methods 
Section on UKBB dataset for the definition of CVD). Supplementary material also includes 
results on 3 and 5-year risk predictions. Proteomic and clinical features were used to train 
the models. Specifically, after quality control exclusions (see Methods), plasma levels of 
2,941 proteins quantified in 46,009 participants were included in our models (Fig. 1A). 

Our proteomics-only model achieved an area under the receiver operating characteristic 
curve (AUROC) of 0.767 and an area under the precision-recall curve (AUPRC) of 0.241, 
outperforming three traditional CVD risk prediction models (PCE, QRISK3, and SCORE2), 
that rely on clinical features, and four relevant polygenic risk scores (PRSs) (Fig. 1B-C, Table 
1). Our results hold for events in shorter timeframes (Supplementary Figure 1). We 
measured the improvement brought over by our models via the net reclassification 
improvement (NRI) and the integrated discrimination improvement (IDI) metrics. The model 
trained on proteomics data displayed significantly better performance than the best 
performing traditional score (QRISK3) for both metrics (Table S1). 

To enhance predictive accuracy, we trained EBM models on both clinical and proteomics 
features (Fig. 1B-C), which increased the AUROC to 0.785 and the AUPRC to 0.284 (Table 1). 
The EBM Proteomics & Clinical model, trained on both clinical and proteomics data, 
outperformed both the EBM Proteomics model (ΔAUROC = 0.018, ΔAUPRC = 0.043), which 
was trained solely on proteomics features, and the EBM Clinical model (ΔAUROC = 0.0154, 
ΔAUPRC = 0.024), which focuses solely on clinical features. The EBM model also 
outperformed the LightGBM model, a state-of-the-art machine learning model for tabular 
data (ΔAUROC = 0.009, ΔAUPRC = 0.041). When examining its predictive performance at 
shorter time horizons, the EBM models remained competitive compared with the LightGBM 
model (Supplementary Figure 1). 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted January 13, 2024. ; https://doi.org/10.1101/2024.01.12.24301213doi: medRxiv preprint 

https://doi.org/10.1101/2024.01.12.24301213


 

Figure 1. Experiment overview and high performance of Explainable Boosting 
Machine (EBM) models. (A) Schematic overview of the study design. This study focuses on 
using the UK Biobank proteomics and clinical data to predict target disease risk for cardiovascular 
disease (CVD) and identify target proteins using advanced machine learning models. Detailed 
insights were revealed for the risk profiles for genes and individual risk factors for patients. (B-C) 
EBM models significantly outperform the other models at predicting the 10-year risk of CVD. 
(B) Area under the receiver operating characteristic (AUROC) and (C) area under the precision-
recall curve (AUPRC) are displayed for the polygenic risk scores (PRS), the clinical scores, and 
machine learning approaches trained on different sets of variables. The PRSs are for 
cardiovascular disease (CVD), coronary artery disease (CAD), hypertension (HT) and ischaemic 
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stroke (ISS). The machine learning approaches are EBM and LightGBM. (D) Mean AUROC 
across the two genetic sexes and the self-reported ethnicities with at least 5 cases. The bars 
represent the 95% confidence interval. The dashed line represents the AUROC over the whole 
cohort, and the shaded area is its 95% confidence interval. (E) The predicted risk aligns well to 
the observed risk in the evaluation set. 

Table 1. Mean performance and 95% confidence interval of the models shown in 
Figure 1B-C. The best performing model in each column is highlighted in bold. 

Table 1.1. Area under the receiver operating characteristic curve 
Data Model Overall Women Men 
Proteomic & Clinical EBM 0.7851 ± 0.0063 0.7733 ± 0.0116 0.7684 ± 0.0073 
Proteomic & Clinical LightGBM 0.7762 ± 0.0088 0.7635 ± 0.0127 0.7598 ± 0.0084 

