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Abstract 72 

Structural brain aging has demonstrated strong inter-individual heterogeneity and mirroring 73 

patterns with brain development. However, due to the lack of large-scale longitudinal 74 

neuroimaging studies, most of the existing research focused on the cross-sectional changes of 75 

brain aging. In this investigation, we present a data-driven approach that incorporate both cross-76 

sectional changes and longitudinal trajectories of structural brain aging and identified two brain 77 

aging patterns among 37,013 healthy participants from UK Biobank. Participants with 78 

accelerated brain aging also demonstrated accelerated biological aging, cognitive decline and 79 

increased genetic susceptibilities to major neuropsychiatric disorders. Further, by integrating 80 

longitudinal neuroimaging studies from a multi-center adolescent cohort, we validated the “last 81 

in, first out” mirroring hypothesis and identified brain regions with manifested mirroring 82 

patterns between brain aging and brain development. Genomic analyses revealed risk loci and 83 

genes contributing to accelerated brain aging and delayed brain development, providing 84 

molecular basis for elucidating the biological mechanisms underlying brain aging and related 85 

disorders.  86 
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Introduction 87 

The structure of the brain undergoes continual changes throughout the entire lifespan, with 88 

structural brain alterations intimately linking brain development and brain aging1,2. Brain aging 89 

is a progressive process that often co-occurs with biological aging and declines of cognitive 90 

functions3–5, which contribute to the onset and acceleration of neurodegenerative6 and 91 

neuropsychiatric disorders7. Studies on healthy brain aging have revealed significant inter-92 

individual heterogeneity in the patterns of neuroanatomical changes8,9. Therefore, examining 93 

the patterns of structural brain aging and its associations with cognitive decline is of paramount 94 

importance in understanding the diverse biological mechanisms of age-related 95 

neuropsychiatric disorders. 96 

Despite the fact that there exist large differences between brain development and brain 97 

aging10, a discernible association between these two processes remains evident. Direct 98 

comparisons of brain development and brain aging using structural MRI indicated a “last in, 99 

first out” mirroring pattern, where brain regions develop relatively late during adolescence 100 

demonstrated accelerated degeneration in older ages11,12. In addition, brain regions with strong 101 

mirroring effects showed increased vulnerability to neurodegenerative and neuropsychiatric 102 

disorders, including Alzheimer’s disease and schizophrenia13. However, due to the lack of 103 

large-scale longitudinal MRI studies during adolescence and mid-to-late adulthood, validation 104 

of the “last in, first out” mirroring hypothesis remains unavailable.  105 

Prior investigations have largely focused on regional and cross-sectional changes of brain 106 

aging9,13,14, with relatively few studies exploring longitudinal trajectories of brain aging and its 107 

associations with brain development8,15,16. In this article, we present a data-driven approach to 108 

examine the population clustering of longitudinal brain aging trajectories using structure MRI 109 

data obtained from 37,013 healthy individuals during mid-to-late adulthood (44-82 years), and 110 

explore its association with biological aging, cognitive decline and susceptibilities for 111 

neuropsychiatric disorders. Further, mirroring patterns between longitudinal brain 112 

development and brain aging are investigated by comparing the region-specific aging / 113 

developmental trajectories, and manifestation of the mirroring patterns are investigated across 114 

the whole-brain and among participants with different brain aging patterns. Genomic analyses 115 
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are conducted to reveal risk loci and genes associated with accelerated brain aging and delayed 116 

brain development. 117 

 118 

Results 119 

Longitudinal trajectories of whole-brain GMV in mid-to-late adulthood define two brain 120 

aging patterns. 121 

Fig. 1 provides the data sources, analytical workflow and research methodology of this study. 122 

Longitudinal GMV trajectories in 40 ROIs (33 cortical and 7 subcortical ROIs) were estimated 123 

for each of the 37,013 healthy participants in UK Biobank. After dimension reduction via 124 

principal component analysis, the first 15 principal components (PCs) were used in the 125 

clustering analysis (see Methods)17,18. Two brain aging patterns were identified, where 18,929 126 

(51.1%) participants with the first brain aging pattern (pattern 1) had higher total GMV at 127 

baseline and a slower rate of GMV decrease over time, and the remaining participants with the 128 

second pattern (pattern 2) had lower total GMV at baseline and a faster rate of GMV decrease 129 

(Fig. 2a). Comparing the region-specific rate of GMV decrease, pattern 2 showed a more rapid 130 

GMV decrease in medial occipital (lingual gyrus, cuneus and pericalcarine cortex) and medial 131 

temporal (entorhinal cortex, parahippocampal gyrus) regions (Fig. 2b, c and Supplementary 132 

Fig. 3), which had the largest loadings in the second and third principal components 133 

(Supplementary Table 5). Sample characteristics of these 37,013 UK Biobank participants 134 

stratified by brain aging patterns are summarized in Supplementary Table 6. Overall, 135 

participants with different brain aging patterns had similar distributions with regard to age, sex, 136 

ethnicity, smoking status, Townsend Deprivation Index, BMI and years of schooling.  137 

