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Abstract

Symptom propagation occurs when the symptom set an individual experiences is correlated with the
symptom set of the individual who infected them. Symptom propagation may dramatically affect
epidemiological outcomes, potentially causing clusters of severe disease. Conversely, it could result in
chains of mild infection, generating widespread immunity with minimal cost to public health.

Despite accumulating evidence that symptom propagation occurs for many respiratory pathogens,
the underlying mechanisms are not well understood. Here we conducted a scoping literature review
for 14 respiratory pathogens to ascertain the extent of evidence for symptom propagation by two
mechanisms: dose-severity relationships and route-severity relationships.

We identify considerable heterogeneity between pathogens in the relative importance of the two mech-
anisms, highlighting the importance of pathogen-specific investigations. For almost all pathogens,
including influenza and SARS-CoV-2, we found support for at least one of the two mechanisms. For
some pathogens, including influenza, we found convincing evidence that both mechanisms contribute
to symptom propagation.

Furthermore, infectious disease models traditionally do not include symptom propagation. We sum-
marise the present state of modelling advancements to address the methodological gap. We then
investigate a simplified disease outbreak scenario, finding that under strong symptom propagation,
quarantining mildly infected individuals can have negative epidemiological implications.

1 Introduction 1

Respiratory pathogens can inflict a considerable burden on public health; during the COVID-19 pan- 2

demic in 2020, 15.7% of total deaths in the UK were attributable to respiratory infections [1]. Though 3

capable of causing substantial mortality, infection by respiratory pathogens can often result in dif- 4

fering severity amongst the population. The factors underlying symptom severity are yet to be fully 5

understood. 6
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One facet of symptom severity is the concept of symptom propagation. In broad terms, symptom 7

propagation is when the symptom set an individual experiences depends on the symptom set of the 8

individual who infected them. One exemplar pathogen is Yersinia pestis, the bacterial causative agent 9

of plague. It is well-documented that the symptoms experienced by an individual depend on the 10

route of transmission via which they acquired infection, and thus on the severity of the individual 11

who infected them. Specifically, for those who develop the most acute form, pneumonic plague, their 12

onward air-borne infections lead to secondary cases also developing pneumonic plague [2]; conversely, 13

those with bubonic plague are unable to transmit disease through the air-borne route [2]. There 14

is growing evidence that a similar relationship may exist for other well-studied pathogens, such as 15

SARS-CoV-2, either through a relationship between aerosol transmission and severity [3] or due to 16

the relationship between infectious dose and severity [4]. The COVID-19 pandemic has resulted 17

in a relative glut of literature relevant to symptom propagation [5]. These studies have led to a 18

greater understanding of the underlying mechanisms of respiratory pathogens, allowing for questions 19

surrounding symptom propagation to be answered with greater certainty and motivating more generic 20

consideration of symptom propagation as an important epidemiological concept. 21

We regard symptom propagation to be of notable importance to public health. It is conceivable for 22

symptom propagation to result in extreme epidemiological outcomes. On the one hand, large-scale 23

clusters of severe infections may be generated that would be detrimental to those most at risk. On the 24

other hand, propagation of symptom severity could lead to chains of mild or asymptomatic infections 25

that generate widespread immunity with minimal cost to public health. There are also circumstances 26

where symptom propagation may be harnessed to amplify the impact of public health measures, 27

resulting in a reduction in symptom severity throughout the population and a lessened burden on 28

public health resources. 29

Despite these potential impacts, symptom propagation is biologically and mathematically understud- 30

ied. At the time of writing, prior research in related specialised research areas has been restricted 31

to reviews on the aerosol transmission route [3, 6], dose-response relationships [4] and the effect of 32

non-pharmaceutical interventions reducing disease severity [7]. The number of pathogens typically 33

examined in these previous studies has also been limited, primarily focusing on influenza and most 34

recently SARS-CoV-2 (as a consequence of the COVID-19 pandemic), with other pathogens of public 35

health concern largely overlooked. 36

Detailed quantitative studies can determine the contexts where symptom propagation can have an 37

amplifying or mitigating role in disease outbreaks. Compartmental models are a benchmark modelling 38

paradigm in the mathematical modelling of infectious diseases. Based on a “standard” SIR model, 39

with states representing susceptible, infectious and recovered disease states, there are extensions to 40

incorporate additional structures that are commonplace (e.g. latent states, age, spatial variation) [8]. 41

Symptom propagation is an understudied model extension; hence there is limited understand of when 42

the propagation of symptom severity can lead to different courses of public health action being advised. 43

Through this review, we consolidate and synthesise evidence for the propagation of symptom severity 44

for a broad range of respiratory pathogens of public health concern. We additionally consider how 45

symptom propagation has previously been considered within mathematical models, and supplement 46

this with a case study to show the importance of symptom propagation on evaluations of intervention 47

strategies. 48

Our review is structured as follows. Section 2 contains preliminaries and definitions. Section 3 49

outlines our scoping review methodology. Section 4 describes our appraisal of the evidence for the 50

propagation of symptom severity. We detail four pathogens in the main manuscript, influenza, SARS- 51

CoV-2, measles and Yersinia pestis, with findings for ten more pathogens reported in the Supporting 52
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Information. Within Section 5, we then delve into epidemiological modelling and model frameworks 53

that explicitly incorporate symptom propagation and present a case study where particular targeting 54

of public health interventions can result in worsened epidemiological outcomes. To conclude, Section 6 55

summarises the scientific contribution of our review. 56

2 Background 57

Here we provide the basic definitions that will be used throughout this review, such that there is a 58

consistent and robust definition of each term. We consider ‘symptom propagation’ (Section 2.1), ‘severe 59

disease’ (Section 2.2) and the mechanisms of symptom propagation (Section 2.3), before providing a 60

general glossary of other common terms (Section 2.4). 61

2.1 Defining symptom propagation 62

We define symptom propagation to be when the symptom set of an infected individual depends on the 63

symptom set of the individual from which they acquired infection. We only consider symptom prop- 64

agation to occur through epidemiological mechanisms and explicitly exclude pathogen heterogeneity 65

through evolution. Although this idea can be applied to symptom sets in general, we have chosen to 66

look specifically at symptom severity. Our reasoning for this choice is that symptom severity is more 67

easily generalised across pathogens and more directly relevant to public health and policy decisions. 68

2.2 Defining ‘severe’ disease 69

The literature does not currently provide a consistent scheme for defining disease severity, and vari- 70

ations are seen across studies investigating the same pathogen. There is even greater heterogeneity 71

across pathogens, often motivated by their specific clinical presentations. For example, within infec- 72

tious disease modelling for COVID-19, infected individuals are typically classed as either asymptomatic 73

or symptomatic, where symptomatic includes both those with minimal symptoms that we would usu- 74

ally class as ‘mild’ (e.g. sore throat or runny nose) and those with severe, or even fatal, symptoms [9]. 75

In contrast, in the case of plague, individuals are typically classed as having either bubonic or pneu- 76

monic plague, where both categorisations are associated with high mortality (although pneumonic 77

plague is notably more fatal) [2]. In many cases, severity is a continuum, with the separation between 78

mild and severe somewhat arbitrary. 79

Here, we have generally chosen to identify ‘mild’ disease with upper respiratory tract (URT) symptoms 80

such as sore throat or a blocked/runny nose. Such symptoms are generally associated with the ‘common 81

cold’ [10]. In contrast, we consider ‘severe’ disease to be associated with lower respiratory tract (LRT) 82

symptoms such as difficulty breathing or severe cough. Whilst these symptoms align with our personal 83

view of how to categorise ‘severe’ disease, we also chose this classification as LRT infection is often 84

used as a marker for severe disease within hospitals [11, 12]. 85

Furthermore, we acknowledge that symptom severity is a spectrum and symptom propagation is a set 86

of mechanisms that determine correlations between the position on the severity spectrum of an infected 87

individual with the individual from whom they contracted disease. Our contention, therefore, is that 88

we would expect to see associations at all levels of symptom severity, from comparing asymptomatic 89

to symptomatic individuals to comparing fatal and non-fatal hospitalised cases. Consequently, we still 90

discuss studies with a large range of severity classifications, including more systemic markers of severe 91

disease, such as fever. 92
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(a) (b)

Fig. 1. Cycle diagrams depicting two symptom propagation mechanisms: dose-severity
relationships and route-severity relationships. (a) A dose-severity relationship arises when (i)
an individual’s disease severity determines their pathogen load; (ii) pathogen load affects the
infectious dose with which they infect others; (iii) this infectious dose then determines the disease
severity in the secondary case. (b) A route-severity relationship arises when (i) an individual’s
disease severity determines the transmission route through which they infect others; (ii) the
transmission route then determines the site of infection in the secondary case; (iii) the site of
infection then affects their disease severity.