Proteomics EBM 0.7671 ± 0.0082 0.7507 ± 0.0137 0.7520 ± 0.0065 

Clinical EBM 0.7697 ± 0.0045 0.7613 ± 0.0106 0.7461 ± 0.0078 

Clinical QRISK3 0.7231 ± 0.0088 0.7114 ± 0.0120 0.7011 ± 0.0100 

Clinical PCE 0.6910 ± 0.0069 0.7212 ± 0.0106 0.7017 ± 0.0086 

Clinical SCORE2 0.6968 ± 0.0067 0.7054 ± 0.0125 0.6987 ± 0.0084 

Genetics CVD PRS 0.5768 ± 0.0106 0.5699 ± 0.0106 0.5859 ± 0.0135 

Genetics CAD PRS 0.5758 ± 0.0090 0.5713 ± 0.0116 0.5830 ± 0.0112 

Genetics ISS PRS 0.5549 ± 0.0106 0.5638 ± 0.0122 0.5526 ± 0.0151 

Genetics HT PRS 0.5473 ± 0.0092 0.5566 ± 0.0225 0.5426 ± 0.0088 
 

Table 1.2. Area under the precision-recall curve 
Data Model Overall Women Men 
Proteomic & Clinical EBM 0.2835 ± 0.0131 0.2177 ± 0.0190 0.3222 ± 0.0184 

Proteomic & Clinical LightGBM 0.2425 ± 0.0131 0.1813 ± 0.0171 0.2802 ± 0.0165 

Proteomics EBM 0.2405 ± 0.0161 0.1678 ± 0.0174 0.2854 ± 0.0196 

Clinical EBM 0.2593 ± 0.0080 0.2087 ± 0.0182 0.2881 ± 0.0120 

Clinical QRISK3 0.1666 ± 0.0090 0.1244 ± 0.0104 0.1946 ± 0.0135 

Clinical PCE 0.1614 ± 0.0059 0.1268 ± 0.0102 0.2014 ± 0.0094 

Clinical SCORE2 0.1507 ± 0.0059 0.1182 ± 0.0114 0.1907 ± 0.0051 

Genetics CVD PRS 0.0953 ± 0.0043 0.0679 ± 0.0053 0.1359 ± 0.0088 

Genetics CAD PRS 0.0947 ± 0.0037 0.0669 ± 0.0025 0.1337 ± 0.0071 

Genetics ISS PRS 0.0879 ± 0.0043 0.0646 ± 0.0049 0.1218 ± 0.0086 

Genetics HT PRS 0.0863 ± 0.0029 0.0638 ± 0.0053 0.1181 ± 0.0055 
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Model fairness and calibration 
The EBM Proteomics & Clinical model shows consistent performance across genetic sexes 
and self-reported ethnicities (Fig. 1D). Crucially, it remains competitive across ethnicities, 
being the best performing model in most of them (Supplementary Figure 2). We evaluated 
whether our model remains predictive among the participants taking statins, commonly 
used to treat elevated LDL cholesterol (Supplementary Figure 3). The AUROC is 0.786 for 
people not taking statins, and 0.685 for people taking statins. This gap in model performance 
might be explained by the small number of participants that were both taking statins and 
had a primary CVD event: among 2,967 participants taking statins, only 318 participants 
(10.7%) had an event by year 10. Moreover, the performances across subpopulations with 
different income, blood pressure and LDL levels were largely consistent, all exceeding the 
current state-of-the-art clinical model (Supplementary Figure 3). 

The EBM Proteomics & Clinical model showed similar performance at predicting specific 
acute complications like ischemic stroke and myocardial infarction, as well as diagnosis of 
coronary artery disease (CAD), with AUROC scores varying from 0.785 for CAD to 0.802 for 
stroke (Supplementary Figure 4, Table S6). In addition, for each subtype, the performance 
was comparable between sexes (Supplementary Figure 4, Table S6). The largest gap 
occurred for infarction, with an AUROC for women of 0.787 and for men of 0.767.  

We also assessed the calibration of the EBM Proteomics & Clinical model by examining 
whether the predicted risk probability matches with the actual disease risk. This step is 
crucial in ensuring that the model produces reliable predictions with clinical relevance, i.e., 
the model score corresponds to the primary event probability of CVD. Overall, our model is 
well calibrated (Fig. 1E). 

Local and global explanations on feature importance 
Besides their superior performance, the EBM models are highly interpretable, providing both 
local and global measures of feature importance. Local explanations quantify the 
contribution of different features to an individual participant’s predicted CVD risk. EBM can 
produce risk factors for each individual participant (Fig. 2A-C), which might vary 
considerably. For example, participants with similar predicted risks can have distinct sets 
of predictive proteomic features (Fig. 2A-B), which are distinct from a low-risk individual 
(Fig. 2C). Uncovering such individualized risk factors will aid in better understanding the 
underlying etiology and has potential to influence disease management. Global explanation 
refers to assessing the overall feature importance of each proteomic feature in the 
population. Notably, 5 out of the 10 most important predictors are known biomarkers of 
cardiovascular health (Fig. 2D): NT-proBNP (Cao, Jia, & Zhu, 2019), NPPB (Cao, Jia, & Zhu, 
2019), PLA2G7 (Lp-PLA2) (Thompson, et al., 2010), MMP12 (Traylor, et al., 2014; Sun, et al., 
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2018) and GDF15 (Adela & Banerjee, 2015; Wang, et al., 2021; Wollert, Kempf, & Wallentin, 
2017). The proteins with the largest feature importance were largely consistent across 
different time frames (Supplementary Figure 5). Notably, the top features revealed by EBM 
models were largely consistent with the LightGBM model represented by SHAP values 
(Supplementary Figure 6). 