 138 

Brain aging patterns were significantly associated with biological aging. 139 

To explore the relationships between structural brain aging and biological aging, we 140 

investigated the distribution of aging biomarkers, such as telomere length and PhenoAge19, 141 

across brain aging patterns identified above (Fig. 3 and Supplementary Table 7). Compared to 142 

pattern 1, participants in pattern 2 with more rapid GMV decrease had shorter leucocyte 143 

telomere length (P = 0.009, Cohen’s D = -0.028) and this association remained consistent after 144 
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adjusting for sex, age, ethnic, BMI, smoking status and alcohol intake frequency20. Next, we 145 

examined PhenoAge, which was developed as an aging biomarker incorporating composite 146 

clinical and biochemical data19, and observed higher PhenoAge among participants with brain 147 

aging pattern 2 compared to pattern 1 (P = 0.019, Cohen’s D = 0.027). Again, the association 148 

remained significant after adjusting for sex, age, ethnic, BMI, smoking status, alcohol intake 149 

frequency and education years (P = 3.05 × 10-15, Cohen’s D = 0.092). Group differences in 150 

terms of each individual component of PhenoAge (including albumin, creatinine, glucose, c-151 

reactive protein, lymphocytes percentage, mean corpuscular volume, erythocyte distribution 152 

width, alkaline phosphatase and leukocyte count) were also investigated and results were 153 

consistent with PhenoAge (Supplementary Fig. 4). 154 

 155 

Accelerated brain aging was associated with cognitive decline and increased genetic 156 

susceptibilities to ADHD and delayed brain development. 157 

Next, we conducted comprehensive comparisons of cognitive functions between participants 158 

with different brain aging patterns. In general, those with brain aging pattern 2 (lower baseline 159 

total GMV and more rapid GMV decrease) exhibited worse cognitive performances compared 160 

to pattern 1. Specifically, brain aging pattern 2 showed lower numbers of correct pairs matching 161 

(P = 0.006, Cohen’s D = -0.029), worse prospective memory (OR = 0.943, 95% CI [0.891, 162 

0.999]), lower fluid intelligence (P < 1.00 × 10-20, Cohen’s D = -0.102), and worse numeric 163 

memory (P = 5.97 × 10-11, Cohen’s D = -0.082). No statistically significant differences were 164 

observed in terms of the reaction time (P = 0.99) and prospective memory (P = 0.052) between 165 

these two brain aging patterns after FDR correction. Results were consistent when using 166 

models adjusted for sex, age, and socioeconomic status (TDI, education and income)21,22 (Fig. 167 

4). Full results demonstrating the associations between brain aging patterns and cognitive 168 

functions are presented in Supplementary Table 8. 169 

Having observed cognitive decline among participants with accelerated brain aging pattern, we 170 

next investigated whether brain aging patterns were associated with genetic vulnerability to 171 

major neuropsychiatric disorders. Since current GWAS are under-powered for ADHD and ASD 172 

and the difficulty in identifying genetic variants was likely due to their polygenic nature, we 173 
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calculated the corresponding polygenic risk scores (PRS) using multiple p value thresholds. 174 

This approach enabled robust investigation of the association between genetic susceptibility of 175 

neuropsychiatric disorders and brain imaging phenotypes. PRS for major neuro-developmental 176 

disorders including attention-deficit/hyperactivity disorder (ADHD) and autism spectrum 177 

disorders (ASD),  neurodegenerative diseases including Alzheimer’s disease (AD) and 178 

Parkinson’s disease (PD), neuropsychiatric disorders including bipolar disorder (BIP), major 179 

depressive disorder (MDD), and schizophrenia (SCZ), and delayed structural brain 180 

development (GWAS from an unpublished longitudinal neuroimaging study)23 were calculated 181 

for each participant using multiple P value thresholds (from 0.005 to 0.5 at intervals of 0.005) 182 

and results were then averaged over all thresholds (Fig. 5). Overall, we observed increased 183 

genetic susceptibility to ADHD (P = 0.040) and delayed brain development (P = 1.48 × 10-6) 184 

among participants with brain aging pattern 2 after FDR correction, while no statistically 185 

significant differences were observed for ASD, AD, PD, BIP, MDD and SCZ (Fig. 5). Details 186 

regarding the genetic liability to other common diseases and phenotypes using enhanced PRS 187 

from UK Biobank are displayed in Supplementary Table 10 and 11. 188 

 189 

Genome Wide Association Studies (GWAS) identified significant genetic loci associated 190 

with accelerated brain aging. 191 

Having observed significant associations between brain aging patterns and cognitive 192 

performances / genetic liabilities to major neurodevelopmental disorders, we further 193 

investigated if there exist genetic variants contributing to individualized brain aging phenotype.  194 

