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Abstract 

Blood-based approaches to detect early-stage cancer provide an opportunity to improve 

survival rates for lung cancer, the most lethal cancer world-wide. Multiple approaches for blood-

based cancer detection using molecular analytes derived from individual ‘omics (cell-free DNA, 

RNA transcripts, proteins, metabolites) have been developed and tested, generally showing 

significantly lower sensitivity for early-stage versus late-stage cancer. We hypothesized that an 

approach using multiple types of molecular analytes, including broad and untargeted coverage 

of proteins, could identify biomarkers that more directly reveal changes in gene expression and 

molecular phenotype in response to carcinogenesis to potentially improve detection of early-

stage lung cancer. To that end, we designed and conducted one of the largest multi-omics, 

observational studies to date, enrolling 2513 case and control subjects. Multi-omics profiling 

detected 113,671 peptides corresponding to 8385 protein groups, 219,729 RNA transcripts, 

71,756 RNA introns, and 1801 metabolites across all subject samples. We then developed a 

machine learning-based classifier for lung cancer detection comprising 682 of these multi-omics 

analytes. This multi-omics classifier demonstrated 89%, 80%, and 98-100% sensitivity for all-

stage, stage I, and stage III-IV lung cancer, respectively, at 89% specificity in a validation set.  

The application of a multi-omics platform for discovery of blood-based disease biomarkers, 

including proteins and complementary molecular analytes, enables the noninvasive detection of 

early-stage lung cancer with the potential for downstaging at initial diagnosis and the 

improvement of clinical outcomes.  
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Introduction  
 The grand hope of the National Cancer Act,1 passed in 1971, was that by 1976, “the final 

answer to cancer can be found.”2 After many efforts, cancer remains a leading cause of death, 

with lung cancer having the highest mortality in the United States (US) as well as globally.3-5 In 

2023, US estimates of lung cancer incidence and deaths were 238,340 and 127,070, 

respectively, with the latter representing nearly 21% of total cancer-related deaths.4 The high 

lethality of lung cancer can be largely attributed to 53% of lung cancer cases being diagnosed 

as metastatic (stage IV) at initial presentation, with a correspondingly poor 5-year median 

overall survival of 8.2%. In contrast, for patients with localized (stage I) disease, the 5-year 

median overall survival improves markedly to 62.8%,6 although the natural history remains fatal 

if untreated.7 The disparity between these outcomes reflects the higher efficacy of the 

interventional armamentarium for earlier-stage disease and illustrates the value of early 

detection.  

Lung cancers are often not diagnosed until patients develop symptoms, which are 

associated with late-stage disease.8 Thus, effective screening of asymptomatic, high-risk 

individuals represents a critical strategy to improve early detection, downstage initial diagnoses, 

and reduce mortality. The US Preventive Services Task Force (USPSTF) began endorsing 

screening of high-risk individuals with annual low-dose computed tomography (LDCT) scans in 

20139 and expanded the recommended screening population in 2021,10 with further expansion 

adopted by both the American Cancer Society (ACS) and National Comprehensive Cancer 

Network (NCCN).11,12 The implementation of annual LDCT screening has been associated with 

reduced mortality13,14 and downstaging of initial diagnoses.15-19 However, recent estimates of the 

overall screening adherence and annual adherence rates following baseline screening for 

eligible individuals were only 5.8%20 and 22.3%,21 respectively. These low adherence rates are 

influenced by various factors including patient access to LDCT and bottlenecks in clinical 

practice workflows as well as concerns related to increase radiation exposure14 and the reported 

false-positive rates of up to 96.4%22 for LDCT. These underscore the challenges of employing 

LDCT as a solitary screening modality in this high-risk population and highlight the magnitude of 

the opportunity for improvement. A peripheral blood-based biomarker test with high-

performance for discriminating lung cancer, particularly at early stages, could augment current 

screening practices and patient access to help address this great unmet clinical need. 

 As cancers arise from genetic alterations,23 the first generation of ‘omics-based 

biomarker detection assays utilized genomics to survey the mutational landscape of tumor-
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derived DNA. Fragments of circulating tumor DNA (ctDNA) in the blood could be sequenced to 

detect cancer,24,25 albeit with concerns regarding signal-to-noise limits commensurate with 

tumor size26 and the small fraction of ctDNA relative to normal cell-free DNA (cfDNA) fragments 

in blood.27 Further advances of genomics-based cancer detection approaches have also 

leveraged methylation28,29 and fragmentation30 in addition to genome-wide mutational 

analyses.31 However, such approaches have a limit of detection and require a sufficient quantity 

of tumor-derived genetic material in blood for accurate cancer detection.32-34 This requirement 

can hinder accurate detection of early-stage cancers because the amount of ctDNA shed by 

small developing tumors into the blood may fall below the assay’s threshold for detection.35,36 

The next generation of blood-based ‘omics assays applied to lung cancer detection have 

leveraged proteins,37,38 RNA,39 and metabolites40,41 with varying performance characteristics, 

particularly for early-stage disease.  

