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 34 

Abstract (max 300 words) 35 

 36 

OBJECTIVE: Recently, a deep learning AI model forecasted seizure risk using retrospective 37 

seizure diaries with higher accuracy than random forecasts. The present study sought to 38 

prospectively evaluate the same algorithm.  39 

METHODS: We recruited a prospective cohort of 46 people with epilepsy; 25 completed 40 

sufficient data entry for analysis (median 5 months). We used the same AI method as in our 41 

prior study. Group-level and individual-level Brier Skill Scores (BSS) compared random forecasts 42 

and simple moving average forecasts to the AI. 43 

RESULTS: The AI had an AUC of 0.82. At the group level, the AI outperformed random 44 

forecasting (BSS=0.53). At the individual level, AI outperformed random in 28% of cases. At the 45 

group and individual level, the moving average outperformed the AI. If pre-enrollment (non-46 

verified) diaries (with presumed under-reporting) were included, the AI significantly 47 

outperformed both comparators. Surveys showed most did not mind poor quality LOW-RISK or 48 

HIGH-RISK forecasts, yet 91% wanted access to these forecasts.  49 

SIGNIFICANCE: The previously developed AI forecasting tool did not outperform a very simple 50 

moving average forecasting this prospective cohort, suggesting that the AI model should be 51 

replaced.  52 

  53 
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Key points 54 

A previously developed e-diary based AI seizure forecasting tool was prospectively tested. 55 

Although by some metrics the tool was successful, the overall AI performance was 56 

unacceptably low. 57 

It was much easier to outperform a random forecast; it was much harder to outperform a 58 

moving average forecast. 59 

Using unverified diaries can skew forecasting metrics in favor of underperforming tools. 60 

  61 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 13, 2024. ; https://doi.org/10.1101/2024.01.11.24301175doi: medRxiv preprint 

https://doi.org/10.1101/2024.01.11.24301175
http://creativecommons.org/licenses/by-nc-nd/4.0/


 4

Introduction 62 

Not knowing when the next seizure will happen reduces quality of life for people living with 63 

epilepsy. Roughly a decade ago, it was discovered that it is possible to provide seizure forecasts 64 

using invasive technology
1
. Since then, novel approaches involving highly invasive

2–5
 and less 65 

invasive tools
6,7

 have been proposed. Using a retrospective study of 5,419 unverified self-66 

reported electronic diaries from Seizure Tracker, our group reported that 24-hour forecasts 67 

from seizure diaries alone were possible using deep learning
8
. The present study aimed to 68 

validate these findings prospectively. 69 

 70 

Methods 71 

Patients 72 

The protocol was deemed Exempt by the BIDMC Institutional Review Board. Participants were 73 

recruited by Seizure Tracker
9
 via email. Participants with 1) epilepsy, 2) age 18 or older, 3) an 74 

active Seizure Tracker e-diary account, 4) at least 3 seizures recorded in their account, and 5) at 75 

least 3 months of previous e-diary data were eligible. Verified participants linked their e-diary 76 

and a RedCap
10,11

 survey account to the study. They completed an initial survey and then 77 

weekly surveys (verifying diary completion) for 5 months. They also maintained seizure e-78 

diaries. For safety, only retrospective forecasts were provided monthly. 79 

 80 

The AI forecaster 81 

Using our pre-trained deep learning algorithm
8
 (hereafter: AI), seizure forecasts were calculated 82 

for every day possible. The AI uses a recurrent neural network connected to a multilayer 83 
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perceptron trained on 3806 users (Appendix A). All model parameters and hyperparameters 84 

remained unchanged from the original model. 85 

The AI computes a probability of any seizures occurring within a 24-hour period. The AI uses the 86 

84-day trailing history of daily seizure counts leading up to that forecasted day as input. The 87 

tool was applied sequentially with a sliding window that moves forward one day at a time. Each 88 

patient could have up to 57 daily forecasts (8 weeks and one day), representing the prospective 89 

observation period. In some patients, this number was lower due to incomplete diary 90 

information (Appendix B). The 3-month pre-enrollment diaries were retained for additional 91 

analysis.   92 

 93 

The random forecaster 94 

The daily AI forecast was compared with a permuted forecaster as a benchmark (hereafter 95 

“random”). The random forecaster is generated by permuting forecasts from the AI at the 96 

subject level. This can be thought of as shuffling a deck of cards, where each card is the AI 97 

forecast for a given day, and there is a different deck for each patient. A useful forecast should 98 

(at minimum) outperform a permuted forecaster
12

. Where appropriate, the average outcome 99 

metric from 1000 such permutations was used, such as for computing the Brier Score.  100 