We conducted genome-wide association studies (GWAS) using estimated total GMV at 60 195 

years old as the phenotype. This phenotype was derived by adding individual specific 196 

deviations to the population averaged total GMV, thus providing additional information 197 

compared to studies using only cross-sectional neuroimaging phenotypes. 198 

Six independent single nucleotide polymorphisms (SNPs) were identified at genome-wide 199 

significance level (P < 5 × 10-8) (Fig. 6) and were subsequently mapped to genes using NCBI, 200 

Ensembl and UCSC Genome Browser database (Supplementary Table 12). Among them, two 201 

SNPs (rs10835187 and rs779233904) were also found to be associated with multiple brain 202 
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imaging phenotypes in previous studies24. Compared to the GWAS using global gray matter 203 

volume as the phenotype, our GWAS revealed additional signal in chromosome 7 (rs7776725), 204 

which was mapped to the intron of FAM3C and encodes a secreted protein involved in 205 

pancreatic cancer25 and Alzheimer's disease26. This signal was further validated to be associated 206 

with specific brain aging mode by another study using a data-driven decomposition approach27. 207 

In addition, another significant loci (rs10835187, P = 1.11 ×  10-13) is an intergenic variant 208 

between gene LGR4-AS1 and LIN7C, and was reported to be associated with bone density and 209 

brain volume measurement24,28. LIN7C encodes the Lin-7C protein, which is involved in the 210 

localization and stabilization of ion channels in polarized cells, such as neurons and epithelial 211 

cells29,30. Previous study has revealed the association of both allelic and haplotypic variations 212 

in the LIN7C gene with ADHD31. 213 

 214 

Mirroring patterns between brain aging and brain development. 215 

Having observed significant associations between brain aging and genetic susceptibility to 216 

neurodevelopmental disorders, we are now interested in examining the mirroring patterns 217 

between brain aging and brain development in the whole population, and whether these 218 

mirroring patterns were more pronounced in those with accelerated brain aging. Adolescents 219 

in the IMAGEN cohort showed more rapid GMV decrease in the frontal and parietal lobes, 220 

especially the frontal pole, superior frontal gyrus, rostral middle frontal gyrus, inferior parietal 221 

lobule and superior parietal lobule, while those in their mid-to-late adulthood showed more 222 

accelerated GMV decrease in the temporal lobe, including medial orbitofrontal cortex, inferior 223 

parietal lobule and lateral occipital sulcus (Fig. 7a). The mirroring patterns (with slower GMV 224 

decrease during brain development and more rapid GMV decrease during brain aging) were 225 

particularly prominent in inferior temporal gyrus, caudal anterior cingulate cortex, fusiform 226 

cortex, middle temporal gyrus and rostral anterior cingulate cortex (Fig. 7b). The regional 227 

mirroring patterns became weaker when we focus on late brain aging at age 75 years old, 228 

especially in the frontal lobe and cingulate cortex. Further, mirroring patterns were represented 229 

more prominently in participants with brain aging pattern 2, where stronger mirroring between 230 
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brain aging and brain development was observed in frontotemporal area, including lateral 231 

occipital sulcus and lingual gyrus (Fig. 7c).  232 

 233 

Gene expression profiles were associated with delayed brain development and accelerated 234 

brain aging. 235 

The Allen Human Brain Atlas (AHBA) transcriptomic dataset (http://human.brain-map.org) 236 

were used to obtain the spatial correlation between whole-brain gene expression profiles and 237 

structural brain development/aging via partial least square (PLS) regression. The first PLS 238 

component explained 24.7% and 53.6% of the GMV change during brain development 239 

(estimated at age 15y, rspearman = 0.51, Ppermutation = 0.03) and brain aging (estimated at age 55y, 240 

rspearman = 0.49, Ppermutation < 0.001), respectively. Seventeen of the 45 genes mapped to GWAS 241 

significant SNP were found in AHBA, with LGR4 (rspearman = 0.56, Ppermutation < 0.001) 242 

significantly associated with delayed brain development and ESR1 (rspearman = 0.53, Ppermutation < 243 

0.001) and FAM3C (rspearman = -0.37, Ppermutation = 0.004) significantly associated with 244 

accelerated brain aging. BDNF-AS was positively associated with both delayed brain 245 

development and accelerated brain aging after spatial permutation test (Supplementary Table 246 

13 and 14).  247 

Next, we screened the genes based on their contributions and effect directions to the first 248 

PLS components in brain development and brain aging. 990 and 2293 genes were identified to 249 

be positively associated with brain development and negatively associated with brain aging at 250 

FDR corrected P value of 0.05, respectively, representing gene expressions associated with 251 

delayed brain development and accelerated brain aging. These genes were then tested for 252 

enrichment of GO biological processes and KEGG pathways. Genes associated with delayed 253 

brain development showed significant enrichment in “regulation of trans-synaptic signaling”, 254 

