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Abstract 

Polygenic Scores (PGSs) summarize an individual’s genetic propensity for a given trait 

in a single value, based on SNP effect sizes derived from Genome-Wide Association 

Study (GWAS) results. Methods have been developed that apply Bayesian approaches to 

improve the prediction accuracy of PGSs through optimization of estimated effect sizes. 

While these methods are generally well-calibrated for continuous traits (implying the 

predicted values are on average equal to the true trait values), they are not well-

calibrated for binary disorder traits in ascertained samples. This is a problem because 

well-calibrated PGSs are needed to reliably compute the absolute disorder probability 

for an individual to facilitate future clinical implementation. Here we introduce the 

Bayesian polygenic score Probability Conversion (BPC) approach, which computes an 

individual’s predicted disorder probability using GWAS summary statistics, an existing 

Bayesian PGS method (e.g. PRScs, SBayesR), the individual’s genotype data, and a prior 

disorder probability. The BPC approach transforms the PGS to its underlying liability 

scale, computes the variances of the PGS in cases and controls, and applies Bayes’ 

Theorem to compute the absolute disorder probability; it is practical in its application 

as it does not require a tuning dataset with both genotype and phenotype data. We 

applied the BPC approach to extensive simulated data and empirical data of nine 

disorders. The BPC approach yielded well-calibrated results that were consistently 

better than the results of another recently published approach.  
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Introduction 

Polygenic Scores (PGSs)1 are per-individual estimates of the total contribution of 

common genetic variants to a trait or disorder liability based on SNP effect sizes (betas) 

from Genome-Wide Association Studies (GWAS)2. While summarizing an individual’s 

genetic risk for a disorder in a single value has the potential to be a simple and 

informative metric, PGS applications are limited because they are generally only 

interpretable at the group level. Accordingly, PGSs are commonly evaluated using the 

coefficient of determination (R2)3 or the Area Under the Curve (AUC)4, metrics that are 

blind to the scale of the PGS. Moreover, risk estimates based on PGSs are often reported 

in terms of quantiles (e.g. a PGS falls in the top 5% of a given distribution), which can be 

difficult to interpret in terms of personal absolute risk of disease. 

 To make PGSs directly interpretable to individuals, they can be transformed into 

probabilities. For example, if an individual receives a PGS of 0.5 for multiple sclerosis, 

then this should correspond to a 50% probability of that individual developing multiple 

sclerosis in their lifetime. With access to a sufficiently large population-representative 

tuning sample with relevant pheno- and genotype data, such a transformation can be 

achieved with existing methods5,6. However, in most clinical settings, such samples are 

not readily available. Ideally, a single individual’s genotype data and publicly available 

resources should be sufficient to achieve such a transformation.  

 Bayesian PGS methods are known to be well-calibrated for continuous traits7–9, 

meaning the slope equals 1 when regressing the true phenotype on the PGS (implying 

the predicted values are on average equal to the true trait values). This offers a unique 

opportunity to achieve well-calibrated probabilities for binary disorder traits. However, 

when samples are over-ascertained for cases, Bayesian PGSs can become miscalibrated 

and therefore require a transformation. 

Here, we introduce Bayesian polygenic score Probability Conversion (BPC), an 

approach to transform PGSs based on Bayesian methods (e.g. PRScs8 and SBayesR7), 

that only requires a single individual’s genotype data, GWAS summary statistics, and a 

prior disorder probability. We confirm that the resulting probabilities are well-

calibrated in simulations and empirical analyses of nine disorders and that the BPC 

approach performs better than a recently published approach10. 

 

Glossary 
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Calibration 

The degree to which a predicted value is equal to the true trait 

value on average. It is often assessed with the calibration slope 

for continuous traits9 and with the ICI for disorder traits11. 

Ascertainment 
We use this term to refer to the oversampling of cases in genetic 

studies, compared to the lifetime population prevalence.  

Prior disorder probability 

The chance to be a case prior to genetic testing: equal to the 

lifetime population prevalence for a random individual (e.g. 

1%), and much larger for help-seeking individuals (e.g. 50%).  

Posterior mean beta 

The SNP-effect size resulting from a Bayesian prediction method 

(e.g. PRScs and SBayesR). Polygenic risk score resulting from the 

effect sizes are well-calibrated for continuous traits7–9. 

Effective sample size (Neff) 

The sample size with a case-control ratio of 0.5 that provides 

equivalent power as an observed study with a different case-

control ratio12.  

N��� �
4

1

N����
 � 

1

N����	�

 

 

 

Liability 

A latent continuous risk phenotype, modeled to underly binary 

disorder traits3,13,14. The liability is modeled following a standard 

normal distribution, and the threshold is defined such that the 

proportion of individuals exceeding the threshold is equal to the 

population lifetime prevalence. 

R2 

The variance explained in the phenotype by the PGS, which is 

also referred to as the coefficient of determination. R2 has 

different values depending on the scale of the phenotype (e.g. 

observed scale with 50% case-control ascertainment vs. liability 

scale)3. 

 

 

Methods 

Bayesian polygenic score Probability Conversion (BPC) approach  

We developed the BPC approach to achieve calibration for binary disorder traits in 

ascertained samples, using the existing Bayesian Polygenic Score (PGS) methods PRScs8 

and SBayesR7. The BPC approach follows four steps (see Figure 1). 
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Figure 1 Overview of the Bayesian polygenic score Probability Conversion (BPC) approach. The BPC 

approach transforms an individual’s Polygenic Score (PGS) into a well-calibrated disorder probability. 