2.3 Symptom propagation mechanisms 93

We distinguish between two mechanisms through which symptom propagation can occur (Fig. 1): 94

dose-severity and route-severity relationships. 95

Dose-severity relationships 96

A dose-severity relationship exists when pathogen load and symptom severity are positively correlated. 97

Individuals with more severe disease tend to have a higher pathogen load [13]. A higher pathogen load 98

leads to more pathogen being excreted such that those they infect tend to receive a larger infectious 99

dose, increasing the probability of more severe disease outcomes [4]. 100

In assessing whether a dose-severity mechanism is apparent for specific pathogens, measuring the 101

pathogen load is an important step. Pathogen load is often measured directly through plaque assay 102

or quantitative PCR (qPCR) [14, 15]. Another established way of capturing pathogen load is through 103

the Cycle threshold (Ct) value, based on real-time PCR (polymerase chain reaction) assays [16]. Ct 104

levels are inversely proportional to the amount of target nucleic acid in the sample and hence pathogen 105

load. Therefore, we collectively considered studies looking either directly at pathogen load or at Ct 106

values. 107

Route-severity relationships 108

Respiratory pathogens can generally be transmitted through multiple transmission routes. The num- 109

ber of categories of transmission route and their associated terms vary in the literature; however, 110

the following three forms are most common [6, 17, 18]: (i) Aerosol transmission - infection via the 111

inhalation of small droplets (< 5µm); (ii) Large droplet transmission - infection via the inhalation 112

of large droplets (≥ 5µm); (iii) Direct contact transmission - infection via contact with an infected 113

individual or object (fomite). 114
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Given we are predominantly interested in transmission routes with the potential for pathogens to enter 115

the LRT, we often group the above three transmission routes into aerosol transmission (capable of 116

penetrating the LRT) and close contact transmission (large droplet and direct contact, only capable 117

of infecting the URT). 118

Those with severe disease (LRT infection) often produce a larger volume of aerosols and/or have 119

increased capability to produce aerosols compared to those with mild disease (URT infection), who 120

are instead more likely to transmit disease via close contact transmission [19–21]. Infection via aerosols 121

is then associated with more severe symptoms, due to aerosols having the ability to reach the LRT [22, 122

23]. 123

2.4 Glossary 124

Aerosols. Small droplets (< 5µm) that can be inhaled and reach the lower respiratory tract. 125

Close contact transmission. Transmission that requires individuals to be within a short distance of 126

each other (i.e. large droplet or direct contact transmission). 127

Direct contact transmission. Infection direct contact with particles that are picked up onto an indi- 128

vidual’s skin after direct contact with an infected individual or surface (fomite). 129

Case fatality rate (CFR). The proportion of reported cases that are fatal. 130

Cycle threshold (Ct) value. For real-time PCR (polymerase chain reaction) assays, a positive reaction 131

is detected by accumulation of a fluorescent signal. The Ct value is defined as the number of cycles 132

required for the fluorescent signal to cross the threshold (i.e. exceeds background level). Ct levels are 133

inversely proportional to the amount of target nucleic acid in the sample (the lower the Ct level, the 134

greater the amount of target nucleic acid in the sample). Due to this inverse relationship, low Ct value 135

corresponds to a high pathogen load and can be used as a proxy [24–26]. 136

Exhaled breath condensate (EBC). Cooled and condensed exhaled air, providing a non-invasive method 137

of sampling airway lining fluid. 138

Infectious dose. The number of pathogens an individual is infected with, typically measured by colony 139

forming units (CFU) and often stated with respect to the 50% tissue culture infectious dose (TCID50, 140

the dilution of pathogen required to infect 50% of a cell culture). 141

Intranasal inoculation. Intentional infection of a human volunteer or animal via the nasal cavity, 142

usually either through drops or sprays. 143

Large droplet. Droplets that are ≥ 5µm which can be inhaled but are generally too large to reach the 144

LRT. 145

Lower respiratory tract (LRT). Consists of the larynx, trachea, bronchi and the lungs. 146

Respiratory pathogen. Pathogens which can initiate infection in the respiratory tract. 147

Symptom propagation. When the symptom set of an infected individual depends on the symptom set 148

of the individual from which they acquired infection. We only consider symptom propagation to occur 149

through epidemiological mechanisms and explicitly exclude pathogen heterogeneity through evolution. 150

Upper respiratory tract (URT). Consists of the nose, nasal cavity and the pharynx. 151
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3 Search methodology 152

We performed a scoping literature review using Google Scholar and PubMed published up until August 153

2023. We included all peer-reviewed studies that were deemed relevant to symptom propagation; we 154

did not consider pre-prints. Within the peer-reviewed literature we did not exclude any study types. 155

We considered a total of 14 pathogens (listed alphabetically): Adenovirus, Bordetella pertussis, Group 156

A streptococci, influenza, measles, MERS-CoV, Mycobacterium tuberculosis, RSV, Rhinovirus, SARS- 157

CoV-1, SARS-CoV-2, Variola virus (Smallpox), Varicella zoster virus (chickenpox), Yersinia pestis. 158

For each pathogen, we performed a number of separate searches focused on specific parts of the 159

symptom propagation mechanisms. 160

For dose-response relationships, our search terms were: 161

• (pathogen name OR disease name) AND (“viral” OR “bacterial”) AND (“load” OR “shedding”) 162

AND (“severity” OR “symptoms”) 163

• (pathogen name OR disease name) AND (“viral” OR “bacterial”) AND “load” AND (“shedding” 164

OR “aerosol production”) 165

• (pathogen name OR disease name) AND (“inoculant dose” OR “intensity of exposure”) AND 166

(“severity” OR “symptoms”) 167

For route-severity relationships, we initially performed a search to determine the transmission routes 168

and possible sites of initial infection for the pathogen (i.e. whether it could initiate infection in both 169

the URT and LRT). Given evidence for both aerosol transmission and transmission via at least one 170

other route, and evidence for initial infection occurring in both the URT and LRT, we performed 171

searches with the following terms: 172

• (pathogen name OR disease name) AND (“aerosol production” OR “exhaled breath”) AND 173

(“severity” OR “symptoms” OR “LRT”) 174

• (pathogen name OR disease name) AND (“aerosol” OR “LRT”) AND (“infection” OR “inocu- 175

lation”) AND (“severity” OR “symptoms”) 176

To look for additional relevant studies, we carried out a manual search of all studies cited within these 177

studies. Overall, we included 225 studies in the review. 178

4 Biological evidence 179

In this section, we first provide a pathogen-agnostic overview of the evidence base related to infectious 180

particle size and its implications on the viability of symptom propagation mechanisms relationships 181

(Section 4.1). Our scoping literature review for 14 respiratory pathogens resulted in us observing 182

several general relationships, independent of the pathogen, which we describe in Section 4.2. 183

We then demonstrate the breadth of our pathogen-specific findings, and summarise the evidence 184

of symptom propagation for four key pathogens: influenza virus (Section 4.3), measles virus (Sec- 185

tion 4.4), SARS-CoV-2 (Section 4.5) and Yersinia pestis (Section 4.6). Our summaries of evidence 186

of symptom propagation for each pathogen encompass both experimental studies (human volunteer 187

challenge studies and animal model studies), hospital- and community-based studies and modelling 188

studies (e.g. within-host immune models). We adopt a formulaic structure of: (i) introduction to the 189

public health burden of the pathogen and discussion of general evidence of any phenomenon that could 190

be explained by symptom propagation (e.g. clusters of severe cases); (ii) Dose-response relationship 191

- evidence for/against a relationship between: symptom severity and pathogen load (Fig. 1(a)(i)); 192
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pathogen load and the infectious dose in secondary cases (Fig. 1(a)(ii)); a higher infectious dose and 193

severe symptoms (Fig. 1(a)(iii)); (iii) Route-severity relationship - evidence for/against more severe 194

symptoms increasing the likelihood of aerosolised transmission (Fig. 1(b)(i)) and infection via aerosols 195

being more likely to cause severe symptoms than infection via other routes (Fig. 1(b)(ii) and (iii)). 196

Our analysis of the ten remaining pathogens - Adenovirus, Bordetella pertussis, Group A streptococci, 197

MERS-CoV, Mycobacterium tuberculosis, RSV, Rhinovirus, SARS-CoV-1, Variola virus (Smallpox), 198

Varicella zoster virus (chickenpox) - is provided in the Supplementary Material (File S1). A summary 199

table contains the included studies for all 14 pathogens (see Supplementary Material, File S2). 200

4.1 Existing evidence for role of particle size 201

Independent of the respiratory pathogen, studies suggest that the majority of small aerosols produced 202

during breathing originate from the LRT, being released when small airways in the lungs are opened 203

at the end of exhalation [19–21]. In contrast, it is suggested large droplets originate from the URT 204

because their production correlates with airflow at the beginning of exhalation [19]. Johnson et al. 205