“forebrain development”, “signal release” and “cAMP signaling pathway” (Fig. 8a), and genes 255 

associated with accelerated brain aging showed significant enrichment in “macroautophagy”, 256 

“establishment of protein localization to organelle”, “histone modification”, and “pathways of 257 

neurodegeneration – multiple diseases” (Fig. 8b). Full results of the gene set enrichment 258 

analysis were provided in Supplementary Fig. 5. 259 
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 260 

Discussion 261 

In this study, we adopted a data-driven approach and revealed two distinct brain aging patterns 262 

using large-scale longitudinal neuroimaging data in mid-to-late adulthood. Compared to brain 263 

aging pattern 1, brain aging pattern 2 were characterized by a faster rate of GMV decrease, 264 

accelerated biological aging, cognitive decline, and genetic susceptibility to 265 

neurodevelopmental disorders. By integrating longitudinal neuroimaging data from adult and 266 

adolescent cohorts, we demonstrated the “last in, first out” mirroring patterns between 267 

structural brain aging and brain development, and showed that the mirroring pattern was 268 

manifested in the temporal lobe and among participants with accelerated brain aging. Further, 269 

genome-wide association studies identified significant genetic loci contributing to accelerated 270 

brain aging, while spatial correlation between whole-brain transcriptomic profiles and 271 

structural brain aging / development revealed important gene sets associated with both 272 

accelerated brain aging and delayed brain development.   273 

Brain aging is closely related to the onset and progression of neurodegenerative and 274 

neuropsychiatric disorders. Both neurodegenerative and neuropsychiatric disorders 275 

demonstrate strong inter-individual heterogeneity, which prevents the comprehensive 276 

understanding of their neuropathology and neurogenetic basis. Therefore, multidimensional 277 

investigation into disease subtyping and population clustering of structural brain aging are 278 

crucial in elucidating the sources of heterogeneity and neurophysiological basis related to the 279 

disease spectrum32. In the last decades, major developments in the subtyping of Alzheimer's 280 

disease, dementia and Parkinson's disease, have provided new perspectives regarding their 281 

clinical diagnosis, treatment, disease progression and prognostics32–34. While previous studies 282 

of brain aging mostly focused on the cross-sectional differences between cases and healthy 283 

controls, we here delineated the structural brain aging patterns among healthy participants 284 

using a novel data-driven approach that captured both cross-sectional and longitudinal 285 

trajectories of the whole-brain gray matter volume35,36. The two brain aging patterns identified 286 

using the above approach showed large differences in the rate of change in medial 287 

occipitotemporal gyrus, which is involved in vision, word processing and scene recognition37–288 
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39. Significant reduction of the gray matter volume and abnormal changes of the functional 289 

connectivity in this region were found in subjects with mild cognitive impairment (MCI) and 290 

AD, respectively40,41. Consistent with previous research, participants with accelerated brain 291 

aging pattern also exhibited accelerated biological aging and poor levels of cognitive 292 

performance24. Our results support the establishment of a network connecting brain aging 293 

patterns with biological aging profiles involving multi-organ systems throughout the body42. 294 

Since structural brain patterns might manifest and diverge decades before cognitive decline43, 295 

subtyping of brain aging patterns could aid in the early prediction of cognitive decline and 296 

severe neurodegenerative and neuropsychiatric disorders.  297 

Mirroring pattern between brain development and brain aging has long been hypothesized 298 

by postulating that phylogenetically newer and ontogenetically less precocious brain structures 299 

degenerate relatively early13. Early studies have reported a positive correlation between age-300 

related differences of cortical volumes and precedence of myelination of intracortical fibers44. 301 

Here, we compared the annual volume change of the whole-brain gray matter during brain 302 

development and early / late stages of brain aging, and found that mirroring patterns are 303 

predominantly localized to the lateral / medial temporal cortex and the cingulate cortex, which 304 

is consistent with previous findings12. These cortical regions characterized by “last-in, first-out” 305 

mirroring patterns showed increased vulnerability to the several neuropsychiatric disorders. 306 

For example, regional deficits in the superior temporal gyrus and medial temporal lobe were 307 

observed in schizophrenia45, along with morphological abnormalities in the medial 308 

occipitotemporal gyrus46. Children diagnosed with ADHD had lower brain surface area in the 309 

frontal, cingulate, and temporal regions47. Douaud et al.13 revealed a population transmodal 310 

network with lifespan trajectories characterized by the mirroring pattern of development and 311 

aging. We investigated the genetic susceptibility to individual-level mirroring patterns based 312 

on the lasting impact of neurodevelopmental genetic factors on brain15, demonstrating that 313 

those with more rapidly brain aging patterns have a higher risk of delayed development. 314 

Identifying genes contributing to structural brain aging remains a critical step in 315 

understanding the molecular changes and biological mechanisms that govern age-related 316 

cognitive decline. Several genetic loci have been reported to be associated with brain aging 317 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted January 10, 2024. ; https://doi.org/10.1101/2024.01.09.24301030doi: medRxiv preprint 

https://doi.org/10.1101/2024.01.09.24301030
http://creativecommons.org/licenses/by-nc-nd/4.0/