See the glossary for the definition of key terms. 

 

Input 

First, the BPC approach requires as input an individual’s genotype data and prior 

disorder probability (see Discussion for how to set the prior). Second, the BPC approach 

requires the GWAS results (training sample) summary statistics and the effective 

sample size (Neff) of the training sample (i.e. sum of Neff of all cohorts contributing to the 

meta-analysis12). Third, the population lifetime prevalence of the disorder of interest, 

and ancestry-matched population reference data (e.g. 1000G) is required. No tuning 

dataset with both genotype and phenotype data is required. We note, that instead of 

individual-level population reference data, summary-level LD and allele frequency 

information could in principle be used as well.  

 

Step 1 Compute posterior mean betas with a Bayesian PGS method 

The BPC approach requires the posterior mean betas to be on the standardized 

observed scale with 50% case ascertainment (���/��). For PRScs, this is achieved by 

simply using Neff (i.e. the effective sample size)12 as input because PRScs is based on the 

GWAS Z-scores, noting that ���/�� � �/����� 15. In contrast, SBayesR is based on the 

GWAS effect sizes (typically on the log-odds scale), which first need to be transformed 

to ���/�� � �/����� before applying SBayesR, while also setting Neff as sample size. 
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Step 2 Transform posterior mean betas to liability scale  

The posterior mean betas are transformed from the standardized observed scale with 

50% case ascertainment to the continuous liability scale (����	���
�)14:  

 

����	���
� � ���/��

��
���� ���� � 	 � 
1 � 	
� � 0.5  
1 

 

where 	 denotes the disorder population lifetime prevalence and � is the height of the 

standard normal probability density function at a threshold corresponding to 	14. 

Subsequently, a PGS is constructed using ����	���
�  and an individual’s genotype data. 

 

Step 3 Derive R2
liability and the expected distribution of the PGS in cases and controls 

To define the standard normal probability density function of the PGS in both cases and 

controls, an estimate of R2
liability, the coefficient of determination on the liability scale3, is 

required. When a PGS is well-calibrated for a standardized phenotype with variance 1 

(here the liability16), the variance of the PGS equals the variance explained by the PGS in 

the phenotype:  

 

��
���	���
� �  ���
����� � ������	���
�

���
��������  � ���
1 � ������	���
�
1 � ���
������	���
� 
2 

 

where ����� refers to the regression of the liability on ������	���
�  (which is equal to 1 

due to the PGS being well-calibrated). Thus, ��
���	���
�  can be estimated by computing 

���
������	���
� in an ancestry-matched population reference sample without the need 

for phenotype data. Given ��
���	���
� , the expected mean and variance of the PGS can be 

estimated in cases and in controls using normal theory17,18. Thus, the expected 

conditional probabilities �
����|#� � $��� and �
����|#� � $�%���� can be 

estimated for every individual � with PGS value ����  and disease status #� .  

 

Step 4 Compute the genetically informed disorder probability 

Finally, we use Bayes’ theorem to update the prior disorder probability to the posterior 

probability: 
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�
#� � $���|���� �  �
����|#� � $��� � �
#� � $���
�
����                    
3 

 

where �
#� � $��� is the prior disorder probability for individual �, 

�
����|#� � $��� is the conditional probability, and �
���� is the normalization 

factor corresponding to �
����|#� � $��� � �
#� � $��� '  �
����|#� � $�%���� �

1 � �
#� � $���. Thus, the BPC approach provides predicted disorder probabilities 

for individuals based on GWAS summary statistics, individual genotype data, and a 

prior disorder probability. (See Code Availability for R code to implement the BPC 

approach.) 

 

Alternative approaches to obtain disorder probabilities from PGS 

The BPC approach transforms a single individual’s genotype data to the predicted 

disorder probability based on only publicly available data, without requiring tuning 

data that include both pheno- and genotype data, making it practical in its application. 

We are aware of only one other published approach that computes disorder 

probabilities only based on publicly available data, introduced in Pain et al. (2022)10. In 

addition, we describe the linear rescaling approach an unpublished alternative to the 

BPC approach. 

Briefly, the approach of Pain et al. (2022)10 works as follows. First, the difference 

in mean PGS between cases and controls is computed based on an estimate of the R2 

(which is transformed to the AUC19,20), assuming the PGS have the same variance in 

cases and controls (scaled to 1). The R2 is estimated based on the GWAS summary 

statistics using lassosum21. Second, the PGS distribution across cases and controls is 

divided into quantiles, and third, the disorder probabilities per PGS quantile are 

assessed based on the testing sample’s case-control ratio (i.e. the prior disorder 

probability). For individual �, the predicted disorder probability follows by finding 

which quantile contains its PGS Z-value (standardized based on the distribution of the 

PGS in 1000 Genomes).  