[27] found that speech and coughs produced particles in a range of sizes, with aerosols originating 206

from the LRT and large droplets originating from the URT. Similarly, Morawska et al. [28] found 207

that speech and coughs generally produced large droplets originating from the URT. Therefore, those 208

with infection concentrated in the LRT are expected to generate larger volumes of infectious aerosols 209

than those with infection predominantly in the URT. However, it may be possible for some amount 210

of aerosols produced during talking and singing to originate from the URT [29]. 211

Studies have also shown that particle size determines the potential sites of deposition because larger 212

particles are more likely to contract the respiratory tract earlier on and are too large to enter the 213

small airways. URT deposition has been found to increase with particle size [22], with negligible levels 214

for droplets sized between 1 − 2µm, rising to close to 100% for droplets larger than 10µm [30]. In 215

contrast, deposition in the LRT increases as particle size decreases [22, 23]. 216

As a collective, these studies provide evidence to support route-severity relationships through the 217

nature of aerosols and their mechanics. 218

4.2 General observations across pathogens 219

From our assessment of all 14 pathogens considered in our study, there was large heterogeneity between 220

pathogens in the number of relevant studies found, ranging from 3 (for Varicella zoster virus) to 37 221

(for SARS-CoV-2) (Fig. 2). We summarise five general traits that were not strongly linked to a sole 222

pathogen. 223

First, for almost all pathogens included in this study (12/14, all except RSV and rhinovirus), we 224

found convincing evidence that symptom propagation occurs through at least one of two mechanisms: 225

dose-severity relationships or route-severity relationships. 226

Second, for some pathogens, such as influenza, we found strong evidence that symptom propagation 227

occurs through both mechanisms. For others, there was evidence for both mechanisms, but one was 228

much more convincing; in the case of SARS-CoV-2, we could not rule out a route-severity relation- 229

ship [31–35] but found notably stronger evidence in favour of a dose-severity relationship [25, 36–45]. 230

Third, in certain pathogens, we found strong evidence for one mechanism but no evidence for the 231

other. For measles virus, we found convincing evidence that symptom propagation occurs through a 232

dose-severity relationship, with multiple studies finding significant correlations in severity or mortality 233

between index and secondary cases [46–48]. However, it is unlikely that a route-severity relationship 234
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(a)

(b)

Fig. 2. Infographic depicting the number of relevant studies found for each pathogen
for the two symptom propagation mechanisms. The number of relevant studies found for each
pathogen relating to (a) dose-severity relationships or (b) route-severity relationships. Colour
denotes whether the study was supportive (blue) or against (red) the hypothesis, with mixed studies
(grey) containing findings that were both for and against. Bubble size denotes our classification of
strength of evidence: high - a study directly investigating symptom propagation with significant
findings; moderate - a study strongly related to part of the mechanism with significant findings; low -
a study with either non-significant findings, or that is more weakly related to part of the mechanism.
All studies are listed in the summary tables with their corresponding strength of evidence ratings
(see Supplementary Material File S2).
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contributes to symptom propagation because measles virus is thought to not initiate infection in 235

the URT [49–51]. These findings were echoed across other pathogens in our supplementary analysis. 236

MERS-CoV and Mycobacterium tuberculosis are thought to predominantly initiate infection in the 237

LRT, with initial URT infection occurring rarely, if at all [52, 53]. In contrast, RSV is thought to 238

predominantly initiate infection in the URT, but not the LRT [54–56]. In these cases, a route-severity 239

relationship would be unlikely to play a meaningful role in symptom propagation. 240

Fourth, we generally found that there were more studies relating to dose-severity relationships than 241

route-severity relationships across pathogens. We conjecture this is due to pathogen load being easier 242

to measure than transmission routes [57]. The evidence relating to dose-severity relationships was also 243

more consistently in favour than those concerning route-severity relationships. The exceptions were 244

Yersinia pestis and RSV, where studies suggest that a larger pathogen dose may be protective due to 245

prompting a stronger immune response, thus resulting in reduced disease severity [58, 59]. 246

Lastly, we found substantial evidence, not specific to any pathogen, that a route-severity relationship 247

would be likely to occur assuming i) the pathogen can initiate infection in both the URT and LRT, 248

and ii) the pathogen can be transmitted via aerosols and via close contact (i.e. large droplets or direct 249

contact). This is due to aerosols released during breathing originating from the LRT and aerosols 250

depositing in the LRT [19–23, 27]. However, these two assumptions are not necessarily sufficient. For 251

example, for SARS-CoV-2, we know that infection can be initiated in the URT and LRT [60, 61] and 252

we know that it can be transmitted through aerosols and close contact [62, 63], but studies found 253

that those with asymptomatic or minimally symptomatic infection can produce aerosols to the same 254

or even potentially a greater extent than those with moderate to severe symptoms [29, 45]. Further 255

research is required to determine what factors are associated with increased aerosol production. 256

4.3 Influenza virus 257

Influenza viruses are highly transmissible and cause disease with a wide spectrum of symptoms, from 258

mild “cold-like” symptoms to potentially fatal LRT infection [12]. There are four antigenic types of 259

influenza: A, B, C and D. Types A and B cause the majority of infections in humans [64] and result 260

in widespread seasonal epidemics [65]. Influenza A is capable of causing pandemics, which typically 261

lead to elevated mortality compared to seasonal epidemics [66, 67]. 262

Dose-severity relationship 263

We found strong evidence that those with more severe symptoms have a higher viral load, with 264

most studies (14/15) [68–81] finding a significant relationship with one or more severity measures. 265

However, two of these studies found a mix of significant and non-significant results [79, 80]. The 266

remaining study [82] found a non-significant negative association. We identified two studies [81, 83] 267

investigating whether individuals with a higher viral load infect others with a larger infectious dose, 268

of which only one [83] found an association. In relation to a larger infectious dose causing more severe 269

symptoms, most studies (8/9) [84–91] found an association between dose and severity, whilst one 270

[92] found a non-significant relationship between dose and symptomatic infection, but a significant 271

negative relationship between dose and fever. 272

More severe cases have a higher pathogen load 273

Hospital-based studies have found a significant relationship between URT viral load and the presence 274

of fever [68, 69], hospitalisation [70–73], symptom score [71, 81], respiratory failure [74], abnormal 275

findings on chest X-ray (but not worse prognosis) [75] and mortality [76]. Challenge studies have also 276

found a significant relationship between symptom severity and viral load in humans [77] and mice [78]. 277
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However, other studies have found less consistent results. Spencer et al. [79] performed an analysis of 278

2,466 influenza-infected individuals (1,660 with influenza A and 806 with influenza B) from the US 279

Influenza Vaccine Effectiveness Network. They found that high URT viral load (indicated by a Ct 280

value ≤ 23) was significantly associated with self-rated illness severity for influenza A. However, for 281

influenza B, the association between high viral load and self-rated severity was only significant when 282

comparing severe disease against mild disease (OR 1.92; 95% CI 1.07-3.45), not when comparing very 283

severe disease (OR 1.21; 95% CI 0.59-2.48) or moderate disease (OR 1.48; 95% CI 0.82-2.68) against 284

mild disease. Rodrigues Guimarães Alves et al. [80] found that symptomatic outpatients (n=71) had 285

significantly higher URT viral load than asymptomatic patients (n = 15) but found no significant 286

difference between the viral load of symptomatic outpatients and hospitalised patients (n = 76). 287

Lastly, To et al. [82] found that although those with fatal disease (n = 18) had the slowest decline in 288

viral load, they had a lower initial URT viral load than both non-fatal severe cases (defined by the 289

development of acute respiratory distress syndrome, n = 10) and mild cases (n = 29). However, the 290

differences in initial viral load quantities between the case severity groups were minimal. 291

Inconclusive evidence that higher pathogen load results in infecting others with a larger dose 292

Yan et al. [81] found that nasopharyngeal viral load was not a significant predictor of viral load in 293

either large droplets (p = 0.48) or aerosols (p = 0.16). However, in an animal model study, Koster 294

et al. [83] found that URT viral load was linked to transmissibility, with no transmission occurring 295

(0/3 infected) from two ferrets with low viral load, compared to transmission consistently occurring 296

(3/3 infected) after contact with two high viral load ferrets. Unexpectedly, they found that viral load 297

in exhaled aerosols was not associated with transmissibility despite aerosols being the only possible 298

transmission route. 299

Infection with a larger dose results in more severe symptoms 300

Animal model studies have consistently found a relationship between inoculant dose and severity in 301

both mice [84, 85] and ferrets [86]. Human challenge studies have also found that symptom severity 302

increased with dose [87, 88]. In contrast, a meta-analysis across 56 volunteer challenge studies found 303

no significant relationship between the inoculant dose and symptomatic infection (p = 0.12) and even 304

found a significant negative correlation between the inoculant dose and presence of fever (OR = 0.56, 305