12 
 

modes and neurocognitive decline, many of which demonstrated global overlap with 318 

neuropsychiatric disorders and their related risk factors27,48,49. Here, we focused on the 319 

individual brain aging phenotype by estimating individual deviation from the population 320 

averaged total GMV and conducted genome-wide association analysis with this phenotype. 321 

Our approach identified 6 risk SNPs associated with accelerated brain aging, most of which 322 

could be further validated by previous studies using population averaged brain aging 323 

phenotypes. However, our approach revealed additional genetic signals and demonstrated 324 

genetic architecture underlying brain aging patterns overlap with bone density28,50. In addition, 325 

molecular profiling of the aging brain has been thoroughly investigated among patients with 326 

neurogenerative diseases, but rarely conducted to shed light on the mirroring patterns among 327 

healthy participants. Analysis of the spatial correlation between gene expression profiles and 328 

structural brain development / aging further identified genes contributing to delayed brain 329 

development and accelerated brain aging. Specifically, expression of gene BDNF-AS was 330 

significantly associated with both processes. BDNF-AS is an antisense RNA gene and plays a 331 

role in the pathoetiology of non-neoplastic conditions mainly through the mediation of BDNF51. 332 

LGR4 (associated with delayed brain development) and FAM3C (associated with accelerated 333 

brain aging) identified in the spatial genetic association analysis also validated our findings in 334 

the GWAS. 335 

There are several limitations in the current study that need to be addressed in future research. 336 

Firstly, the UK Biobank cohort, which we leveraged to identify population clustering of brain 337 

aging patterns, had a limited number of repeated structural MRI scans. Therefore, it remains 338 

challenging to obtain robust estimation of the longitudinal whole-brain GMV trajectory at the 339 

individual level. As a robustness check, we have calculated both intra-class correlation and 340 

variance of both random intercept and age slope to ensure appropriateness of the mixed effect 341 

models. Secondly, although aging is driven by numerous hallmarks, we have only investigated 342 

the association between brain aging patterns and biological aging in terms of telomere length 343 

and blood biochemical markers due to limitations of data access. Other dimensions of aging 344 

hallmarks and their relationship with structural brain aging need to be investigated in the future. 345 

Thirdly, our genomic analyses were restricted to "white British" participants of European 346 
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ancestry. The diversity of genomic analyses will continue to improve as the sample sizes of 347 

GWAS of non-European ancestry increase. Further, although the gene expression maps from 348 

Allen Human Brain Atlas enabled us to gain insights into the spatial coupling between gene 349 

expression profiles and mirroring patterns of the brain, the strong inter-individual variation of 350 

whole-brain gene expression levels and large temporal span of the human brain samples may 351 

lead to the inaccurate correspondence in the observed associations. Finally, we focused on 352 

structural MRIs in deriving brain aging patterns in this analysis, future investigations could 353 

consider other brain imaging modalities from a multi-dimensional perspective. Nevertheless, 354 

our study represents a novel attempt for population clustering of structural brain aging and 355 

validated the mirroring pattern hypothesis by leveraging large-scale adolescent and adult 356 

cohorts.  357 
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Methods 358 

Participants T1-weighted brain MRI images were obtained from 37,013 individuals aged 44-359 

82 years old from UK Biobank (36,914 participants at baseline visit in 2014+, 4,007 360 

participants at the first follow-up visit in 2019+). All participants provided written informed 361 

consent, and ethical approval was granted by the North West Multi-Center Ethics committee 362 

(https://www.ukbiobank.ac.uk/learn-more-about-uk-biobank/about-us/ethics). Participants 363 

were excluded if they were diagnosed with severe psychiatric disorders or neurological 364 

diseases using ICD-10 primary and secondary diagnostic codes or from self-reported medical 365 

conditions at UK Biobank assessment center (see Supplementary Tables 1 and 2). Data were 366 

obtained under application number 19542. 1,529 adolescents with structural MRI images were 367 

drawn from the longitudinal project IMAGEN (1,463 at age 14, 1,377 at age 19 and 1,148 at 368 

age 23), of which the average number of MRI scans was 2.61 per adolescent. The lMAGEN 369 

study was approved by local ethics research committees at each research site and informed 370 

consent was given by all participants and a parent/guardian of each participant. Workflow for 371 

participant selection is illustrated in Supplementary Fig. 1.  372 

 373 

MRI acquisition Quality-controlled T1-weighted neuroimaging data from UK Biobank and 374 

IMAGEN were processed using FreeSurfer v6.0. Detailed imaging processing pipeline can be 375 

found online for UK Biobank (https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/brain_mri.pdf) 376 

and IMAGEN (https://github.com/imagen2/imagen_mri). Briefly, cortical gray matter volume 377 