The approach of Pain et al. (2022) differs in three important ways from the BPC 

approach. First, it implicitly assumes that the variance and the mean of the PGS in the 

full population are the same as in the target sample. However, if the target sample is 

over-ascertained for cases, the variance and the mean are larger than in the full 
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population (see Figure S1). As such, PGS Z-values based on the full population (i.e. 1000 

Genomes) will overestimate the PGS Z-values in the ascertained target sample, and 

consequently also the predicted disorder probabilities. Second, Pain et al. (2022) 

suggest using lassosum21 to estimate the R2 from summary statistics, while the BPC 

approach achieves this by estimating the variance of a well-calibrated PGS in a 

population reference sample (see Methods: Derive R2
liability and the expected 

distribution of the PGS in cases and controls). Third, the Pain et al. (2022) approach 

assumes ���
���|$��� � ���
���|$�%����, while the BPC approach models more 

precisely the fact that ���
���|$��� ) ���
���|$�%����, which has the most impact 

for disorders with low population lifetime prevalence (K) and large ����	���
�
�  values (see 

Results & Table S1 for a summary of these differences). 

We developed an alternative approach, the linear rescaling approach, to obtain 

well-calibrated predicted disorder probabilities, that does not apply Bayes' Theorem 

but a linear rescaling of the ������	���
�  instead. The linear rescaling approach follows 

steps 1-3 of the BPC approach as described above and in Figure 1. Subsequently, the 

expected variance of the ������	���
�  in the ascertained sample, 

���*������	���
�+ ��$�����%�, ��-���, is computed based on the prior disorder 

probability (i.e. the case-control ratio in the testing sample, �
$���) and the 

distribution of ������	���
�  in cases and controls (see Methods: Derive R2
liability and the 

expected distribution of the PGS in cases and controls). Next, the PGS is scaled to PGS’ 

with the property that ���
���� | ��$�����%�, ��-��� � �	������
�  in the ascertained 

sample (�	������
�  is computed based on R2

liability and the transformation introduced in 

Lee et al. (2012)3), resulting in ���. that is well-calibrated on the standardized 

observed scale (see Equation 2). Lastly, we scale the ���. (which is based on a 

standardized phenotype) to the observed scale with cases coded 1 and controls 0, 

������ ����� �  ���. /  0�
$���1*1 � �
$���2 '  �
$���, resulting in PGSs that 

represent the predicted disorder probability. We note the linear rescaling approach can 

lead to predicted disorder probabilities that are larger than 1 and smaller than 0, which 

we truncate to 1 and 0 before evaluating its calibration. 

 

Untransformed PGS 
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We also evaluated the calibration of untransformed PGSs. These are constructed using 

the posterior mean betas of step 1 (see Figure 1 and Methods: Step 1 Compute posterior 

mean betas with a Bayesian PGS method), which are on the standardized observed scale 

with 50% case ascertainment when Neff is used as input in the Bayesian PGS methods. 

The resulting PGSs are centered around 0 and cannot be interpreted as disorder 

probabilities. 

 

Metrics of performance 

To assess calibration, we compute the Integrated Calibration Index (ICI): the weighted 

average of the absolute difference between the real disorder probability and the 

predicted disorder probability11. (The real disorder probability is computed using the 

loess smoothing function in R; thus, the ICI can be intuitively understood as the 

weighted difference between the calibration curve and the diagonal line in a calibration 

plot (see Results)). Lower values of the ICI indicate better calibration and perfect 

calibration implies ICI=0.  

The calibration slope is another metric to assess calibration that is often used in 

the literature7–9, which refers to the slope from a linear regression of the phenotype of 

interest on the PGS. If the slope equals 1 and the intercept 0, the predictor is said to be 

well-calibrated. A downside of this metric is that a PGS with values outside the range of 

0 and 1 can still have a calibration slope of 1, and the ICI has been proposed as a 

superior and more robust metric11. Typically, untransformed Bayesian PGSs are 

centered around 0, and while they may have a calibration slope of 1, they cannot be 

interpreted as disorder probabilities and cannot be evaluated with the ICI.  

To assess the prediction accuracy of the PGSs, we use the Area Under the Curve 

(AUC) and the coefficient of determination (R2) (we note the AUC and R2 can be 

transformed into one another3). 

 

Simulation analysis 

We simulated individual-level data for 1,000 SNPs in linkage equilibrium based on the 

liability threshold model13 (see Supplemental note for details). We repeated the 

simulations 100 times for eight different parameter settings where we varied the power 

of the training sample and thereby the coefficient of determination (R2) of the PGS 

(��
���	���
�  = {0.01, 0.05, 0.10, 0.15}), as well as the disorder population lifetime 
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prevalence (K = {0.01, 0.15}). The disorder’s SNP-based heritability was set to 0.2. We 

simulated three independent samples: a training sample with case-control information 

used to estimate SNP effects with a GWAS (varying N; see below), a population 

reference sample without case-control information to estimate ��
���	���
�  as described 

above (N = 503), and a testing sample with case control-information to evaluate model 

performance (Ncase=1,000 and Ncontrol=1,000). To achieve the desired ��
���	���
� in the 

testing sample, we approximated the required sample size of the training sample using 

the avengeme package in R22 (e.g. Ntraining = 2,759 when ��
���	���
� � 0.1 and K = 0.01). 

We computed the posterior mean betas using Bpred, the version of LDPred that 

assumes linkage equilibrium9, with GWAS betas on the standardized observed scale 

with 50% case ascertainment and therefore used Neff as input. We applied the BPC 

approach to estimate predicted disorder probabilities and compared it to the existing 

approach introduced in Pain et al. (2022)10. 