Figure 2. EBM models provide local and global explanations for feature importance. 
(A-C) Local explanations quantify the contribution of different features to an individual participant’s 
predicted CVD risk. The model quantifies the contribution of each protein to CVD risk for every 
participant. Red bars represent increased risks based on the plasma protein expression level, 
while blue bars denote reduced disease risks according to the expression level. Note participants 
in (A) and (B) show similar risk but different contributing proteins, while participant in (C) shows 
low disease risk. The intercept, with a value of -3.04, is not shown. (D) Global explanations 
aggregate the contribution of features across the cohort. The graph displays the top 10 
contributing proteins in the EBM model. Known CVD markers were highlighted in red. 
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Figure 3. Risk profiles for selected top features. (A) FASLG and (B) GDF15 have similar 
feature importance in the EBM Proteomics & Clinical model, but the risk profiles differ drastically. 
Two clinical features (C) Cystatin C (field 30720) and (D) Medication history (field 6153, value -7) 
in the EBM Clinical model with similar risk profiles show drastically different risk profiles and 
feature distributions. (C) A small number of participants with high Cystatin C levels show greatly 
increased CVD risk. (D) Participants who selected “none of the above” when filling out medication 
for cholesterol, blood pressure, diabetes, or take exogenous hormone showed reduced risk of 
CVD. This is a weak effect affecting a large number of individuals. Risk profiles for (E) HDL (field 
30780) and (F) MSR1 show high consistency. The top panels of each subfigure display the risk 
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score on the logarithmic scale (y-axis) for different feature values (x-axis), with gray shaded 
regions representing the standard deviation for estimations. The dotted line corresponds to the 
population mean risk for the given feature. Positive values indicate increased risk; negative values 
indicate decreased risk. The bottom panels show histograms of the feature values across all 
participants. 

EBM models allow to study the risk profile for each feature across its full value range (Fig. 3). 
In many traditional machine learning models, feature importance is represented by a single 
value, which is not ideal for interpretability due to two main shortcomings. Firstly, a single 
value of feature importance tends to conflate the prevalence of an effect with the effect’s 
magnitude. That is, a protein with a very high risk restricted to a small number of participants 
would appear indistinguishable from that of a protein with a slightly elevated risk over many 
participants. For example, FASLG and GDF15 showed similar global feature importance 
value, but their risk profiles differ drastically (Fig. 3A-B). Similarly, two clinical features with 
similar feature importance could have different feature distributions and risk profiles in the 
EBM Clinical model (Fig. 3C-D). Secondly, traditional machine learning models disregard 
the dependence of risk on feature subranges. While a higher CVD risk is linked with the 
higher levels of gene GDF15, the risk does not increase linearly, instead plateauing at a very 
high level (Supplementary Figure 7). Our model offers detailed insights into the predicted 
disease risks associated with various circulating levels for each biomarker protein, 
contributing valuable insights into the disease mechanisms.  

Studying the EBM Proteomics & Clinical model allows to understand the contribution of 
clinical features to CVD risk prediction in a proteomics context. Among the 20 most 
important features in the model (Table S2) we find the clinical variables related to 
medications, age, sex, family history of heart disease and LDL levels. Notably, when 
features are correlated, the importance might get split across them. For instance, NT-
proBNP shows reduced importance after incorporating clinical features (Supplementary 
Figure 8). 