(GMV) from 33 regions in each hemisphere were generated using Desikan–Killiany Atlas52, 378 

and total gray matter volume (TGMV), intracranial volume (ICV) and subcortical volume were 379 

derived from ASEG atlas53 (See Supplementary Table 3). Regional volume was averaged 380 

across left and right hemispheres. To avoid deficient segmentation or parcellation, participants 381 

with TGMV, ICV or regional GMV beyond 4 standard deviations from the sample mean were 382 

considered as outliers and removed from the following analyses.  383 

 384 

Identification of longitudinal brain aging patterns Whole-brain GMV trajectory was 385 

estimated for each participant in 40 brain regions of interest (ROIs) (33 cortical regions and 7 386 
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subcortical regions), using mixed effect regression model with fixed linear and quadratic age 387 

effects, random intercept and random age slope. Covariates include sex, assessment center, 388 

handedness, ethnic, and ICV. Models with random intercept and with both random intercept 389 

and random age slope were compared using AIC, BIC and evaluation of intra-class correlation 390 

(ICC). Results suggested that random age slope model should be chosen for almost all ROIs 391 

(Supplementary Table 4). Deviation of regional GMV from the population average was 392 

calculated for each participant at age 60 years and dimension reduction was conducted via 393 

Principal Component Analysis. The first 15 principal components explaining approximately 394 

70% of the total variations of regional GMV deviation were used in multivariate k-means 395 

clustering. Optimal number of clusters was chosen using both elbow diagram and contour 396 

coefficient (Supplementary Fig. 2). Rates of volumetric change for total gray matter and each 397 

ROI were estimated using generalized additive mixed effect models (GAMM) with fixed cubic 398 

splines of age, random intercept and random age slope, which incorporates both cross-sectional 399 

between-subject variation and longitudinal within-subject variation from 40,921 observations 400 

and 37,013 participants. Covariates include sex, assessment center, handedness, ethnic, and 401 

ICV. 402 

 403 

Association between brain aging patterns and biological aging, cognitive decline and 404 

genetic susceptibilities of neuropsychiatric disorders Individuals with Z-standardized 405 

leucocyte telomere length54 and blood biochemistry (which were used to calculate PhenoAge19 406 

that characterizes biological aging) outside 4 standard deviations from the sample mean were 407 

excluded for better quality control. A total of 11 cognitive tests performed on the touchscreen 408 

questionnaire were included in the analysis. More information about the cognitive tests is 409 

provided in Supplementary Information. Comparisons of biological aging (leucocyte telomere 410 

length, PhenoAge) and cognitive function were conducted among participants with different 411 

brain aging patterns using both unadjusted and adjusted multivariate regression models with 412 

Bonferroni / FDR correction. Polygenic Risk Scores (PRS) were calculated for autism spectrum 413 

disorder (ASD), attention deficit hyperactivity disorder (ADHD), Alzheimer’s disease (AD), 414 

Parkinson’s Disease (PD), bipolar disorder (BIP), major depressive disorder (MDD), 415 
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schizophrenia (SCZ) and delayed brain development using GWAS summary statistics23 at 416 

multiple P value thresholds (from 0.005 to 0.5 at intervals of 0.005, and 1), with higher P value 417 

thresholds incorporating larger number of independent SNPs. After quality control of genotype 418 

and imaging data, PRSs were generated for 25,861 participants on UK Biobank genotyping 419 

data. SNPs were pruned and clumped with a cutoff r2 ≥ 0.1 within a 250 kb window. The 420 

primary GWAS datasets used for calculating the PRS were listed in Supplementary Table 9. 421 

All calculations were conducted using PRSice v2.3.555. Enhanced PRS from UK Biobank 422 

Genomics for multiple diseases were also tested. Detailed instructions for calculating enhanced 423 

PRS in UK Biobank can be found in 56. Comparisons of neuropsychiatric disorders were 424 

conducted among participants with different brain aging patterns using t test with FDR 425 

correction. All statistical tests were two-sided. 426 

 427 

Genome Wide Association Study to identify SNPs associated with brain aging patterns 428 

We performed Genome-wide association studies (GWAS) on individual deviations of total 429 

GMV relative to the population average at 60 years using PLINK 2.057. Variants with missing 430 

call rates exceeding 5%, minor allele frequency below 0.5% and imputation INFO score less 431 

than 0.8 were filtered out after the genotyping quality control for UK Biobank Imputation V3 432 

dataset. Among the 337,138 unrelated "white British" participants of European ancestry 433 

included in our study, 25,861 with recent UK ancestry and accepted genotyping and imaging 434 

quality control were included in the GWAS. The analyses were further adjusted for age, age2, 435 

sex, assessment center, handedness, ethnic, ICV, and the first 10 genetic principal components. 436 

Genome-wide significant SNPs (P < 5× 10-8) obtained from the GWAS were clumped by 437 

linkage disequilibrium (LD) (r2 < 0.1 within a 250 kb window) using UKB release2b White 438 