 

Empirical analysis 

We analyzed nine phenotypes based on large training samples of GWAS meta-analyses, 

namely schizophrenia (SCZ)23, major depression (MD)24, breast cancer (BC)25, coronary 

artery disease (CAD; we note that 23% of the training sample included individuals from 

non-European populations)26, inflammatory bowel disease (IBD)27, multiple sclerosis 

(MS)28, prostate cancer (PC)29, rheumatoid arthritis (RA)30, and type 2 diabetes 

(T2D)31. We computed the PGSs in three testing datasets that were fully independent of 

the respective training datasets (Table 1). For SCZ and MD,  62 and 22 testing cohorts, 

respectively, were used, and PGSs were computed based on the GWAS results that 

excluded the testing cohort form the Psychiatric Genomics Consortium (PGC). In 

evaluating the ICI, we concatenated all individual cohorts. Testing data from the UK 

Biobank32 was used for BC, CAD, IBD, MS, PC, RA, and T2D. If SNP-wise Neff values were 

available in the GWAS results, the maximum Neff across all SNPs was used as input to the 

BPC approach (MD and SCZ). Alternatively, Neff was calculated as the sum of Neff of all 

contributing cohorts (CAD, IBD, MS, RA)12. If neither information was available, the 

SNP-wise Neff were estimated analytically with ���� � �

� � �� � ������ �  !�
, where AF = 

effect allele frequency and SE = standard error (PC, BC). Because the analytically 
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derived Neff can produce large outliers, we used the 90th percentile across all SNPs 

instead of the maximum as input to the BPC approach. 

 

Table 1 Phenotype Summary 

PGC-MD = Major Depression Working Group of the Psychiatric Genomics Consortium; PGC-SCZ = 

Schizophrenia Working Group of the Psychiatric Genomics Consortium; UKB = UK Biobank 

   Training data Testing data 

Phenotype Abbreviation Population 

lifetime 

prevalence 

Effective 

sample size 

(Ncase / 

Ncontrol) 

GWAS 

reference 

Effective 

sample 

size* 

(Ncase / 

Ncontrol) 

Individual-

level 

dataset 

Major 

Depression  

MD 16.00%33 133,299** 

(50,968 / 

96,399) 

Wray et al. 

(2018)24  

25,184*** 

(12,592 / 

12,592) 

PGC-MD24 

Schizophrenia SCZ 1.00% 115,996** 

(48,650 / 

70,612) 

Trubetskoy 

et al. 

(2022)23 

85,340*** 

(42,670 / 

42,670) 

PGC-SCZ23 

Breast Cancer BC 12.50% 231,040 

(133,384 / 

113,789) 

Zhang et al. 

(2020)25 

18,456 

(9,228 / 

9,228) 

UKB32 

Coronary 

Artery Disease 

CAD 3.00% 129,014 

(61,289 / 

12,6310) 

Nikpay et al. 

(2015)26 

20,000 

(10,000 / 

10,000) 

UKB32 

Inflammatory 

Bowel Disease 

IBD 1.30% 30,273 

(12,924 / 

21,770) 

Liu et al. 

(2015)27 

5,924 

(2,962 / 

2,962) 

UKB32 

Multiple 

Sclerosis 

MS 0.16% 35,828 

(14,802 / 

26,703) 

International 

Multiple 

Sclerosis 

Genetics 

Consortium 

(2019)28 

2,368 

(1,184 / 

1,184) 

UKB32 

Prostate Cancer PC 12.50% 125,417 

(79,148 / 

61,106) 

Schumacher 

et al. 

(2018)29 

7,026 

(3,513 / 

3,513) 

UKB32 

Rheumatoid 

Arthritis 

RA 0.50% 58,012 

(22,350 / 

74,823) 

Ishigaki et al. 

(2022)30 

5,076 

(2,538 / 

2,538) 

UKB32 

Type 2 Diabetes T2D 5.00% 158,261 

(55,005 / 

400,308) 

Mahajan et 

al. (2018b)31 

20,000 

(10,000 / 

10,000) 

UKB32 
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* The effective testing sample size is reported for a testing sample case-control ratio of P = 0.5. For analyses with 

testing sample case-control ratios of P = 0.25 and 0.75, cases and controls were down-sampled respectively. 
** The average effective sample size for leave-one-cohort-out GWASs is reported. 

*** The total effective sample size across all cohorts is reported. 

 

Standard quality control was applied: Ambiguous (i.e. A/T or C/G SNPs), 

duplicate, and mismatching alleles for SNPs across training, testing, and population 

reference sample were removed1; a minor allele frequency filter of 10% and when 

available an imputation INFO filter of 0.9 was applied as described before34; The major 

histocompatibility complex (MHC) was removed (hg19 coordinates: 

6:28000000:34000000).  

Posterior mean betas of SNPs were computed with PRScs-auto8 (from here on 

simply referred to as PRScs; version June 4th, 2021) and SBayesR (version 2.03)7. PRScs 

uses a Linkage Disequilibrium (LD) reference panel based on HapMap335 SNPs and 

Europeans from the 1000 Genomes Project36 (the default for PRScs). We use the default 

parameters listed on the software’s GitHub page (see Web resources). In the input of 

PRScs, we specified the sample size as Neff to ensure posterior mean betas were on the 

standardized observed scale with 50% case ascertainment (see Step 1 Compute 

posterior mean betas with a Bayesian PGS method). SBayesR uses an LD reference 

panel that is based on HapMap335 SNPs and 50,000 European UK Biobank subjects (the 

default for SBayesR version 2.03). In the input for SBayesR, we transformed the effect 

sizes to the standardized observed scale with 50% case ascertainment (���/�� �
�/�����) and set the sample size to Neff (see Step 1 Compute posterior mean betas with 

a Bayesian PGS method).  