Furthermore, as with the protein levels, EBM models allowed us to study how risk changes 
across the feature ranges. For instance, it recapitulated how elevated LDL levels are 
predictive of a higher risk of CVD (Fig. 3E), while higher HDL levels are predictive of a lower 
risk of CVD (Supplementary Figure 9A) (The Emerging Risk Factors Collaboration, 2009). 
Similarly, we also recapitulated risk profiles of plasma proteins involved in cholesterol 
homeostasis. MSR1 (ranked 18 in the EBM Proteomics model) is responsible for mediating 
the endocytosis of modified LDLs and the uptake of modified lipoprotein (Sheng, Ji, & Zhang, 
2022). In line with previous studies, elevated MSR1 levels were associated with an increased 
atherosclerosis risk (Fig. 3F) (Gudgeon, Marin-Rubio, & Trost, 2022). PCSK9 (ranked 19 in 
the EBM Proteomics model), which inhibits the clearance of plasma LDL by downregulating 
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the LDL-C receptor, has been identified as a contributing factor to atherosclerosis risk when 
overexpressed (Supplementary Figure 9B) (Ma, Hou, & Liu, 2023). 

Pathway analysis and feature importance comparisons 
To better understand the contributions from different molecular pathways, we grouped 
proteomic features into KEGG pathways involved in atherosclerosis (including KEGG: 
map05417 and related pathways; 13 in total) and calculated the aggregated contribution of 
each pathway (Fig. 4A). PI3K-Akt signaling, reflecting apoptosis and cell-cycle contributions 
to atherosclerosis, and cholesterol metabolism were the two pathways with the highest 
contributions. 

Figure 4. Aggregated pathway contribution and feature importance differences 
across subpopulations. (A) The aggregated contribution from top pathways predictive of CVD 
risk. (B) Models built based on a split by gender or age showed significantly lower linear 
correlations of feature importance between the subgroup models compared with random splits 
shown as dotted line. In contrast, no significant differences were observed for models based on 
BMI splits. 

While the overall model performances are similar across genetic sexes, age groups and BMI 
profiles, we observe differences in predictive features in models trained separately on these 
subgroups. Only 2 and 3 of the top 10 features are shared between age and sex splits, 
respectively, while 5 features are shared between the high and low BMI splits 
(Supplementary Figure 10). 

To verify that these differences are not due to stochastic noise, we randomly divided the 
participant population into two equal-sized groups and reran the experiment. Seven of the 
top 10 features are shared across the two groups, with correlated feature importance for the 
top 100 features (R = 0.67, Supplementary Figure 11). In contrast, we observe significant 
differences in feature importance for models built for different sexes (R = 0.13, P = 2e-9 
compared with correlation between the random splits) and age groups (R = 0.38, P = 3e-4), 
suggesting that the underlying mechanisms might vary among these groups. However, no 
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significant differences are found between the low and high BMI groups compared to the 
random split (R = 0.58, P = 0.10; Fig. 4B, Supplementary Figure 11).  

Discussion 

In this study, we employed the EBM model to predict 10-year CVD risk using the UK Biobank 
proteomic data, generating models with high predictive power and explainability. By jointly 
considering the clinical and proteomic features, our model offered a comprehensive and 
coherent understanding of disease mechanisms, suggesting candidates for further clinical 
examination. The EBM Proteomics & Clinical model performance surpassed traditional 
models for CVD risk prediction like QRISK3 (ΔAUROC = 0.062, ΔAUPRC = 0.117) and the 
competing machine learning model, LightGBM (ΔAUROC = 0.009, ΔAUPRC = 0.041). The 
improvement in the AUPRC is particularly significant, given that CVD only affected 7.1% of 
our studied cohort. The EBM Clinical model and the EBM Proteomics model demonstrate 
similar performance (ΔAUROC = 0.003, ΔAUPRC = 0.018). However, a combination of both 
Proteomics and Clinical features results in further improvements on performance 
(ΔAUROC = 0.015, ΔAUPRC = 0.024). This underscores the consistency between Clinical 
and Proteomics features, and emphasizes that each offers unique information not provided 
by the other. 

Our approach enables individualized risk prediction and generates enriched risk profiles for 
predictive features. As shown earlier, two participants exhibiting similar risks of CVD might 
have different features contributing to that prediction (Fig. 2A-B). By incorporating feature 
range-associated disease risk, our model can offer a comprehensive and holistic 
understanding of the prediction for each individual with a high level of interpretability. 
Furthermore, our approach also shows comparatively good performance at predicting CVD 
in shorter timeframes. This might be key to identify patients at high immediate risk. 