British as the reference panel. We subsequently performed gene-based annotation in FUMA58 439 

using genome-wide significant SNPs and SNPs in close LD (r2  ≥ 0.1) using Annotate Variation 440 

(ANNOVAR) on Ensemble v102 genes59. 441 

 442 

Mirroring patterns between brain aging and brain development To validate the “last in, 443 

first out” mirroring hypothesis, we evaluated the structural association between brain 444 
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development and brain aging. Longitudinal neuroimaging data from 1,529 adolescents in the 445 

IMGAEN cohort and 3,908 mid-to-late adulthood in the UK Biobank cohort were analyzed. 446 

Annual percentage volume change (APC) for each ROI was calculated among individuals with 447 

at least 2 structural MRI scans by subtracting the baseline GMV from follow-up GMV and 448 

dividing by the number of years between baseline and follow-up visits. Region-specific APC 449 

was regressed on age using smoothing spline with cross validated degree of freedom. Estimated 450 

APC for each ROI was obtained at age 15y for adolescents and at age 55y (early aging) and 451 

75y (late aging) for participants in UK Biobank. Region-specific APC during adolescence (or 452 

mid-to-late adulthood) was then standardized across all cortical regions to create the brain 453 

development (or aging) map. Finally, the brain development map and brain aging map were 454 

compared to assess the mirroring pattern for each ROI in the overall population and across 455 

different aging subgroups. 456 

 457 

Gene Expression Analysis The Allen Human Brain Atlas (AHBA) dataset 458 

(http://human.brain-map.org), which comprises gene expression measurements in six 459 

postmortem adults (age 24–57y) across 83 parcellated brain regions60,61, were used to identify 460 

gene expressions significantly associated with structural brain development and aging. The 461 

expression profiles of 15,633 genes were averaged across donors to form a 83 × 15,633 462 

transcriptional matrix and partial least squares (PLS) regression was adopted for analyzing the 463 

association between regional change rate of gray matter volume and gene expression profiles. 464 

Specifically, estimated regional APC at 15 (obtained from IMAGEN cohort) and 55 years old 465 

(obtained from UK Biobank) were regressed on the high-dimensional gene expression profiles 466 

upon regularization. Associations between the first PLS component and estimated APC during 467 

brain development and brain aging were tested by spatial permutation analysis (10,000 times)62. 468 

Additionally, gene expression profiles of genes mapped to GWAS significant SNP were 469 

extracted from AHBA. The association between gene expression profiles of mapped genes and 470 

estimated APC during brain development and aging was also tested by spatial permutation 471 

analysis. Statistical significance of each gene’s contribution to the first PLS component was 472 

tested with standard error calculated using bootstrap63–65, and genes significantly associated 473 
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with delayed brain development and accelerated brain aging were selected. Enrichment of 474 

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways and gene ontology (GO) of 475 

biological processes for these selected genes were analyzed using R package clusterProfiler66. 476 

All statistical significances were corrected for multiple testing using FDR. 477 

 478 

Data availability 479 

All the UK Biobank data used in the study are available at https://www.ukbiobank.ac.uk. The IMAGEN 480 
project data are available at https://imagen-project.org. GWAS summary statistics used to calculate the 481 
PRS are available in the Supplementary Tables 9. Human gene expression data are available in the Allen 482 
Human Brain Atlas dataset: https://human.brainmap.org. 483 
 484 