To estimate R2
liability we use an ancestry-matched population reference sample, 

namely the European sample of 1000 Genomes36 (see Methods: Derive R2
liability and the 

expected distribution of the PGS in cases and controls), which we downloaded from the 

MAGMA website (see Web resources).  

The posterior mean betas were used to compute the PGS in 1000 Genomes and 

in the testing sample with Plink1.9 (version Linux 64-bit 6th June, 2021; command “--

score <variant ID column> <effect allele column> <posterior mean beta> sum 

center”; see Data and Code Availability). 

 The BPC approach requires a valid estimate of the prior disorder probability, 

which we set to the case-control ratio in the testing sample (see Discussion for 
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approaches to estimate the prior disorder probability). We ascertain cases in the testing 

sample such that the case-control ratio is equal to 25%, 50%, or 75%.  

 

Results 

Simulation analysis 

We evaluated the BPC approach and Pain et al. (2022) across different values of 

��
���	���
�  (1%, 5%, 10%, and 15%), and population lifetime prevalences (1% and 15%) 

in 100 simulation runs (see Figure 2). Across all parameter combinations, the BPC 

approach consistently achieves mean ICI values close to 0 (ranging from mean 0.014 (3 

SE 0.0004) to 0.017 (3 0.0006) across 4x2=8 parameter settings), meaning the 

predicted and observed probabilities agree closely.  

 

Figure 2 Calibration in simulations. 

Calibration of the BPC and the Pain et al. (2022) approach was evaluated using the Integrated Calibration 

Index (ICI) in 100 simulation runs and for combinations of two parameters, the population lifetime 

prevalence (K), and the explained variance of the PGS on the liability scale (R2
liability). The BPC approach 

achieves low mean ICI values in every condition, while the mean ICI values of the Pain et al. (2022) 

approach are consistently larger. The difference between both approaches becomes larger for conditions 

with low population lifetime prevalences and large �
���
���
�  values. Error bars represent standard errors.  

 

The Pain et al. (2022) approach performs considerably less well (ranging from 

0.039 (3 0.002) to 0.118 (3 0.009) across all parameter settings; see Figure 2) because 

it does not distinguish the prior disorder probability (in this case the testing sample 

case-control ratio) from the lifetime prevalence in the full population, which 

overestimates the predicted probabilities and negatively impacts calibration (see 
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Methods: Alternative approaches to obtain disorder probabilities from PGS for details 

and Figure S1 for a schematic representation). Indeed, the distinction between the BPC 

and Pain et al. (2022) approach is more pronounced when the disorder population 

lifetime prevalence is low, because this increases the difference between the population 

lifetime prevalence and the prior disorder probability (which is set to 50%). Similarly, 

larger values of ��
���	���
�  exacerbate the overestimates of the Pain et al. (2022) 

approach because it leads to more power to detect the bias (except for ��
���	���
�  = 1%; 

see below). A simple adaptation of the Pain et al. (2022) approach to take both the 

population lifetime prevalence and prior disorder probability into account strongly 

improves its calibration and removes the negative impact of the low population lifetime 

prevalence and increasing ��
���	���
�  values; nevertheless, the BPC approach continues 

to achieve lower ICI values (see Figure S2). For low simulated values of ��
���	���
� , when 

the discovery GWAS has little power, the ��
���	���
�  values estimated with lassosum in 

the Pain at al. (2022) approach become unstable (see below), leading to an increased 

ICI. When we adjust the Pain et al. (2022) approach to take both the population lifetime 

prevalence and prior disorder probability into account and compute the variance of a 

well-calibrated PGS in a population reference sample to estimate ��
���	���
�  (instead of 

lassosum), the difference between both approaches becomes very small (see Figure S3). 

Nonetheless, the BPC approach achieves slightly better calibration in nearly every 

condition, because the Pain et al. (2022) approach assumes that the variance of the PGS 

is the same in cases and controls, while they are different and the difference becomes 

larger for higher ��
���	���
�  values and lower population lifetime prevalences (see Figure 

S4 and Methods: Alternative approaches to obtain disorder probabilities from PGS). 

In addition to the ICI, we used the calibration slope and intercept to evaluate 

calibration. Again, the BPC approach consistently achieves good calibration (see Figures 

S5 and S6) and performs better than the Pain et al. (2022) approach. However, we note 

the calibration slope for Pain et al. (2022) implies nearly perfect calibration when the 

population lifetime prevalence is low and ����	���
�
�  is large, while the ICI implies strong 

miscalibration due to overestimated predicted probabilities (see Figure 2), which 

illustrates that the regression slope can be a poor measure for the calibration of 

probabilities11. 
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 We also evaluated our linear rescaling approach (see Methods: Alternative 

approaches to obtain disorder probabilities from PGS). We found that the linear 

rescaling approach performs reasonably well but worse than the BPC approach, 

because it can result in probabilities that are larger than 1 and lower than 0. This mostly 

occurs in conditions where the population lifetime prevalence is low and ����	���
�
�  is 

large. Setting these outlying values to 1 and 0, respectively, negatively impacts 

calibration (see Figure S7). Therefore, our primary recommendation is to use the BPC 

approach.  