95% CI: 0.42-0.73) [92]. Handel et al. [89] used data from animal and human challenge studies to fit 306

a within-host infection model and found that morbidity monotonically increased with inoculant viral 307

load. This finding aligns with other within-host immune models: below a threshold value of initial 308

viral load, severity is constant with respect to initial viral load, whereas above the threshold value, 309

severity monotonically increases with initial viral load [90, 91]. 310

Route-severity relationship 311

Influenza is widely accepted to spread through both close contact [17, 93–95] and aerosol transmis- 312

sion [3, 17, 93, 96–99]. Our identified relevant studies (3/3) [81, 100, 101] indicate that more severe 313

symptoms were associated with increased aerosol production. Similarly, all studies (7/7) [92, 102–107] 314

gave evidence that infection via aerosols resulted in more severe symptoms than infection via direct 315

contact (including fomite transmission) or large droplet transmission. 316

We acknowledge that there may be variations between influenza strains that are not accounted for in 317

these findings. For example, Kuiken et al. [108] found that, whilst influenza A H1N1 subtype viruses 318

readily infect both the URT and LRT, strains within the influenza A H5N1 subtype may have a limited 319

ability to infect the URT. To date, however, our view is there is insufficient literature to perform our 320

analysis at a strain or subtype-specific level. 321
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More severe symptoms result in increased aerosol production 322

Aerosols can be produced both whilst coughing and breathing [19, 81, 100, 109, 110]. If a cough is 323

present, aerosols are produced more frequently [100] and in a larger volume [81, 101]. Despite the 324

correlation between aerosol production and cough, it is likely that the majority of aerosols produced 325

come from breaths, due to their greater frequency; indeed, Fabian et al. [109] estimate that 87% of 326

aerosols are produced whilst breathing. Regardless, there is still likely a correlation between aerosol 327

production and severity, due to those with severe symptoms tending to have LRT symptoms [82]. 328

Indeed, Bischoff et al. [101] found that those who reported severe symptoms were significantly more 329

likely to produce influenza aerosols. Similarly, in a community-based study, Yan et al. [81] concluded 330

that URT and LRT infection occur independently and that the detection of infectious aerosols reflects 331

infection in the LRT after finding no association between nasal shedding and aerosol production in a 332

study of 142 symptomatic college students with confirmed influenza infection. 333

Infection via aerosols is more likely to result in severe symptoms 334

Animal model studies have shown that, relative to intranasal inoculation, aerosol inoculation results 335

in more frequent LRT symptoms [102] and worse severity [103]. Mooij et al. [104] found more severe 336

symptoms in macaques when inoculation was directly into the lungs (4/12 were fatal) compared to 337

other studies that used intratracheal inoculation (generally only mild symptoms despite similarly 338

pathogenic strains and comparable doses). Similarly, Yetter et al. [105] found more severe symptoms 339

in mice when inoculation occurred in the LRT (15/16 were fatal) compared to the URT (1/16 was 340

fatal). As reviewed in Carrat et al. [92], human challenge studies have also consistently found that 341

intranasal inoculation results in mild symptoms, whereas in Alford et al. [106], inoculation via aerosols 342

readily resulted in severe symptoms. To date, no further studies have been performed using aerosol 343

inoculation. Cowling et al. [107] used data from randomised control trials of face masks and hand 344

hygiene measures within 782 households to parameterise a mathematical model that accounted for 345

three modes of transmission: aerosol, large droplet and direct contact. They inferred that the risk of 346

fever and cough when infected via the aerosol route was around twice as high compared to infection 347

via large droplet or direct contact routes. 348

4.4 Measles virus 349

Measles (also known as rubeola) is caused by the highly contagious virus of the same name. It can be 350

seriously harmful to human health, particularly for young children [111]. The MMR (measles, mumps 351

and rubella) vaccine protects against measles (around 96% efficacy after two doses [112]) and has been 352

distributed widely, with over 500 million doses being administered since its introduction [113]. With 353

the development of a highly efficacious vaccine, measles has been targeted for elimination [114]; as of 354

2022, elimination had been achieved in 83 countries, although elimination status had since been lost 355

in nine of those countries [115]. In the UK, measles was initially declared eliminated in 2016, with the 356

status then lost in 2018 and subsequently regained in 2021 [116]. 357

There is general evidence, without specific reference to mechanisms, that symptom propagation occurs 358

for measles. Aaby [46] found that individuals infected by someone with severe measles (indicated 359

by pneumonia) were more likely to have severe symptoms (OR 2.90; 95% CI 1.63-5.17), and their 360

symptoms were more likely to be fatal (OR 3.87; 95% CI 1.65-9.08). Similarly, Aaby and Leeuwenburg 361

[47] found that the case fatality rate (CFR) was higher among cases infected by a fatal index case 362

(OR 4.69; 95% CI 1.64-13.41) and Samb [48] found that infection by an individual with respiratory 363

complications was more likely to result in respiratory complications in secondary cases. Based on these 364

findings, Aaby [117] hypothesised a dose-severity relationship resulting in “feedback loops” where mild 365

cases generate mild cases and severe cases generate severe cases. Symptom propagation could also 366
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explain the finding that the CFR increases exponentially with generations of infection [118]. 367

Dose-severity relationships 368

We found no studies exploring whether those with more severe symptoms have higher viral loads. 369

However, breakthrough infections (infections in those who have been vaccinated) have been shown 370

to have a lower viral load and less severe symptoms than infected individuals who were not vacci- 371

nated [119]. We found no studies exploring whether a higher viral load was associated with infecting 372

others with a larger infectious dose. In contrast, the effect of a larger infectious dose or increased inten- 373

sity of exposure on symptom severity has been explored systematically. All included studies (13/13) 374

[46–48, 117, 118, 120–127] found a larger infecting dose was associated with more severe symptoms. 375

However, in one study [126] the findings were non-significant and in two studies [48, 127] they did not 376

test for significance. 377

Infection with a larger dose results in more severe symptoms 378

A number of studies have found a significant increase in CFR in individuals infected within the 379

household compared to index cases [47, 118, 120–122], suggesting an effect of increased intensity 380

of exposure. More generally, studies have found that clustered or multiple cases (where multiple 381

individuals within the same house are infected) have a significantly higher CFR than single cases [117, 382

123–125], and have suggested that this is due to increased intensity of exposure leading to larger 383

infectious doses. Aaby et al. [126] found a similar correlation with no (0/24) single cases being fatal 384

compared to 13% (10/76) for multiple cases; however, the correlation was not significant (p = 0.06). 385

Aaby and Leeuwenburg [47] found that those exposed to two or more index cases had higher mortality 386

(5/37, 14%) than those exposed to a single index case (18/303, 6%), but their finding was not significant 387

(OR 2.47; 95% CI 0.93-6.56). However, a later hospital-based study of 221 patients found a significant 388

relationship (OR 1.90; 95% CI 1.12-3.22) [46]. Samb [48] found that vaccinated cases produced less 389

severe symptoms in those they infected, possibly due to their lower viral load [119]. These findings 390

are supported by an animal model study that found higher mortality in mice that received a larger 391

inoculant dose [127]. 392

Route-severity relationships 393

It is generally accepted that measles is predominantly transmitted via aerosols [128–130]. However, it 394

is unlikely that the transmission route has a direct impact on measles severity. Evidence suggests that 395

initial infection can only occur in the LRT, with URT infection only occurring after virus is detected 396

in the bloodstream [49–51]. In this case, symptom propagation through a route-severity relationship 397

would not be possible, as the initial site of infection would be the LRT, regardless of the severity of 398

the infector. 399

4.5 SARS-CoV-2 (COVID-19) 400

SARS-CoV-2 is the causative agent of COVID-19 and was responsible for causing a pandemic from 401

2020 to 2023. During this time, there were over 700 million confirmed cases worldwide and over 6 402

million deaths [131]. The global proliferation of SARS-CoV-2 was in part due to the large proportion 403

of cases that were asymptomatic and their relatively high potential for onward infection, although 404

the extent to which they contributed to transmission is still unclear [132]. This has meant that 405

many studies have distinguished between asymptomatic and symptomatic cases when studies of other 406

pathogens would perhaps instead compare mild and severe cases. 407
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Throughout the COVID-19 pandemic, many variants emerged which were predominant either in par- 408

ticular regions or globally at certain times. There are notable differences between these variants, 409

particularly in how transmissible they are [133] and the extent to which they evade immune re- 410

sponses [134]. In addition, there are differences in how readily they can transmit through aerosols and 411

infect the LRT; for example, omicron has been found to be more likely to infect the URT than other 412

variants [135, 136]. These factors play a role in symptom propagation, and thus we expect that the 413

extent to which symptom propagation occurs varies between variants. To date, however, there are 414

insufficient studies to perform our analysis at a variant-specific level. 415

Certain findings relating to SARS-CoV-2 could be explained by symptom propagation. For example, 416