Many of the proteins featured in this study have previously been reported as biomarkers for 
CVD. MMP12 (matrix metalloproteinase-12) levels have previously been shown to predict 
CVD (Goncalves, et al., 2015), as well as being directly involved in atherosclerosis 
pathogenesis (Newby, 2016), including from genetic studies (Traylor, et al., 2014; Sun, et al., 
2018). NT-proBNP (Supplementary Figure 7A) and NPPB (Supplementary Figure 7B) 
exhibit similar risk profiles, as they are both derived from different fragments of the pro-B-
type natriuretic peptide precursor. Each participate in the natriuretic peptide system, a vital 
pathway for regulating blood pressure and fluid balance, and are used in diagnosing cardiac 
dysfunction (Cao, Jia, & Zhu, 2019). PLA2G7, also known as Lp-PLA(2), is an inflammatory 
enzyme expressed in atherosclerotic plaques, and is a well-established marker of coronary 
heart disease (Thompson, et al., 2010). GDF15 is another prognostic marker for heart 
disease (Adela & Banerjee, 2015; Wollert, Kempf, & Wallentin, 2017; Wang, et al., 2021). Its 
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expression level is increased by metformin, the primary treatment for diabetes, which aligns 
with diabetes being a risk factor for atherosclerosis. Furthermore, we also demonstrated the 
predictive ability of genes that were not previously used as CVD markers. For example, 
HAVCR1 was previously used as a biomarker for kidney injury (Han, Bailly, Abichandani, 
Thadhani, & Bonventre, 2002). 

However, our approach has some limitations. First, most study participants were of 
European origin. Although we show consistent performance across ancestries, our model 
has limited generalizability to all patients. Further model development in non-European 
cohorts is necessary. Second, while certain features may be highly predictive, they do not 
necessarily imply a causal relationship. As such, further validation of our findings through 
experimental approaches and independent cohorts is essential to confirm causal 
relationships. Mendelian randomization and reviewing existing literature can be employed 
to further support or refute the causal relationships. Last, the proteomics panel contains a 
non-random subset of 2,941 proteins. A more extensive panel might lead to better models 
and the discovery of novel disease-protein associations. 

Our findings underscore the importance and feasibility of individualized risk prediction and 
information-rich analysis of feature importance. The high accuracy of our proteomics model 
supports its potential for future clinical application in disease risk prediction using 
standalone proteomics blood tests. Additionally, our explanatory modeling framework can 
be readily adapted for predicting other diseases and phenotypes, providing valuable insights 
to facilitate drug development and individualized risk assessments.  

Methods 
UK Biobank Dataset 
The UK Biobank is a large-scale prospective study designed to investigate the impact of 
biological and environmental factors on human health. It enrolled ~500,000 participants 
aged 40-69 years old between 2006 and 2010 in England, Scotland, and Wales. In this study, 
we focused on the 54,181 participants that were included in the UK Biobank Pharma 
Proteomics Project (UKB-PPP) and had maintained their consent up until April 20, 2023. The 
UKB-PPP participants were representative of the entire UK Biobank cohort (Sun, et al., 
2023). This research was conducted under the approved applications numbered 53639 and 
65851.  

Each sample was characterized by a rich set of 2,941 protein features, derived from two 
major releases: 1,472 features from the explore release and 1,469 features from the 
expansion release. In addition to proteomic features, 55 clinical data fields were extracted 
to provide a comprehensive overview of each participant’s health and medical history. 
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Data preprocessing 
Defining cardiovascular disease 
Our objective is to predict which participants will experience a primary cardiovascular 
disease (CVD) event within 10 years of recruitment. First, we excluded 4,119 participants 
with pre-existing CVD. Pre-existing CVD events were defined as coronary artery disease, 
ischemic stroke, and myocardial infarction using ICD 9/10 diagnostic codes from secondary 
care hospital episode statistics (Table S3), along with self-reported CVD events such as 
heart attack, angina and stroke (validated by clinicians). This filtering step resulted in a 
dataset with 50,057 participants. 

Subsequently we defined our outcome of interest using a combination of hospital inpatient 
data, death register records (ONS), and self-reported medical conditions. We defined CVD 
as any of the following diagnoses: coronary artery disease, ischemic stroke, and myocardial 
infarction (Table S3), with study end-date of 1st February 2021. Participants not enrolled for 
the entire study duration (e.g. end-date < 10 years or participants that died of complications 
unrelated to CVD) were excluded from our analyses, which yielded a final set of 
46,009 participants. Out of these, 3,287 were considered cases, 60% of which were 
men (Table S4). 