 Lastly, we found that the calibration slopes of untransformed Bayesian PGSs for 

binary disorder traits deviate from 1 in ascertained samples, even when the case-

control ratios in the training and testing sample are both 50% and the PGSs are on the 

standardized observed scale with 50% case ascertainment. Similarly, the calibration 

intercepts deviate from 0 (see Figure S8, S9; the bias is most apparent when the 

population lifetime prevalence is low and ����	���
�
�  is large). This is because the 

transformation from the liability to the observed scale in ascertained samples is linear 

for the GWAS results (i.e. betas) used to compute the PGS14 but non-linear for the 

coefficient of determination (R2) of the PGS3 (see Figure S10). As a result, 

���
���	������ and �	������ �����
�  are not proportional, and the PGSs can thus not be 

well-calibrated (see equation 2) without a probability conversion approach. 

Untransformed PGS do attain accurate calibration when neither the training nor the 

testing sample case-control ratios differ from the population lifetime prevalence (i.e. 

random ascertainment), even when the population lifetime prevalence is low (K = 0.01) 

and ����	���
�
�  is large (0.15) the PGS’s mean calibration slope over 100 simulation runs 

does not significantly differ from 1 (mean calibration slope = 1.02, s.e.m. = 0.02). We 

note that the untransformed Bayesian PGSs are centered around 0, and can therefore 

not be evaluated with the ICI11. 

 

Empirical analysis 

To further evaluate the performance of the BPC approach, we applied it to nine 

phenotypes across nine training datasets (SCZ23, MD24, BC25, CAD26, IBD27, MS28, PC29, 

RA30, and T2D31) and three testing datasets (i.e. UK Biobank32, PGC-SCZ23, PGC-MD24; 

see Methods: Empirical analysis and Table 1 for a summary). We ascertained cases and 

controls for each phenotype such that the testing sample case-control ratios were 0.25, 
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0.5, and 0.75. We performed similar comparisons as in the simulations with the addition 

of two applications of the BPC approach, one using PRScs8 (BPC-PRScs) and one using 

SBayesR7 (BPC-SBayesR) to compute posterior mean betas (see Figure 1 and Methods: 

Bayesian polygenic score Probability Conversion (BPC) approach). We note that for 

SBayesR, the results did not converge for prostate cancer and therefore depict one 

fewer data point. Results are reported in Figure 3 and Table S2. Averaged across all 

prior disorder probabilities, BPC-PRScs achieves the lowest mean ICI value of 0.024 (3 

0.002), followed by BPC-SBayesR with 0.034 (3 0.004). The Pain et al. (2022) approach 

has the largest mean ICI value of 0.053 (3 0.007). The BPC-PRScs approach consistently 

achieves the lowest mean ICI values across all prior disorder probabilities. We note the 

Pain et al. (2022) approach can be used with both PRScs and SBayesR. While the 

presented results are based on PRScs, using SBayesR yields comparable results (see 

Figure S11 and Table S2). 

 

Figure 3 Calibration in empirical analyses of nine disorders. 

Calibration of the BPC and the Pain et al. (2022) approach was evaluated using the Integrated Calibration 

Index (ICI) for nine disorders, while varying the prior disorder probability. The BPC approach was 

applied using two Bayesian PGS methods, PRScs (BPC-PRScs) and SBayesR (BPC-SBayesR). The BPC-

PRScs approach achieves the lowest mean ICI values across all prior disorder probabilities. BPC-SBayesR 

shows one fewer data points, as it did not converge for prostate cancer. Numerical values are presented 

in Table S2. Error bars represent standard errors. 

 

 When focusing in detail on the calibration plots with a prior disorder probability 

of 50%, BPC-PRScs shows better calibration than the Pain et al. (2022) approach for 

every trait, except Type 2 Diabetes (see Figure 4 and Table S2). The Pain et al. (2022) 
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approach tends to overestimate the probabilities for many traits, as can be seen by the 

right shift of the histograms and calibration lines. This is particularly true for traits with 

low population lifetime prevalence and large  values, such as rare auto-immune 

disorders (i.e. Inflammatory Bowel Disorder, Multiple Sclerosis, and Rheumatoid 

Arthritis) and Prostate Cancer, which is in line with our theoretical expectations (see 

Methods: Alternative approaches to obtain disorder probabilities from PGS and Figure S1 

for a schematic representation). 

 

 

Figure 4 Disorder-specific calibration curves in empirical analyses of nine disorders. 

Calibration of the BPC and the Pain et al. (2022) approach was evaluated using the Integrated Calibration 

Index (ICI) for nine disorders, each with a prior disorder probability of 0.5 (see Table 1 for an overview 

of the case/control testing sample sizes). The prior disorder probability was set to 0.5, as opposed to the 

lifetime prevalence in the general population (K), to emulate the higher risk of help-seeking individuals in 

clinical settings. Histograms at the top of the plots depict the distribution of the predicted disorder 

probabilities, and the dots at the base of the histograms depict the mean predicted probability. The lines 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 13, 2024. ; https://doi.org/10.1101/2024.01.12.24301157doi: medRxiv preprint 

https://doi.org/10.1101/2024.01.12.24301157
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