Guallar et al. [137] reported clusters of mild and severe cases during an outbreak in Madrid. In 417

addition, Beldomenico [138] found that the case fatality ratio (CFR) was lower in countries with slow 418

spread, leading them to suggest that high CFRs were associated with rapid transmission as a result 419

of chains of highly infectious individuals, whose symptoms may have been more severe. 420

Dose-severity relationship 421

A dose-severity relationship has previously been suggested for SARS-CoV-2 in a review by Van Damme 422

et al. [4]. These authors find evidence that an individual’s symptom severity is dependent on the 423

infectious dose. They postulate that this relationship could lead to chains or clusters of severe and 424

mild cases. Similarly, in their review, Beldomenico [138] give evidence for correlations in viral load 425

within chains of infection, and suggest that that infection from highly infectious individuals could be 426

more likely to be highly infectious themselves. However, they did not comment on the implications 427

for symptom severity. 428

A large number of studies have explored whether those with more severe symptoms have higher viral 429

loads. Here we discuss the findings from eight review papers [25, 36–41, 139]. All of the reviews of 430

studies comparing severe symptoms to mild symptoms (7/7) [25, 36–41] found that viral load was 431

significantly higher in severe cases. However, four studies [37, 39, 40, 139] reviewed comparisons 432

between symptomatic and asymptomatic cases and found mixed results. We found three studies [42, 433

43, 140] comparing viral loads between moderate and mildly symptomatic patients. Of these, two [42, 434

43] found a significant correlation. 435

Although a higher viral load would likely lead to infecting others with a larger infectious dose, this 436

idea has not been explored in depth in the literature. We found two studies comparing URT viral load 437

to exhaled breath condensate (EBC) viral load [44, 141], but only one [44] found a correlation. Three 438

studies [32, 45, 142] investigated whether more severe symptoms were associated with increased EBC 439

viral load. All found a positive correlation, but in two [32, 142] the findings were not significant. 440

Most animal model studies (5/6) [143–147] found that an increased inoculant dose was associated with 441

increased symptom severity; however, one [148] found no association. Most identified studies (6/7, two 442

hospital-based studies [149, 150] and four non-pharmaceutical intervention-related studies [151–154]) 443

found that increased intensity of exposure was associated with increased symptom severity, however 444

one household-based study [155] found no relationship. 445

More severe cases have a higher pathogen load 446

Many studies have explored the relationship between viral load and severity for SARS-CoV-2. These 447

studies predominantly use URT samples. Studies using LRT samples are not uncommon but are 448

insufficient in number to have been reviewed separately. As such, the reviews discussed below consider 449

URT and LRT viral load together (in addition to viral loads from other samples such as serum). 450
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Reviews have found an often significant relationship between viral load on admission and mortality [36, 451

38]. They have also suggested that hospitalised patients with severe symptoms have a significantly 452

higher viral load than those with mild symptoms [25, 36–41]. On the other hand, many reviews found 453

mixed results regarding viral loads in symptomatic and asymptomatic patients, finding both studies 454

where asymptomatic individuals had lower viral load and studies where viral loads were similar [37, 455

39, 40, 139, 156, 157]. However, these studies explore the relationship between viral load and severity 456

at two extreme ends of the severity spectrum. There has been limited exploration of the difference in 457

viral load between those with mild URT symptoms and those with more severe (but not hospitalised) 458

LRT symptoms. One key exception is the study by Puchinger et al. [42], which found that moderate 459

symptomatic cases (defined via the WHO symptom score, n = 25) had a significantly higher viral load 460

than asymptomatic (n = 6) or mildly symptomatic individuals (n = 20, p = 0.01). However, Caplan 461

et al. [140] found outpatients with moderate symptoms (n = 9) (where moderate is defined by having 462

shortness of breath) did not have significantly higher URT viral loads than those with mild symptoms 463

(n = 16, p = 0.24). Whilst it is clear that there is a relationship between viral load and severity in 464

certain settings, further research is required to determine the extent of the relationship for those with 465

moderate LRT symptoms. 466

A higher pathogen load results in infecting others with a larger dose 467

A few studies have attempted to determine whether increased URT viral load is associated with 468

increased viral load in exhaled breath condensate (EBC) (and therefore with the inoculant dose in 469

those infected); the results so far have been inconclusive. In a human challenge study, Zhou et al. [45] 470

found that both nose and throat viral load significantly correlated with facemask sample viral load and 471

Johnson et al. [44] found a positive correlation between EBC and URT viral load (r = 0.5). However, 472

Malik et al. [141] found no correlation (correlation coefficient R2 < 0.01). It has been suggested that 473

EBC viral load and URT viral load may not correlate due to aerosols originating from the LRT [141]. 474

To date, no studies have compared EBC viral load with LRT viral load; this may be due to LRT viral 475

load being more challenging to measure than URT viral load [158, 159]. 476

Studies have begun to explore whether those with more severe symptoms have a higher EBC viral 477

load. Sawano et al. [32] found that higher EBC viral load was significantly associated with the need 478

for mechanical ventilation (p < 0.05). They also found a positive association between EBC viral load 479

and the need for oxygen administration and shortness of breath, but these results were not significant 480

(p = 0.12 and p = 0.06, respectively). In a later study, Sawano et al. [142] again found a non-significant 481

correlation between EBC viral load and the need for oxygen administration (p = 0.18). 482

Infection with a larger dose results in more severe symptoms 483

Several animal model studies found an increase in mortality and morbidity with increasing inoculant 484

dose [143–147]. However, Rosenke et al. [148] found that, although initially symptoms were more 485

severe in hamsters given a larger inoculant dose, by day five, hamsters given the lower dose had more 486

severe symptoms. In addition, a household contact study found no relationship between the viral 487

load of the index case and the severity of secondary cases [155]. This result contrasts the findings 488

of Marks et al. [160] who showed that individuals in contact with a high URT viral load case were 489

significantly more likely to become symptomatic (hazard ratio per log10 increase in viral load 1·12; 490

p = 0.0006). Raoult et al. [161] suggested that a relationship between dose and severity could be 491

due to a larger inoculant dose overwhelming the host’s defence and after frequently detecting a state 492

of immunosuppression hospitalised patients. Kikkert [162] instead suggested that such a relationship 493

could be due to the initial immune response being insufficient to clear a high dose, leading to the use 494

of a second line of defence which triggers increased inflammation. 495

Studies give evidence for increased intensity of exposure being associated with increased symptom 496

14

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted January 7, 2024. ; https://doi.org/10.1101/2024.01.05.24300898doi: medRxiv preprint 

https://doi.org/10.1101/2024.01.05.24300898
http://creativecommons.org/licenses/by/4.0/


severity. Maltezou et al. [149] found that healthcare workers with high-risk exposure (close contact 497

with a COVID-19 case with neither party wearing a mask) were significantly more likely than those 498

with moderate- or low-risk exposures to develop symptoms (31.9%, 22.6%, and 15.8%, respectively; 499

p < 0.001) and to be hospitalised (0.8%, 0.4%, and 0.1%, respectively; p < 0.001). In addition, 500

Zhang et al. [150] found that healthcare workers who had performed high-risk procedures, such as 501

tracheal intubation, were significantly more likely to have their infection be symptomatic (OR 4.057; 502

p = 0.026) and that healthcare workers who consistently wore respirators were significantly less likely 503

to have their infection be symptomatic (OR 0.369; p = 0.001). 504

Dose-severity relationships have also been discussed in the context of non-pharmaceutical interventions 505

(NPIs) such as mask-wearing and social distancing. Several studies found that, when NPIs were used, 506

the proportion of cases that were symptomatic was greatly reduced. In military barracks, an outbreak 507

that started before social distancing measures were introduced had 102 symptomatic cases and 113 508

confirmed infections by PCR test; however, in another barracks where individuals only became infected 509

after social distancing measures were introduced, none had symptomatic infection despite 13 testing 510

positive [151]. In a study of an outbreak in Spain, Soriano et al. [152] found that the proportion of 511

individuals who tested positive by PCR test who were symptomatic was notably higher in the first wave 512

(34/122, 27.8%) than in the second wave (5/47, 10.6%) when NPIs such as social distancing and mask- 513

wearing were used. In their review, Gandhi and Rutherford [153] discussed three outbreak studies 514

during which universal masking was implemented; in each case, over 80% of cases were asymptomatic. 515