Train and test data split 
We divided all 46,009 participants into 10 groups. We ensured that the groups were roughly 
equally sized and matched by sex, age, ethnicity, assessment center and time until CVD 
diagnosis (Supplementary Figure 12). Specifically, we sorted male and female participants 
by date of diagnosis (if the participant is a case), or by date of recruitment (if the participant 
is a control). Participants were then iteratively assigned to each of the 10 groups. Groups 
were used for imputation, feature selection, and model training: we iteratively conducted 
each procedure on 9 of the 10 groups ("train set”), and only used the remaining group to 
measure performance (“test set”). This rendered 10 different splits of the data by taking 
different train and test sets, which allowed us to estimate the variance of our models’ 
performance across slightly different datasets. 

Preprocessing of plasma proteomics measurements 
We used Normalized Protein eXpression (NPX) values from the Olink platform, which 
employs Proximity Extension Assay technology (Sun, et al., 2023). This technology uses 
pairs of antibodies attached to unique oligonucleotides, binding specifically to target 
proteins and allowing for precise and sensitive plasma protein quantification. NPX values, 
presented on a log-2 scale, served as the quantification unit. Five participants with invalid 
data entries were excluded, particularly those lacking available normalized protein 
expression data. 
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Encoding clinical fields 
We selected 55 clinical fields that were potentially useful predictors of CVD complications 
(Table S5). We excluded fields: (1) describing complications of CVD; (2) recorded after the 
initial assessment; (3) with identical values across all samples; or (4) with values missing in 
more than 99% of the participants. Subsequently, we encoded the selected fields according 
to their value type.1 Continuous fields were left unchanged. Categorical fields with single 
values, where a single answer is selected from a coded list, were also used as they were, 
except for two fields with relatively large sets of values, specifically, the assessment center 
(field 54) and Ethnic background (field 21000), which were mapped to smaller value sets. 
Fields with multiple values, where sets of answers are selected from a coded list, such as 
Qualifications (field 6138) and Illnesses of father (field 20107), underwent a one-hot 
encoding, resulting in one binary feature for each possible value. After encoding, the 
55 fields were transformed into 173 features.  

Imputation of clinical features 
The 173 clinical features exhibited various degrees of missingness (Table S5): some had no 
missing values, like genetic sex, age at assessment date, or at recruitment; while others 
have missingness rates ranging from 0.18% (e.g., smoking status, alcohol intake frequency) 
to over 90% (e.g., number of cigarettes). Missingness rates were correlated within feature 
groups. For example, missingness for white blood cell count is identical to missingness for 
red blood cell count and hemoglobin concentration, likely indicating that the test used to 
assess these measures was not performed or invalid.  

Crucially, none of the clinical features have values missing completely at random (Rubin, 
1976). For instance, whether a value is missing for a given participant in the private 
healthcare feature (missingness rate of 65.65%) is highly dependent on values of features 
such as assessment center and deprivation index for that participant. In such cases, 
imputation with the mean or the median is not advised. Even state-of-the-art imputation 
methods such as MissForest (Stekhoven & Buhlmann, 2012) may cause unexpected 
problems (Chen, Tan, Chajewska, Rudin, & Caruna, 2023). Hence, we only imputed features 
with a low missingness rate (<1.5%), reducing the potential impact of incorrect imputations. 
For features which had a missingness rate above 1.5%, we replaced missing entries with a 
special value indicating “unknown.” 

For features with a missingness rate below 1.5%, a Random Forest Regressor was utilized 
to model each feature with missing values as a function of other clinical features that 
exhibited low missingness. The imputation process was carried out through multiple 
iterative rounds, adhering to an iterated round-robin approach. Specifically, at each step 

 
1 https://biobank.ndph.ox.ac.uk/ukb/help.cgi?cd=value_type  
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within an iteration, one feature column with missing values was designated as the output 
variable, while the remaining feature columns were treated as input variables. It is worth 
noting that the imputer was trained exclusively on the training dataset to prevent data 
leakage and ensure the generalizability of the imputed values. This procedure was 
systematically applied to each feature requiring imputation. The iterative nature of the 
process allowed for refinement of the imputed values, with the algorithm proceeding for a 
maximum of 10 rounds or until a predefined stopping criterion was met. The stopping 
criterion in our study was set to trigger when the difference in imputed values between 
consecutive rounds became negligible, ensuring convergence to reliable estimates. For 
each split, the imputer, once trained on the training dataset, was then used to fill in missing 
values in both the training and the test datasets of that split. This ensured that the same 
imputation model was used across both datasets within each split, maintaining consistency 
in data handling and preserving the integrity of the imputation process.  