18 
    

were drawn with a loess smoothing function, and their transparency follows the density of the histogram 

to show which parts of the distribution carry the most weight in the calculation of the ICI. For major 

depression and schizophrenia, 62 and 22 cohorts, respectively, were available for analysis and therefore 

depict thin, light-colored, and transparent lines for individual cohorts. In contrast, the thicker and darker 

lines depict results when data from all cohorts are concatenated. The disorder population lifetime 

prevalence (K) is reported. The Area Under the receiver operator Curve (AUC) is the same for both 

approaches because the transformations do not change the ranking of individual PGSs, and both 

approaches use the same PGS inputs. The BPC-PRScs approach achieves lower ICI values for eight out of 

nine disorders. The Pain et al. (2022) approach tends to overestimate the predicted disorder 

probabilities, as seen by the right shift of the histograms and the dots. Numerical values are presented in 

Table S3. Calibration curves for BPC-SBayesR are presented in Figure S12. 

 

 We performed secondary analyses yielding the following six conclusions. First, 

comparing the calibration plots of BPC-PRScs with BPC-SBayesR, the latter makes 

correct predictions on average but is less well-calibrated for low and high values of the 

predicted disorder probabilities (see Figure S12 and Table S2). Second, misspecification 

of the effective sample size by a factor of 0.5 and 2 negatively impacts calibration for 

BPC-PRScs, while it does not affect the calibration of the Pain et al. (2022) approach 

(see Figure S13 and Table S3) as it involves a scaling step after the posterior mean 

betas have been computed. We note the BPC approach still has lower median ICI values 

than the Pain et al. (2022) approach. BPC-SBayesR seems generally more robust to 

misspecification of the effective sample size, except for Coronary Artery Disease which 

suffers extreme miscalibration when Neff is multiplied by 2. Third, including the MHC 

region strongly and negatively impacts calibration for the autoimmune disorders 

Multiple Sclerosis and Rheumatoid Arthritis for BPC-PRScs and Pain et al. (2022) (but 

not BPC-SBayesR; This is because SBayesR’s reference sample excludes most of the 

MHC region; see Figures S14 and Table S4). Fourth, reducing the INFO filter from 0.9 to 

0.3 and the minor allele frequency filter from 10% to 1% (as in 34) yields comparable 

average ICI values (except for Coronary Artery Disease and BPC-SBayesR; see Figure 

S15 and Table S5). Fifth, evaluating calibration with the slope and intercept from a 

linear regression of the phenotype on the predicted disorder probabilities also shows 

that BPC-PRScs is best calibrated overall (see Figures S16, S17, and Table S6).  

In contrast to simulations (see Figure S8), the untransformed Bayesian PGSs do 

not show strongly miscalibrated slopes (see Figure S18), likely due to the variance of 

estimates of the calibration slopes in combination with much fewer observations in 

empirical data (i.e. 9) than in simulations (100 simulation runs for 8 parametrizations). 

Our findings are in line with the previous observation that the calibration slope is very 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 13, 2024. ; https://doi.org/10.1101/2024.01.12.24301157doi: medRxiv preprint 

https://doi.org/10.1101/2024.01.12.24301157
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

19 
    

sensitive to miscalibration in small parts of the data and that the ICI is more robust and 

preferred as a metric for calibration11. Because untransformed Bayesian PGSs are 

centered around 0 and do not range from 0 to 1, they cannot be evaluated with the ICI, 

and cannot be interpreted as predicted disorder probabilities. 

  

Estimation of variance explained (��
���	���
�) 

The BPC approach depends on a valid estimate of ��
���	���
� . Our approach of computing 

the variance of a well-calibrated PGS in a population reference sample without the need 

for phenotype data (see Methods: Step 3 Derive R2
liability and the expected distribution of 

the PGS in cases and controls) leads to estimates that are very close to the observed 

values from linear regression3 in a sample with both pheno- and genotype data in 

simulations (mean absolute difference ranges from 0.009 to 0.011; see Figure 5A) and 

in empirical data (mean absolute difference = 0.02; see Figure 5B). The Pain et al. 

(2022) approach uses lassosum21, which leads to estimates are slightly misspecified in 

simulations (mean absolute difference ranges from 0.058 to 0.088) and in empirical 

data (mean absolute difference = 0.05). 
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Figure 5 ����������
�  estimates in simulations and empirical analyses of nine disorders. 

(A) Simulation results of estimating ��	
�	�	�
�  using the BPC approach and lassosum (as used by Pain et al. 

(2022)), both of which do not require disorder-specific individual-level genotype and phenotype data. 

The x-axis depicts ��	
�	�	�
�  estimated by regressing disorder status on the Bayesian PGS in individual-

level data in the testing sample3. Error bars depict standard errors for 100 simulation runs. The grey 

dashed line depicts the identity line when y = x. The BPC approach achieves mean estimates that are 

closer to the regression results in the testing sample in every simulation condition. mean abs. diff. = mean 

absolute difference of ��	
�	�	�
�  estimates using summary statistics and individual-level case-control data. 

(B) Empirical results in the UKB and PGC of estimating ��	
�	�	�
�  using the BPC-PRScs approach and 

lassosum. The BPC-PRScs approach achieves estimates that are closer to the regression results in the 

testing sample on average (mean absolute difference of 0.02 vs. 0.05). 