This reduction in the proportion of cases that are symptomatic has been suggested to be due to a 516

reduction in the inoculum dose of those infected [7, 163–165]. Chan et al. [154] investigated the impact 517

of mask-wearing in an animal model study involving 27 Syrian hamsters and found that the presence 518

of a mask-like barrier not only reduced transmission but also led to reduced symptom severity in the 519

animals that were infected. 520

Route-severity relationships 521

Transmission routes have been a matter of debate for SARS-CoV-2. When intervention guidelines were 522

initially issued in 2020, most focused on close contact transmission and did not mention an airborne 523

route [166]. Since then, many reviews have emerged suggesting that aerosol transmission had been 524

overlooked and is, in fact, the primary transmission route [6, 63, 167, 168]. 525

We found two studies [31, 32] showing that individuals with more severe symptoms were significantly 526

more likely to be aerosol-positive. However, the other relevant study [45] found no relationship between 527

symptom severity and aerosol production. All relevant studies (3/3) [33–35] found that infection via 528

aerosols was associated with increased symptom severity. 529

More severe symptoms result in increased aerosol production 530

Aerosols have previously been assumed to be primarily released through coughing [169], suggesting that 531

those with symptomatic infection are more likely to infect others via the aerosol route. However, more 532

recent evidence has found that a substantial proportion of aerosols are produced during speaking and 533

breathing [29, 166, 170] and studies have shown that asymptomatic individuals can transmit disease 534

via aerosols [31, 171, 172]. However, Leding et al. [31] found that symptomatic individuals were 535

significantly more likely to have SARS-CoV-2 detected in EBC than asymptomatic individuals (OR, 536

4.4; p = 0.017). In addition, Sawano et al. [32] found that the detection of viral RNA in EBC was 537

significantly associated with the need for oxygen administration (p < 0.01), the need for mechanical 538

ventilation (p = 0.04), cough (p < 0.01) and fever (p = 0.01). 539

More severe symptoms are associated with LRT infection. Chen et al. [41] found that LRT viral load 540

15

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted January 7, 2024. ; https://doi.org/10.1101/2024.01.05.24300898doi: medRxiv preprint 

https://doi.org/10.1101/2024.01.05.24300898
http://creativecommons.org/licenses/by/4.0/


was a much more accurate prognostic indicator for COVID-19 severity than URT viral load (up to 81% 541

accuracy for LRT vs 65% for URT). Pan et al. [173] also found that those who had a positive facemask 542

sample but negative URT sample had significantly higher median symptom scores than those who were 543

facemask negative but URT positive (15 vs 3, p = 0.0017). Since aerosols produced during breathing 544

originate from the LRT, LRT infection is a requirement for the production of infectious breath aerosols 545

(see Section 4.1). Indeed, in their review, Stadnytskyi et al. [29] suggested that only those with clinical 546

symptoms such as cough, reflecting LRT infection, generate aerosols during breathing. However, they 547

suggest that speech aerosols are likely to be a predominant mode of transmission for those without 548

symptoms because speech aerosols originate from the URT, in addition to the LRT. 549

Whilst evidence suggests those with more severe symptoms are more likely to be aerosol positive, 550

this does not necessarily mean that they produce a larger number of infectious aerosols. Indeed, in a 551

human challenge study of 36 volunteers, Zhou et al. [45] found that those who reported the highest 552

symptom scores were not those who emitted the most virus. 553

Infection via aerosols is more likely to result in severe symptoms 554

Animal model studies have found that infection via aerosols results in more severe symptoms, compared 555

to intranasal inoculation [33–35]. 556

4.6 Yersinia pestis (Plague) 557

Plague, caused by the bacterium Yersinia pestis, predominantly comes in two forms: bubonic and 558

pneumonic [2]. Bubonic plague is generally less severe, although it still has high mortality, and 559

predominantly affects the lymph nodes, causing inflammation and swelling [174]. Pneumonic plague 560

affects the LRT and has a mortality rate close to 100% when left untreated [2]. Even when initially 561

mild or atypical cases have been reported, they still historically led to fatality [175]. However, there 562

is some evidence that asymptomatic carriers may exist. Tieh et al. [175] detected Yersinia pestis in 563

the throat of an otherwise healthy individual and suggested that they may be able to act as a carrier 564

of disease. Marshall et al. [176] detected Yersinia pestis in the throats of 15 of 114 healthy people 565

who had been in contact with an infected individual. However, if there are asymptomatic carriers of 566

plague, they are likely to occur rarely. 567

Dose-severity relationship 568

Individuals with bubonic plague are generally not capable of direct human-to-human transmission; 569

the disease is usually transmitted via a vector such as fleas or small mammals [174]. When human-to- 570

human transmission of plague does occur, it is predominantly via the aerosol transmission route from 571

those with pneumonic plague [2]. Those infected in this manner develop pneumonic plague [174, 177– 572

181]. As pneumonic plague has an extremely high mortality rate, close to 100% if not treated [2], it 573

seems unlikely that there is scope for variation in severity dependent on infectious dose. However, as 574

discussed previously, it may be possible that there are asymptomatic carriers of Yersinia pestis and 575

these cases may occur as a result of a low infectious dose. This hypothesis has not yet been explored 576

in the literature. 577

We found one study [182] investigating whether those with more severe symptoms had a higher bacte- 578

rial load, which found a positive correlation. We found no studies exploring whether having a higher 579

bacterial load was associated with infecting others with a larger infectious dose. On the relationship 580

between inoculant dose and severity we found two relevant studies. One found no relationship [58] 581

and the other found a negative relationship [59]. 582

More severe cases have a higher pathogen load 583
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In an animal model study in mice, Guinet et al. [182] found that bacterial loads in lymph nodes 584

correlated with mortality. 585

Infection with a larger dose does not result in more severe symptoms 586

Druett et al. [58] found that inoculating guinea pigs with a larger dose did not lead to increased 587

mortality in secondary cases. They did not comment on the mortality rate in the inoculated guinea 588

pigs. Parry [59] found that rats inoculated with a larger dose had a lower mortality rate, and their 589

deaths were delayed in fatal cases. They suggested that this was due to a large volume of inactive 590

bacteria blocking active bacteria from potential sites of infection. 591

Route-severity relationship 592

Route-severity relationships are known to exist for Yersinia pestis. Only individuals with pneumonic 593

plague are able to infect others through the respiratory route [2, 178–181]. Infection via this route 594

leads to bacteria infecting the lungs, causing primary pneumonic plague in the individual infected 595

[2, 177–181]. Individuals with pneumonic plague can also infect others via direct contact; those 596

infected develop bubonic plague [2]. These findings are supported by Druett et al. [58], who found 597

that infection of guinea pigs via large droplets resulted in URT infection, whereas aerosols lead to 598

LRT infection. In addition, they found that mortality was four times higher in secondary cases who 599

were in contact with aerosol-infected animals. Similarly, Agar et al. [183] found that rats infected via 600

the aerosolised route developed pneumonic plague. Further, the rats were able to transmit pneumonic 601

plague to uninoculated rats. 602

5 Symptom propagation mechanisms and infectious disease mod- 603

elling 604

Herein we summarise the progress to date in the development of mathematical model frameworks 605

that explicitly contain symptom propagation mechanisms (Section 5.1). To then demonstrate the 606

importance of accounting for symptom propagation in epidemiological models, we present a case 607

study where particular targeting of public health interventions can result in worsened epidemiological 608

outcomes (Section 5.2). 609

5.1 Previous modelling developments 610

We may study the implications of symptom propagation of respiratory pathogens on epidemiological 611

outcomes via computational simulation of an infectious disease transmission model. Here we describe 612

the historical advancements in model frameworks towards having models that explicitly contain a 613

symptom severity propagation action. 614

Independent strain/multi-strain type models 615

For respiratory pathogens, symptom severity has typically been modelled post-hoc or separately from 616

epidemiological dynamics. For example, it has become commonplace for models to distinguish between 617

asymptomatic and symptomatic infection, but asymptomatic infections are generally assumed to occur 618

with a fixed probability, independent of other infected individuals [184]. An extension to this model 619

has been explored for influenza by Paulo et al. [185], where the probability of severe disease depended 620

on the proportion of the population infected at the time, although not on their severity. 621
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Models capturing multi-route transmission 622

Other models in the literature capture multi-route transmission, but do not invoke a relationship 623

between the route of transmission and symptom severity. For influenza, as a tool for assessing NPIs, 624

Atkinson and Wein [186] constructed a mathematical model of aerosol and contact transmission within 625

a single household. Another study investigated the dynamics and control of influenza under the 626

assumptions of no, partial, or full aerosol transmission, using a model parameterised by contact network 627

and location data [187]. Further, Cowling et al. [107] used data from randomised control trials of face 628

masks and hand hygiene measures for influenza within 782 households to parameterise a mathematical 629

model that accounted for three modes of transmission: aerosol, large droplet and direct contact. 630