Code availability 485 

R version 4.2.0 was used to perform statistical analyses. FreeSurfer version 6.0 was used to process 486 
neuroimaging data. lme4 1.1 in R version 4.2.0 was used to perform longitudinal data analyses. PRSice 487 
version 2.3.5 (https://choishingwan.github.io/PRSice/) was used to calculate the PRS. PLINK 2.0 488 
(www.cog-genomics.org/plink/2.0/) and FUMA version 1.5.6 (https://fuma.ctglab.nl/) were used to 489 
perform genome-wide association analysis, and ANNOVAR was used to perform gene-based annotation. 490 
AHBA microarray expression data were processed using abagen toolbox version 0.1.3 491 
(https://doi.org/10.5281/zenodo.5129257). The rotate_parcellation code used to perform a spatial 492 
permutation test of a parcellated cortical map: https://github.com/frantisekvasa/rotate_parcellation. Code 493 
for PLS analysis and bootstrapping to estimate PLS weights are available at 494 
https://github.com/KirstieJane/NSPN_WhitakerVertes_PNAS2016/tree/master/SCRIPTS. clusterProfiler 495 
4.6 in R version 4.2.0 was used to analyze gene-set enrichment.  496 
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Fig. 1 Overview of the study workflow. a, Population cohorts (UK Biobank and IMAGEN) and data sources 
(brain imaging, biological aging biomarkers, cognitive functions, genomic data) involved in this study. b, 
Brain aging patterns were identified using longitudinal trajectories of the whole brain GMV, and associations 
between brain aging patterns and other measurements (biological aging, cognitive functions and PRS of major 
neuropsychiatric disorders) were investigated. c, Mirroring patterns between brain aging and brain 
development was investigated using z-transformed brain volumetric change map and gene expression analysis. 
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Fig. 2 Global (a) and selected regional (b, c) cortical gray matter volume rate of change among 
participants with brain aging patterns 1 (red) and 2 (blue). Rates of volumetric change for total gray matter 
and each ROI were estimated using GAMM, which incorporates both cross-sectional between-subject 
variation and longitudinal within-subject variation from 40,921 observations and 37,013 participants. 
Covariates include sex, assessment center, handedness, ethnic, and ICV. Shaded areas around the fit line 
denotes 95% CI. 
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Fig. 3 Distributions of biological aging biomarkers (leucocyte telomere length (LTL) and PhenoAge) 
among participants with brain aging patterns 1 and 2. Boxes represent the interquartile range (IQR), lines 
within the boxes indicate the median, and whiskers indicate potential outliers (values outside of the 1.5 IQR 
range). Two-sided P values were obtained by comparing LTL or PhenoAge19 between brain aging patterns 
using unadjusted multivariate linear regression models. Results remained significant when adjusting for sex, 
age, ethnic, BMI, smoking status and alcohol intake frequency in the LTL model20 and sex, age, ethnic, BMI, 
smoking status, alcohol frequency and education years in PhenoAge model. Stars indicate statistical 
significance after Bonferroni correction. ****: p <= 0.0001, *: p <= 0.05.  
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Fig. 4 Effect size (Cohen’s D or odds ratio) for comparing the cognitive functions between participants 
with brain aging patterns 1 and 2. Results were adjusted such that negative Cohen’s D and Odds Ratio less 
than 1 indicate worse cognitive performances in brain aging pattern 2 compared to pattern 1. Width of the 
lines extending from the center point represent 95% confidence interval. Two-sided P values were obtained 
using both unadjusted and adjusted (for sex, age, and TDI, education and income) multivariate regression 
models. Stars indicate statistical significance after FDR correction for 11 comparisons. ****: p <= 0.0001, 
***: p <= 0.001, **: p <= 0.01, ns: p > 0.05. 
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Fig. 5 Participants with accelerated brain aging (brain aging pattern 2) had significantly increased 
genetic liability to ADHD and delayed brain development. Polygenic risk score (PRS) for ADHD, ASD, 
AD, PD, BIP, MDD, SCZ and delayed brain development (unpublished GWAS) were calculated at different 
p-value thresholds from 0.005 to 0.5 at an interval of 0.005. Vertical axis represents negative logarithm of P 
values comparing PRS in brain aging pattern 2 relative to pattern 1. Red horizontal dashed line indicates FDR 
corrected P value of 0.05. Colors represent traits and dots within the same color represent different p value 
thresholds. The trigonometric symbol indicates the average PRS across all p-value thresholds for the same 
trait. 
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Fig. 6 Genome-wide association study (GWAS) identified 6 independent SNPs associated with 
accelerated brain aging. Total GMV at 60 years old was estimated for each participant using mixed effect 
models allowing for individualized baseline GMV and GMV change rate, and was used as the phenotype in 
the GWAS. a, At genome-wide significance level (P=5e-8, red dashed line), rs10835187 and rs7776725 loci 
were identified to be associated with accelerated brain aging. b, Quantile–quantile plot showed that the most 
significant P values deviate from the null, suggesting that results are not unduly inflated. 
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Fig. 7 The “last in, first out” mirroring patterns between brain development and brain aging. a, The 
annual percentage volume change (APC) was calculated for each ROI and standardized across the whole brain 
in adolescents (IMAGEN, left) and mid-to-late aged adults (UK Biobank, right), respectively. For adolescents, 
ROIs of in red indicate delayed structural brain development, while for mid-to-late aged adults, ROIs in blue 
indicate accelerated structural brain aging. b, Estimated APC in brain development versus early aging (55 
years old, left), and versus late aging (75 years old, right). ROIs in red indicate faster GMV decrease during 
brain aging and slower GMV decrease during brain development, i.e., stronger mirroring effects between brain 
development and brain aging. c, Mirroring patterns between brain development and brain aging were more 
manifested in participants with accelerated aging (brain aging pattern 2).  
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Fig. 8 Functional enrichment of gene transcripts significantly associated with delayed brain 
development and accelerated brain aging. a, 990 genes were spatially correlated with the first PLS 
component of delayed structural brain development, and were enriched for trans-synaptic signal regulation, 
forebrain development, signal release and cAMP signaling pathway. b, 2,293 genes were spatially correlated 
the first PLS component of accelerated structural brain aging, and were enriched for macroautophagy, 
pathways of neurodegeneration, establishment of protein localization to organelle and histone modification. 
Size of the circle represents number of genes in each term and P values were corrected using FDR for multiple 
comparisons. 
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