EBM models 
 In this manuscript, we focus on Explainable Boosting Machines (EBMs), an interpretable 
and highly performant model (Lou, Caruana, & Gehrke, 2013). In EBM models, the response 
variable depends linearly on unknown smooth functions of predictor variables 
(shape functions), with a link function, e.g., identity function for regression and the logistic 
function for classification. EBMs use bagged ensembles of boosted depth-restricted trees 
to represent the shape functions. We used the implementation in Python’s interpret 
package (Nori, Jenkins, Koch, & Caruana, 2019). 

EBM feature selection 
To minimize overfitting and utilize the most predictive proteins to train our final models, we 
performed a feature selection step. We trained 11 EBM models on the train set (Train and 
test data split) and all the proteins in the panel: one model on the outcome; three additional 
models that predict the phenotype at 3 different time horizons (3, 5, and 15 years); one 
model on a subset of samples in which cases are over-represented (all cases, only 20% of 
the controls); one model for each sex; one model for each age split (split at the median age 
of 58); and one model for each BMI split (split at the median BMI of 26.6). 

We then calculated feature importance and selected the top 70 features with the highest 
feature importance for each model. The union of these features was then used to train the 
models. This yielded between 288 and 330 proteins across the 10 data splits (Train and test 
data split). The selected proteins were consistent across the splits: 248 were selected in at 
least half of the splits, and 138 appeared in all the splits.  

We used machine learning to predict the outcome from all the clinical features and the 
selected proteins from the feature selection step. 
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EBM hyperparameter tuning 
For hyperparameter tuning, we first split the training set into train (80%) and validation (20%) 
sets. We trained models with different hyperparameter configurations on the train portion 
of the training set and chose the optimal configuration based on the performance of these 
models on the validation set. The test set was not used in the optimization to avoid data 
leakage and overfitting. We used the Bayesian optimization algorithm (Snoek, Larochelle, & 
Adams, 2012) implemented in the hyperopt python package (Bergstra, Yamins, & Cox, 2013) 
to propose the series of tries leading to finding the optimal configuration. This algorithm 
allows us to find the optimal or near-optimal configuration in significantly fewer tries than 
exhaustive grid search and with higher probability than random search of the configuration 
space. We average hyperparameter settings from top M tries from each fold. We use M=10% 
of all tries. 

EBM feature importance 
In EBM models, feature importance values are calculated as mean absolute values of the 
logit function. To calculate the number, we look up the logit contribution for each feature for 
each training sample and take the absolute value of the logit, then we average those 
absolute values across all samples for each feature. 

State-of-the-art Models 
Clinical scores 
We compared our proteomics-only models for CVD risk prediction with three established 
clinical scores: PCE (Goff, et al., 2014), QRISK3 (Hippisley-Cox, Coupland, & Brindle, 2017) 
and SCORE2 (Graham, Di Angelantonio, Huculeci, & European Society of Cardiology's 
Cardiovascular Ri, 2022). The Pooled Cohort Equations (PCE) provide sex- and race-specific 
estimations for 10-year atherosclerotic CVD risk, considering variables such as age, total 
cholesterol, high-density lipoprotein cholesterol, systolic blood pressure, diabetes 
mellitus, and current smoking status. QRISK3, a Cox proportional hazards model, predicts 
the 10-year risk of CVD in both men and women. The model considers 14 clinical factors, 
like age, ethnicity, and systolic blood pressure, along with eight additional risk factors, such 
as chronic kidney disease, and migraine. Last, the Systematic COronary Risk Evaluation 
(SCORE2) is a risk prediction model that estimates the 10-year CVD risk across different 
sexes, age groups, and regions, using factors like age, sex, smoking status, history of 
diabetes mellitus, systolic blood pressure, and total- and HDL-cholesterol. 

Gradient boosting decision trees 
We established a machine learning-based baseline, based on gradient boosting decision 
trees. Such models are a common choice for high-dimensional tabular data due to their 
speed, flexibility to handle non-linear relationships and high classification performance. 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted January 13, 2024. ; https://doi.org/10.1101/2024.01.12.24301213doi: medRxiv preprint 

https://doi.org/10.1101/2024.01.12.24301213


Specifically, we used the LightGBM framework (Ke, et al., 2017). To extract interpretations 
from them, we used SHAP (SHapley Additive exPlanations) values, a game-theoretic 
approach used to explain the output of machine learning models. They provide insights into 
how each feature contributes to the prediction of a specific instance, allowing for a detailed 
understanding of the model's decision-making process. SHAP values provide local 
interpretations, i.e., the contribution of each feature towards the individual prediction. To 
compute global interpretation, we took the absolute value of the feature contribution and 
averaged over all the training points in a split to get the global mean SHAP for each split. 