Models with explicit mechanisms for the propagation of symptom severity 631

Embryonic attempts to incorporate symptom propagation into an epidemiological model of infectious 632

disease transmission have been made by Ball and Britton [188, 189], Ball et al. [190], Earnest [191], 633

Santermans et al. [192] and Harris et al. [193]. Ball and Britton [188] introduced the infector-dependent 634

severity (IDS) model in which the probability of becoming severely infected was greater if infected by 635

a severe case than if infected by a mild case. They used a stochastic epidemic model and considered 636

the addition of two types of vaccine. This work was continued in Ball and Britton [189], where they 637

again used the IDS model to explore vaccination, with the extension that mild cases could become 638

severe after further exposure to disease. They found that, under this model, vaccination could lead 639

to more people being mildly infected. In Ball et al. [190], the authors apply the IDS model to a 640

household epidemic model. They determined that it would be possible to distinguish the household 641

IDS model from a standard household model with no symptom propagation, given data on sufficiently 642

many households. 643

Santermans et al. [192] introduced a ‘preferential model’ that works in much the same way as the 644

IDS model, but was instead applied to a compartment SEIR infectious disease transmission model. 645

An individual infected by an asymptomatic case was asymptomatic with probability ϕa. If they were 646

instead infected by a symptomatic case, they were symptomatic with probability ϕs. This model 647

simplifies to the so-called ‘non-preferential model’, the model with no symptom propagation, when 648

ϕs = 1 − ϕa. They estimated parameters using a Markov Chain Monte Carlo (MCMC) approach 649

applied to incidence data from 2009 H1N1 influenza pandemic. By calculating the 95% credible 650

interval for the difference between ϕs and 1 − ϕa, the authors found that the preferential model did 651

not simplify to the non-preferential model. 652

Earnest [191] also explored an SEIR infectious disease transmission model where the probability of 653

mild/severe disease depended on whether the infector had mild or severe disease. Similarly, Harris 654

et al. [193] studied a SARS-CoV-2 SEIR transmission model where transmission from asymptomatic 655

(symptomatic) individuals was more likely to lead to asymptomatic (symptomatic) infection. They 656

found that when infectious periods of asymptomatic and symptomatic infections were equal, the 657

correlation between disease status and transmission outcomes did not affect the outbreak dynamics. 658

In contrast, when the infectious periods of asymptomatic and symptomatic infections were dissimilar, 659

the correlation between disease status and transmission exaggerated the effect of the difference in 660

infectious period. 661

At the time of writing, models that include symptom propagation have had a similar construction, 662

with two probabilities of having severe disease depending on whether the infector had mild or severe 663

disease. There has been limited exploration of how the outcomes of this model differ from an analogous 664

model without symptom propagation and a lack of sensitivity analysis to the strength of symptom 665

propagation thus far. 666
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5.2 Modelling case study 667

The modelling exploration of symptom propagation has been limited beyond the previously sum- 668

marised results. To these prior works, we add a parsimonious mechanistic mathematical framework to 669

model infectious disease transmission that incorporates symptom propagation of different strengths. 670

Through application of this model, we demonstrate the importance of accounting for symptom severity 671

propagation. Our presented example shows that, when there is a strong symptom propagation action, 672

particular targeting of public health interventions can result in worsened epidemiological outcomes. 673

Infectious disease transmission model with symptom propagation 674

Taking a standard susceptible-exposed-infected-recovered (SEIR) deterministic ODE model, we sup- 675

plement it with two parameters, α and ν: α controls the dependence of the symptom severity in 676

the infectee on the symptom severity of the infector; ν sets the baseline probability of the pathogen 677

causing severe disease in the absence of propagation effect. 678

Our model of symptom propagation means that an infected individual, with probability α, copies the 679

symptom severity of their infector, and with probability 1 − α their symptom severity is assigned 680

randomly according to the underlying probability of having severe disease, ν (Fig. 3). 681

Fig. 3. Dependence of symptom severity on α and ν (in the absence of interventions).
White shaded individuals correspond to those susceptible to infection, yellow shaded individuals
correspond to infectious cases with mild severity and red shaded individuals correspond to infectious
cases with severe symptoms. The values on the arrows show the corresponding probability. An
infected individual has probability α of copying the symptom severity of their infector and a
probability 1− α of reverting to the baseline probability of having severe disease, i.e. they develop
severe disease with probability ν.

Mathematically, the system dynamics are characterised by the following system of ODEs: 682
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Table 1. Epidemiological parameters values The values of β were chosen under the assumption
that severe cases were twice as transmissible as mild cases and to give a value of R0 varying between
1 to 3 for the different values of α and ν.

Parameter Description Value (day−1) Source

βM Mild transmission rate 0.2 Assumed
βS Severe transmission rate 0.4 Assumed
ϵ Rate of becoming infectious 1/2 Cowling et al. [107]
γM Mild recovery rate 1/5 Cao et al. [194]
γS Severe recovery rate 1/7 Cao et al. [194]

dS

dt
= −(λM + λS)S

dEM

dt
=

(
α+ (1− α)(1− ν)

)
λMS + (1− α)(1− ν)λSS − ϵEM

dES

dt
= (1− α)νλMS +

(
α+ (1− α)ν

)
λSS − ϵES

dIM
dt

= ϵEM − γMIM

dIS
dt

= ϵES − γSIS

dRM

dt
= γMIM

dRS

dt
= γSIS

(1)

where λM = βMIM and λS = βSIS . 683

The parameters were chosen to approximate an influenza-like pathogen (Table 1). 684

Investigating the effect of quarantine measures 685

To evaluate the effect of symptom propagation on the effectiveness of an intervention, we introduced 686

quarantining to our model. We assumed a proportion, Q, of infected individuals would be quarantined. 687

These individuals would not subsequently contribute towards onward transmission, reducing the force 688

of infection, λ, by a factor of 1−Q. 689

We considered two intervention strategies: quarantining a proportion Q of infected individuals and 690

quarantining a proportion Q of only severely infected individuals. Denoting λ̂M , λ̂S as the force of 691

infection terms when an intervention is active, for the first intervention, 692

λ̂M = (1−Q)λM , λ̂S = (1−Q)λS ,

whereas for the second intervention, 693

λ̂M = λM , λ̂S = (1−Q)λS .

We assumed Q = 0.5 in each example. 694

We show combinations of α and ν where quarantining mildly infected individuals (in addition to 695

severely infected individuals) would result in negative epidemiological outcomes of an increase in both 696
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(a) (b)

Fig. 4. Investigating the effect of α and ν on the number of total cases and severe cases
prevented by additionally quarantining mild cases. (a) The difference between the overall
number of cases when quarantining 50% of severe cases only and the overall number of cases when
quarantining 50% of all cases (severe and mild). (b) The difference between the number of severe
cases when quarantining 50% of severe cases only and the number of severe cases when quarantining
50% of all cases (severe and mild). Shading denotes the cases prevented (as a percentage of the
population): blue denotes values where quarantining mild cases decreased the number of cases; red
denotes values where quarantining mild cases increased the number of cases. Black solid lines
represent parameter combinations where no cases were prevented by additionally quarantining mild
cases.

severe and total cases overall (Fig. 4). Specifically, we observed an increase in total cases under 697

sufficiently strong symptom propagation (α > 0.9) and almost all values of ν (ν > 0.02). Within this 698

regime, it was notable that the percentage difference in total cases increased as ν decreased, reaching a 699

maximum increase in total cases of about 10% for α > 0.8 and 0.02 ≤ ν ≤ 0.04. This contrasted with 700

the dynamics for low α, where there was a reduction in the overall number of cases and the reductions 701

were larger (approaching a 30% reduction) for a mid-range of ν (between 0.2 and 0.6). 702

On the other hand, we found an increase in the number of severe cases when α > 0.7, independent of 703

ν. However, there was again a trend in the magnitude of the increase and value of ν, with the greatest 704

increases of above 20% being returned when ν was small (approximately 0.02-0.04). 705

Though a simplified example, we demonstrate the plausibility of particular combinations of symp- 706

tom propagation mechanisms and characteristics of public health interventions resulting in unwanted 707

epidemiological outcomes. 708

6 Discussion 709

Studies investigating the mechanisms behind symptom propagation have been performed for decades. 710

For one key pathogen, Yersinia pestis, the causative agent of plague, the symptoms an individual 711

experiences have been known to depend on the symptoms of their infector since the 1910s [181]. 712