 101 

The moving average forecaster 102 

The daily AI forecast was also compared with a moving average forecaster which accounted for 103 

the typical seizure rate from each patient.  Moving average forecasts were computed by taking 104 

the total number of seizure days in each trailing 84-day history and dividing by 84 to obtain a 105 
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simple estimate of daily risk of any seizures for the coming 24-hour forecast (Appendix A). Of 106 

note, unlike a similar comparator used our prior study (there called the “rate matched random” 107 

forecaster), this moving average forecaster uses total seizure days, not total seizure counts
8
. 108 

This change was made to provide a more stringent comparator for the AI. Also of note, all 109 

summary results were computed using only the verified post-enrollment period due to 110 

concerns about possible under-reporting during the pre-enrollment period (see Discussion). 111 

 112 

 113 

Outcome metrics 114 

Performance of each model was measured using area under the receiver operating 115 

characteristic curve (AUC), and the Brier Score. AUC values range between 0 and 1, with 0.5 116 

representing a tool indistinguishable from coin flipping, and 1 representing a perfect 117 

discriminator. Brier Scores range between 0 and 1, with values closer to 0 representing higher 118 

accuracy. Our primary outcome (Appendix B) was comparing AI to the random forecasts using 119 

Brier Skill Scores (BSS). Brier Skill Score of 1 represents the AI algorithm is perfect, 0 indicates 120 

the AI is not better than the reference forecast, and -1 indicates the reference forecast is 121 

perfect).  122 

 123 

BSS was computed both at the group-level and at the individual participant level. When using as 124 

reference test the random forecaster to calculate BSS, “group-level” means that random 125 

forecasts were generated by randomly shuffling the AI predictions across all patients, and 126 

randomly reassigning them. Note that this means that forecasts from one patient may be 127 
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randomly reassigned to other patients. By contrast, calculating BSS at the “individual level” 128 

relative to random forecasting means that random forecasts are all from the same patients, 129 

albeit in a randomly shuffled order. This means that the group and individual level BSS scores 130 

are not directly comparable, and the median of the individual-level BSS scores need not match 131 

the group-level BSS score. Additional BSS values were computed using the moving average as 132 

an alternative reference.  133 

 134 

Calibration curves were generated for the AI, random, and moving average forecasters using 135 

equally spaced bins. Confidence intervals for AUC and BSS values were obtained by 1000 136 

bootstrapped samples, selecting patients with replacement. 137 

Code is available here: https://github.com/GoldenholzLab/deepManCode. 138 

 139 

Results 140 

Of 46 recruited participants, 1 was ineligible, 3 were seizure-free, and 11 provided insufficient 141 

diary data. Within the remaining 31, there were 3 dropouts, and 8 who missed some of the 142 

weekly diary completeness responses. Only 25 patients had sufficient contiguous data to 143 

perform forecasts based on 3 months of prospectively collected history. Forecastable diary days 144 

(Appendix C) ranged 15-57 (median 57) days. Total seizures per patient ranged from 1-56, 145 

(median 13). Participant characteristics are summarized in Table 1. 146 

 147 

Group level results: 148 
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The following represent group level metrics (Figure 1). Confidence intervals were obtained via 149 

1000 bootstrapped samples with replacement at the patient level. The AUC for AI was: 0.82 150 

[95% CI 0.72-0.90], and for the permuted AI (i.e. random forecast) was 0.50 [95% CI 0.46-0.54]. 151 

The Brier Score for AI was 0.14. The AI performed significantly better than the random 152 

forecaster at the group level, with a Brier Skill Score (AI vs. random) of 0.53 [95% CI 0.27-0.70]. 153 

However, the AUC of the moving average forecaster was also 0.82 [95% CI 0.72-0.89], which 154 

was not significantly different from the AI (Mann Whitney U, p=0.13); and the Brier Skill Score 155 

of the AI relative to the moving average forecaster was -0.01 [95% CI -0–04 - 0.02], suggesting 156 

minimal difference in performance.  157 

 158 

Individual level results: 159 

In 7 patients (28%) the AI was superior (i.e., individual Brier Skill Score>0) to the random 160 

forecaster whereas for 9 patients (36%) the AI was superior to the moving average. The 161 

individual Brier Skill Scores (mean permuted AI forecasts
12

 as comparator) were median 0.00 162 

(95% CI: -0.03 – 0.20). These values were notably lower than the group level BSS values (see 163 

Appendix I). Individual Brier Skill Scores with moving average as comparator were median -0.01 164 

with 95% confidence range (-0.08-0.17). Individual level AI AUC values were very poor quality 165 