We implemented a feature selection process to improve model performance and 
interpretability for LightGBM models. Initially, we trained our LightGBM models using the 
complete set of clinical and proteomic features based on the training data for each split. 
Subsequently, we computed the SHAP values to evaluate the global importance of each 
feature. The top 10% of features demonstrating the highest global importance, as 
determined by their SHAP values, were retained, and used to train the feature selected 
LightGBM model for each split. Notably, when testing the EBM-selected features with the 
LightGBM model, a slight decrease in predictive performance was observed compared to 
using the features selected through the abovementioned SHAP-value approach. 

To search the hyperparameter space for the best performing model, we used the Azure 
Machine Learning’s AutoML framework. It uses a combination of Bayesian optimization and 
collaborative filtering to search for the optimal feature transformations and hyperparameter 
choices. For each of the 10 splits, we utilized the train portion of the data to tune 
hyperparameters. 4-fold cross validation was performed on the train portion and the best 
hyperparameter configuration was the one having highest mean dev AUROC. The process 
was repeated for each split leading to 10 separate best models for each split. 

We also used SHAP values to understand the feature importance of the final models. There 
may be slight variations in feature importance and their relative ranking across splits. To 
ensure further robustness to global feature importance, we finally took the mean across 
splits and reported those top features. 

Model evaluation 
We split the data into ten parts (Train and test data split), and use nine for data mining, and 
the remaining one for performance evaluation. We repeated this procedure ten times, 
obtaining ten unbiased measurements of performance. We evaluated the metrics above on 
the whole cohort, and across multiple stratifications, including sex, age and self-reported 
ethnicity. 
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We used two metrics of model performance: the area under the receiver operating 
characteristic curve (AUROC) and the area under the precision-recall curve (AUPRC). The 
AUROC measures the ability of a model to discriminate between positive and negative 
classes. A value of 1 indicates perfect prediction capability, while 0.5 indicates the model is 
not better than a random guess. The AUPRC measures the ability of the model to balance 
precision and recall, which is crucial in situations with highly imbalanced classes like the 
current setting. A perfect classifier has an AUPRC of 1, while the AUPRC of a random 
classifier would have a score around the proportion of positive classes. 

Additionally, we used two additional metrics to assess the performance benefits of a new 
model: the net reclassification improvement (NRI) and integrated discrimination 
improvement (IDI). The NRI quantifies the net change in the number of individuals correctly 
reclassified as high-risk or low-risk when transitioning from Model 1 to Model 2. A positive 
NRI value indicates that Model 2 correctly reclassifies more individuals than Model 1, while 
a negative NRI value indicates that Model 2 incorrectly reclassifies more individuals than 
Model 1. The IDI, on the other hand, measures the overall improvement in the predictive 
model's ability to distinguish between high-risk and low-risk individuals when transitioning 
from Model 1 to Model 2. A positive IDI value indicates that Model 2 is better at distinguishing 
between high-risk and low-risk individuals than Model 1, while a negative IDI value indicates 
that Model 2 is worse at distinguishing between high-risk and low-risk individuals than 
Model 1. 

When evaluating 10-year disease risk, participants who developed CVD in the 11th year after 
recruitment were more similar to participants who were positive within the first 15-years. 
Therefore, when computing the metrics, we decided to exclude the participants who 
developed CVD within 15 years. 

Quantifying feature importance differences by sex, age and BMI 
To test if the observed differences in feature importance across sex, age, and BMI splits were 
due to limited sample size and stochastic noise, we generated a baseline experiment where 
we randomly split the population into two halves and trained a model using each half of the 
data.  

Linear correlations between feature importance were calculated for the feature importance 
of the top 100 features. For non-overlapping features, we assigned a dummy feature 
importance as that of the 100th feature in the group. To evaluate the linear correlation 
between the experimental group (data split by sex, age or BMI) against the random split, we 
performed the Fisher’s Z-transformation on both correlation coefficients and calculated the 
standard error for the differences in the two Z-scores. Then we calculated the P-value to 
assess if the correlation coefficient between the two splits deviates significantly from that 
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of a random split. For instance, if there are significant differences in feature importance 
across sexes, we would anticipate that the splits between sexes would exhibit a significantly 
lower linear correlation of feature importance compared to that of the random split. 
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