Nonetheless, symptom propagation for other pathogens of public health interest has only recently been 713

acknowledged and is understudied. The existing literature has focused on other specialised research 714

areas, such as dose-response relationships, aerosol and contact transmission routes and the effect of 715
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non-pharmaceutical interventions to reduce symptom severity. Our review fills a knowledge gap by 716

collating evidence for symptom propagation for a range of respiratory pathogens. We additionally 717

demonstrate through simulation of a mathematical model the importance of symptom propagation on 718

intervention strategies. 719

For almost all pathogens in this study, we found convincing evidence that symptom propagation occurs 720

through at least one of two mechanisms: dose-severity relationships or route-severity relationships. 721

We also found considerable heterogeneity between pathogens in the relative importance of these two 722

mechanisms, highlighting the importance of the individual consideration of each pathogen. Although 723

symptom propagation in general has not previously been reviewed, our findings align with previous 724

reviews which investigated either dose-severity or route-severity relationships. Van Damme et al. 725

[4] reviewed evidence for a dose-response relationship leading to chains or clusters of severe disease 726

for SARS-CoV-2. Milton [195] reviewed evidence for smallpox transmission routes and introduced 727

the term “anisotropic” to describe when the transmission route alters the severity of disease. Simi- 728

larly, Tellier [96] suggest a potential relationship between transmission route and disease severity for 729

influenza. However, to date, no studies have investigated route-severity relationships in depth. 730

Limitations of the biological evidence scoping review 731

Through conducting this study, particular limitations arose that warrant consideration when interpret- 732

ing our findings. We discuss four examples. The first main limitation of our scoping review was that 733

our analysis was not performed at a strain or subtype-specific level. We are aware that, particularly 734

for SARS-CoV-2 and influenza, there are notable differences between strains that would impact the 735

occurrence of symptom propagation. For example, varying pathogens loads between strains [133, 196] 736

or differences in transmission routes or sites where the pathogen can initiate infection [135, 136]. Our 737

view is that there is currently insufficient literature to perform our study at this refined level; indeed, 738

for many pathogens, there is insufficient literature even at the pathogen level. 739

Second, there were some limitations in the studies reviewed regarding dose-severity relationships. 740

In brief, comparison between studies is complex. Pathogen load significantly depends on how long 741

the individual has been infected for [82, 197, 198] and the site at which the sample is taken [25, 742

39], and there is substantial heterogeneity across studies in both how and when pathogen load is 743

measured. In particular, some measure pathogen load early on during infection [74, 140] or upon 744

hospital admission [70, 80], whereas others measure peak or mean pathogen load [68, 77] or at a 745

fixed time independent of individual patients’ duration of infection [81]. Studies may also use either 746

URT or LRT samples [41, 199] which are not necessarily correlated [25]. For example, an individual 747

with severe disease may have very high LRT pathogen load but low URT pathogen load [200]. In 748

addition, despite LRT pathogen load being considered a better indicator for infection or severe disease 749

for many pathogens [199, 201, 202], often URT measurements are taken instead as they are easier to 750

perform [158, 159]. 751

Another aspect relating to dose-severity relationships is that, for most pathogens, an increasing infec- 752

tious dose is associated with a higher probability of successful infection [144, 203, 204]. Thus, even in 753

the absence of symptom propagation, we would expect more severe cases to be generated at a higher 754

dose. This needs to be accounted for by measuring what proportion of individuals are successfully 755

infected to determine what proportion of infections are severe. Such analyses are often not performed. 756

The third set of limitations relates to determining the level of support for route-severity relationships. 757

One of our key findings is that to enable ascertainment of whether route-severity relationships occur, 758

it is crucial to determine where a pathogen can initiate infection. Determining whether infection can 759

be initiated in the URT or LRT is quite difficult, especially because the detection of pathogens at a 760

site is insufficient. For example, for some pathogens, initial infection of the LRT is not thought to be 761
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possible, but the pathogen can spread to the LRT after URT infection [54–56]. We also used URT 762

and LRT infection as distinguishing factors to categorise disease severity. Whilst LRT symptoms are 763

generally more severe than URT symptoms, the definition of severe disease varies between pathogens. 764

In certain cases, severity is categorised by systemic symptoms like fever [205–207] or septic shock [208]. 765

Focusing on SARS-CoV-2, there is evidence that LRT infection is not limited to those with severe 766

disease, with even asymptomatic patients having LRT viral load detected [209]. Further research is 767

required for multiple reasons. One is to clarify the link between severity and LRT infection. Another 768

is to develop a more formal definition of symptom severity, thus allowing for consistent terminology 769

across clinical, modelling and health economic disciplines. We believe these efforts would benefit from 770

clinical input, helping devise a new framework for categorising clinical outcomes plus the formulation 771

of associated data collection protocols. 772

The fourth and final limitation we discuss is that, for some pathogens, there were insufficient studies 773

relating to a particular mechanism to conclude whether it would contribute to symptom propagation. 774

There were even notable differences when considering the subsections of a mechanism for a specific 775

pathogen. One notable example was for rhinovirus. We found 15 studies exploring whether those with 776

more severe disease had a higher viral load, but no studies related to whether a higher viral load was 777

associated with a larger infectious dose or if a larger infectious dose was associated with more severe 778

symptoms. Our findings motivate an increased breadth of research for certain pathogens to determine 779

more clearly the contribution of potential symptom propagation mechanisms for these pathogens. 780

Mathematical modelling: A tool for discovery 781

There are other factors impacting severity that are challenging to account for, including pathogen 782

strain and genetic factors. As a result, there are limitations even in studies explicitly investigating 783

correlations in disease severity or mortality, such as those for measles [46–48]. These factors would be 784

complicated to account for outside of a controlled human challenge study. Still, these studies would 785

come with their issues, including ethical issues surrounding intentionally causing severe infection. 786

With the difficulties that come with these hypothetical studies, it is imperative that we use modelling 787

tools to supplement our current knowledge from biological studies. Modelling can be an applied tool 788

to help determine whether and to what extent symptom propagation occurs for a given pathogen. 789

There has been limited exploration of symptom propagation within the modelling literature. All of 790

the modelling studies we identified with explicit mechanisms for symptom propagation used a fixed 791

probability of developing severe disease (or, in some cases, symptomatic disease), where this probability 792

depended on whether the infector had mild or severe disease [188–192]. None of these studies allowed 793

for variations in the strengths of symptom propagation. Thus, none of these prior studies explored 794

the effect of varying the strength of symptom propagation and only compared their fixed probability 795

model against one with no symptom propagation. 796

We have shown through a simple model case study that symptom propagation can have dramatic 797

implications for the effectiveness of intervention strategies. Under strong symptom propagation, quar- 798

antining mildly infected individuals (in addition to those severely infected) led to an increase in both 799

severe and total cases, compared to only quarantining severe cases. Whilst our quarantining model 800

is quite rudimentary, our findings motivate further modelling work by demonstrating potentially im- 801

portant public health impacts of symptom propagation. In addition to impacting quarantining and 802

test-and-trace measures, we believe that symptom propagation could increase the effectiveness of 803

NPIs, such as mask-wearing or social distancing, which act to reduce the pathogen dose individuals 804

are infected with. 805

Outlook 806
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We have collated the evidence on the presence or absence of symptom propagation for pathogens that 807

have (historically and presently) inflicted substantial burden upon public health. However, when a 808

novel pathogen with pandemic potential in humans emerges, initially there will almost certainly be 809

a scarcity of relevant data despite health decision makers desiring the use of models and data from 810

multiple sources [210]. A key characteristic of the novel pathogen could be symptom propagation. A 811

key area of future study motivated by this review is the development of more realistic mathematical 812

models of symptom propagation. Our novel mathematical framework has been developed with the 813

ultimate aim to parameterise α and determine the strength of symptom propagation. Understanding 814

whether, and to what extent, symptom propagation occurs would allow policy makers to have a 815

more complete understanding of the impact of intervention strategies and thus have a more effective 816

response. 817

Conclusion 818

In this paper, we have reviewed the epidemiological and biological evidence for the propagation of 819

symptom severity for a broad range of respiratory pathogens of public health concern. We demonstrate 820

how symptom propagation is a widespread phenomenon that impacts the transmission dynamics of 821

many respiratory pathogens. There is, however, still uncertainty surrounding symptom propagation for 822

many pathogens, motivating an expansion of our biological evidence knowledge base. These efforts can 823

be aided by the use of modelling and robust parameter inference to determine symptom propagation- 824

related parameters. Our presentation of a mathematical framework unifying a standard infectious 825

disease transmission model with a symptom propagation mechanism has demonstrated how negative 826

public health outcomes can result when symptom propagation is strongly present in the dynamics. In 827

summary, we believe that increased awareness and study of symptom propagation will deliver crucial 828

infectious disease insights; the downstream implications for public health policy will subsequently 829

allow the general public to make more informed decisions to limit the transmission of severe disease 830

within their communities. 831
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