 

Discussion 

We developed the BPC approach to transform PGSs to absolute risk values, which yields 

predicted disorder probabilities that may be clinically useful for single individuals. 
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Based on Bayesian PGS methods, it requires only minimal input, namely GWAS 

summary statistics, a single individual’s genome-wide genotype data and prior disorder 

probability, and an estimate of the disorder's population lifetime prevalence. We 

verified in simulations and empirical analyses of nine disorders that the BPC approach 

achieves good calibration, meaning the predicted and real disorder probabilities closely 

align. The BPC approach depends on a valid estimate of R2
liability, which we compute by 

estimating the variance of a well-calibrated PGS in a population reference sample 

without the need for phenotype data, and verify that the estimates are close to 

empirically calculated values in case-control data.  

We compared the BPC approach to a recently published approach in Pain et al. 

(2022)10, and showed that it achieves lower ICI values in every simulation condition 

and for eight out of nine tested disorders in empirical analyses. This is partly because 

the Pain et al. (2022) approach overestimates the predicted disorder probabilities 

whenever the prior disorder probability exceeds the population lifetime prevalence. 

In clinical settings where a single individual may be considered, the prior 

disorder probability, which can be interpreted as the case-control ratio in a 

hypothetical testing sample to which that individual belongs, can be approximated in 

several ways. It may be estimated using external data to obtain a data-informed prior, 

such as context-specific lifetime prevalence estimates of individuals seeking health care 

for a specific disorder in a given hospital. The context may refer to any variable that 

modifies a disorder's lifetime prevalence, such as age, sex, or income37, meaning any 

covariate can be incorporated into the prior disorder probability. Alternatively, if no 

data is available, prior elicitation38 may be used, where a clinician (or a panel of 

clinicians) provides a subjective estimate of the prior. Generally, the lifetime risk for 

help-seeking individuals is expected to be higher than for individuals from the general 

population (where lifetime risk = K). As such, the prior will often be higher than K.  

There are several limitations to this study. First, because most GWASs are based 

on individuals from European populations, the calibration of the BPC approach for 

individuals from non-European populations is unknown but may be negatively affected, 

as is the accuracy of risk predictions39,40. However, as long as the GWAS population 

matches that of the individual, the BPC approach is expected to be well-calibrated. 

Future studies are needed to develop methods to obtain well-calibrated predictions for 

individuals from non-European populations. Second, the potential for clinical utility of 
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polygenic prediction (and thereby the BPC approach) strongly depends on the 

magnitude of the PGS’s R2
liability, which is currently prohibitively small for most traits. 

However, there are some traits, such as cardiovascular disease and type 2 diabetes, for 

which current PGSs may already be sufficiently powered to find clinical application41–43 

and be economically effective44–49. Moreover, as GWAS sample sizes grow, the PGS’s 

R2
liability is expected to approach the disorder’s h2

SNP, and therefore their clinical 

applicability will become more likely. Third, the calibration of the predicted disorder 

probabilities depends on a correct estimate of the prior for a typical polygenic GWAS 

trait. Future studies may explore a two-step approach by using well-calibrated 

conventional risk prediction models to inform the prior disorder probability, which in 

turn may then be used in the BPC approach. Fourth, the BPC can only be applied to 

polygenic traits with normally distributed PGSs. For autoimmune disorders, we show 

that the inclusion of the MHC region, which harbors outlying large-effect variants, can 

negatively impact calibration. Similarly, rare variants cannot currently be incorporated 

into the BPC approach. However, this is also true for the Bayesian PGS methods the BPC 

approach is based on. Integrating prediction based on rare variants with large effects 

with polygenic prediction is an important direction for future research. 

In conclusion, the BPC approach provides an effective tool to compute well-

calibrated predicted disorder probabilities based on polygenic scores.  
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Web resources 

PRScs https://github.com/getian107/PRScs  

SBayesR https://cnsgenomics.com/software/gctb/#Overview  

1000 Genomes files https://ctg.cncr.nl/software/magma   
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Data and code availability 

Scripts to apply the BPC approach can be downloaded from 

https://github.com/euffelmann/bpc. Individual-level data from the Psychiatric 

Genomics Consortium (https://pgc.unc.edu/) and the UK Biobank 

(https://www.ukbiobank.ac.uk/enable-your-research/apply-for-access) cannot be 

shared freely, but an access application is required first. The GWAS summary statistics 

used in the UKB analyses can be requested or downloaded from the following web 

pages: Breast Cancer 

(https://bcac.ccge.medschl.cam.ac.uk/bcacdata/oncoarray/oncoarray-and-combined-

summary-result/gwas-summary-associations-breast-cancer-risk-2020/); BMI 

(https://portals.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium_

data_files); Coronary Artery Disease (http://www.cardiogramplusc4d.org/data-

downloads/#); Inflammatory Bowel Disease (https://www.ibdgenetics.org/); Multiple 

Sclerosis (https://imsgc.net/?page_id=31); Prostate Cancer 

(http://practical.icr.ac.uk/blog/?page_id=8164); Rheumatoid Arthritis 

(https://data.cyverse.org/dav-

anon/iplant/home/kazuyoshiishigaki/ra_gwas/ra_gwas-10-28-2021.tar); Type 2 

Diabetes (https://diagram-consortium.org/downloads.html). GWAS summary statistics 

for Major Depression and Schizophrenia can be downloaded from the PGC website 

(https://pgc.unc.edu/for-researchers/download-results/). 

1000 Genomes reference files can be downloaded from 

https://ctg.cncr.nl/software/magma.  
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