0.43 +/- 0.21, as were individual level moving average values AUC 0.43 +/- 0.13.  166 

 167 

Complete diaries with AI and moving average forecasts were plotted (Appendix D and E). There 168 

were 25 patients reporting less than 3 seizures in the pre-enrollment period (see Appendix D). 169 

Time-in-warning analysis was conducted (Appendix G).  170 
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 171 

The above analyses were also re-computed using the full set of 31 patients using the 3-month 172 

pre-enrollment diaries (Appendix F). This showed the AI was superior to random and moving 173 

average at the group level, and superior to the moving average at the individual level in 14 174 

patients (45%). However, pre-enrollment data seizure rate was dramatically lower than the 175 

enrollment seizure rates, suggesting severe under-reporting. 176 

 177 

The initial surveys (n=46), filled out prior to any forecasting, included questions related to 178 

seizure forecasting (Appendix G). Many (52%) patients stated they would not mind poor quality 179 

HIGH-RISK forecasts, and many (52%) did not mind poor quality LOW-RISK forecasts, yet almost 180 

all (91%) wanted access to forecasts. In the setting of LOW-RISK forecasts, 80% said they would 181 

not change their behavior, yet in HIGH RISK only 28% would not change – many stated that they 182 

would avoid risk-taking behavior (54%). 183 

 184 

Discussion 185 

Our results prospectively attempted validation of a deep learning seizure forecasting system 186 

that is based entirely on seizure diaries. At the group level (considering all forecasts from all 187 

patients equally), one may mistakenly believe that the AI has strong potential. Using a random 188 

permutation surrogate as our comparator, the AI forecasts better than chance. However, a 189 

simple moving average forecaster turns out to perform just as well as the AI. Moreover, at the 190 

individual level (summarizing each patient separately first, then aggregating results), the AI 191 

outperforms the random permutation and the moving average in a small minority of cases, 192 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 13, 2024. ; https://doi.org/10.1101/2024.01.11.24301175doi: medRxiv preprint 

https://doi.org/10.1101/2024.01.11.24301175
http://creativecommons.org/licenses/by-nc-nd/4.0/


 10

showing very poor overall individual level performance in AUC and Brier scores. The present 193 

work mirrors the previous retrospective study
8
, however it focuses on the individual patient 194 

level with physician curated, verified complete diaries. By reporting multiple metrics in different 195 

ways, this study highlights deficiencies of the present AI algorithm, and in certain outcome 196 

metrics. Clearly, the AI is not better than moving average forecasts; however, when missing 197 

data is present, the AI outperforms the moving average.  198 

Qualitatively, the data (Appendices D, E, F) suggests that at least one driver of periods of better 199 

forecastsrelates to the AI being better able to forecast multi-day clusters of seizures compared 200 

with the random permutation or the moving average. These clusters may reflect multi-day 201 

seizure susceptibility periods, though they do not appear to be periodic
3,13

, and they do not fit 202 

the classical definition of seizure clusters
14,15

.  203 

 204 

Unlike our retrospective study
8
 that did not have verified complete diaries, the prospective 205 

study utilized weekly verified diaries from patients with clinical data confirming their epilepsy 206 

diagnosis. The misalignment of results between the former study and the present one may 207 

reflect the difference between the self-report and closely monitored self-report. In the case of 208 

the former, some events may be missed (under-reporting
16

), but in the case of the latter, some 209 

dubious events may be included (over-reporting
1
). There are no rigorous studies of over-210 

reporting, which is challenging to accurately quantify. Here, the verified diaries have 211 

dramatically higher rates during the prospective phase compared to the pre-enrollment 3-212 

month periods (see Appendix D) – strongly suggesting under-reporting. 213 
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The apparent under-reporting from the pre-enrollment period appears to reflect that without 214 

supervision, diaries might be incomplete. Our study required for enrollment the existence of a 215 

Seizuretracker account with at least 3-months of data prior to enrollment, however we did not 216 

verify or demand that such diaries were complete. This oversight is significant, because during 217 

the observed portion of the study we asked the participants weekly if their diaries were 218 

complete, and the seizure rates were consistently much higher (see Appendix D). Importantly, 219 

multiple lines of evidence
13,17–21

 show that, contrary to what we observed in our cohort, 220 

unverified seizure diaries often do reproduce patterns confirmed in verified systems, thus 221 

unsupervised seizure diaries may not always suffer from underreporting bias. Nevertheless, 222 

future studies will need to either confirm with participants that pre-enrollment diaries are 223 

complete or obtain longer duration observation periods and use only data obtained during 224 

confirmed timeframes. 225 

 226 

Perhaps, one might suspect that patients with very high seizure rates would be unlikely to 227 

benefit from seizure forecasts at all. On the other hand, our cohort included only patients who 228 

wanted to be involved in a forecasting study (there was no compensation for this study), and 229 

39% of them had very high seizure rates. Patient preferences (Appendix G) may even support 230 

inaccurate forecasts rather than no forecasts. It is worthwhile to note that the preferences 231 

reported were obtained prior to obtaining any forecasts from our team, therefore these can be 232 

viewed as the opinion of optimistic patients who had just enrolled in a study. Nevertheless, 233 

patients with less frequent seizure days are likely the most important to forecast (based on the 234 

need to make temporary changes in behavior), and the present algorithm did not excel in this 235 
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area. More study is needed to better understand what the characteristics are of patients who 236 

would be most interested in seizure forecasts, and who would benefit most. It should be 237 

emphasized that in the absence of a nearly perfect forecast system, patients should never be 238 

encouraged to engage in risky behavior during periods of forecasted low risk. 239 

 240 

The present study has several limitations. First, some people with epilepsy have very low (e.g., 241 

1-2 seizures per year) or very high (i.e., ≥daily) seizure rates
22

. Such patients would not be likely 242 

to benefit from the current generation of daily forecasting tools. Second, it can be challenging 243 

for patients to maintain a seizure diary
23

, thus limiting tools of this nature to patients and 244 

caregivers willing to maintain a diary. Third, our prior
8
 and present study did not have available 245 

EEG data to augment forecasts. Although speculative, including EEG data may enhance the 246 

performance of these models. Fourth, the 5-month prospective duration of the present study 247 

may be too short to make definitive conclusions about the utility of the AI algorithm. To 248 

address this deficiency, our group will be conducting a larger study soon with a longer 249 

observation period to allow for sufficiently large windows of investigator-verified seizure 250 

diaries. Sixth, there was a presumed dramatic under-reporting in the pre-enrollment period. In 251 

our future study, we will not include a pre-enrollment period due to the challenges in verifying 252 

that they are complete. Finally, the choice of reference standard comes at a cost. Our average 253 

permutation (a.k.a. random) forecaster standard could not be realistically provided to patients 254 

in real-time. Conversely, our second reference standard was the moving average forecaster. 255 

This can be implemented in a real-time system, making it a realistic comparator A comparison 256 

of the calibration curve (Figure 1) shows very poor calibration of the permuted AI, but decent 257 
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calibration of moving average and AI. In using both, we highlight the advantages and 258 

disadvantages of each.  259 

 260 

We hope that future advances in wearables
6
 and minimally invasive tools

7,24
 can synergistically 261 

be applied to diary-based forecasting tools to achieve higher accuracy and wider patient 262 

appeal. 263 

 264 
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Figure 1: Calibration curves. The prospective seizure forecasts (pooled across all patients) are 372 

compared to the actual observed seizures for (1) the artificial intelligence (AI), (2) the rate 373 

matched random forecast (RMR), and (3) random permutations of the AI. Confidence intervals 374 

are shown by bootstrapping 1000 times (choosing patients with replacement). A perfectly 375 

calibrated (dashed line) forecast would always forecast the correct percentage of observed 376 

seizures. In this figure, the AI and random forecast deviate from the ideal somewhat, whereas 377 

the permuted reference is very poorly calibrated (as expected). 378 

 379 

 380 

Number % 

Number of patients 31 

Females (%) 14 45% 

Physician confirmed epilepsy 31 100% 

EEG confirmed epilepsy 
   Yes 27 87% 

  Unsure 4 13% 

Handedness (right / left / mixed) 
   Right 23 74% 

  Left 6 19% 

  Mixed 2 6% 

Epilepsy type 
   Generalized 8 26% 

  Focal 11 35% 

  Focal + Generalized 8 26% 

  Unknown 4 13% 

Epilepsy location 
   Frontal 1 3% 

  Temporal 6 19% 

  Parietal 0 0% 

  Occipital 1 3% 

  Multifocal 2 6% 

  Unknown 21 68% 

Epilepsy cause 
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  Structural 9 29% 

  Genetic 6 19% 

  Infectious 1 3% 

  Metabolic 0 0% 

  Immune 0 0% 

  Unknown 15 48% 

Prior epilepsy surgery (%) 16 52% 

 381 

TABLE 1: Baseline characteristics of participants in the prospective study. Note, 31 patients had 382 

sufficient information to proceed to analysis, however 6 did not have sufficient data for analysis 383 

involving forecasts made only from 3 months of prospectively collected history. 384 
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