 Distinguishing true lung cancer-related biomarkers, particularly those associated with 

early-stage neoplastic changes, from non-cancer biomarkers related to smoking or comorbid 

conditions is challenging given the complexity and diversity of etiological factors contributing to 

lung cancer development. Thus, we posited that a multi-omics approach to both deeply and 

broadly interrogate the biological phenomic space of blood plasma—constituting a plurality of 

signal inputs from proteins, metabolites, and transcripts—would be more efficacious than 

individual- or dual-omics approaches to detect lung cancer, particularly at early 

stages. Historically, deep and large-scale untargeted surveys of the plasma proteome for 

biomarker discovery beyond hundreds of high abundance proteins42,43 has been challenging 

given limited throughput.44 However, recent developments in biomarker discovery technologies 

for the deep, rapid, and scalable interrogation of plasma proteins can now be applied to large-

scale untargeted plasma proteomic studies45,46 in concert with existing discovery technologies 

for transcriptomics and metabolomics to enable deep multi-omics studies. 

To identify a set of biomarkers that can be used to detect early-stage lung cancer with 

high specificity and sensitivity, we developed a multi-omics discovery approach. This approach 

leverages deep and untargeted exploration of the human plasma proteome with unprecedented 

interrogative depth and breadth at scale. Further, this approach exploits the complementarity of 

molecular information from additional ‘omics types (transcriptomics and metabolomics) to 

identify molecular signals associated with neoplastic and derivative activity. To our knowledge, 

this is the first time a coordinated multi-omics discovery approach has been employed at this 

scale in any pathology. Here, we present the development of a machine learning-based lung 
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cancer classifier trained with multi-omics analyte data from the plasma samples of a case-

control study of subjects with and without lung cancer, including those with non-malignant 

comorbid conditions (MOSAIC study). Evaluation of classifier performance was assessed in a 

separate validation set.  
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Results 

 

Figure 1. Overview of MOSAIC study. A) Subjects with and without lung cancer (N = 2,513) 

were enrolled in the MOSAIC study across 77 clinical sites. Three blood samples were collected 

per subject and used for proteomics, RNA-seq, metabolomics, and targeted immunoassays. B) 

Data from the ‘omics assays were then divided into training and validation sets for the 

development of a machine learning-based lung cancer classification model.  

Untargeted multi-analyte interrogation highlights differences in blood analytes between 
lung cancer and control subjects 

Blood analyte data (protein, RNA, and metabolite) from subjects with and without lung 

cancer (N = 2513) were collected for lung cancer biomarker discovery and machine learning-

based classifier building (MOSAIC study; Figure 1). The results reported here represent the 

largest known plasma multi-omics study conducted to date that uses deep, untargeted 

proteomics (Figure 2). Following quality control (QC) checks, 113,671 peptides (corresponding 

to 8385 protein groups) were detected in at least 1 subject, and 52,758 peptides (corresponding 

to 5922 protein groups) were detected in at least 25% of subjects (Figure 2). 83.6% (3676 

proteins) of the proteins reported in the Human Plasma Proteome Project database47 were 

detected in the study subjects. 
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Figure 2. Overview of proteomics, transcriptomics, and metabolomics assays. The 

number of measured molecular features present in at least 1 subject (green), 25% of the 

subjects (orange), and all subjects (blue) for each ’omics type. 

    

Data were also collected from RNA-seq, metabolomics, and targeted immunoassays. 

Because a total RNA-seq assay was used, intronic, long non-coding, and immature RNA 

transcripts were also detected in the samples. In total, we detected 219,729 mRNA transcripts 

and 71,756 introns in at least 1 subject and 130,438 mRNA transcripts and 54,610 introns in at 

least 25% of the subjects. Untargeted metabolomics detected 1801 metabolites in at least 1 

subject and 1509 in at least 25% of the subjects (Figure 2). Lastly, targeted immunoassay data 

focused on 4 proteins (CA125a, CA15-3, CEA, CA19-9) were collected on all subjects. Although 

none of these proteins are specific to a particular cancer, they are commonly used in tandem to 

monitor progression for various cancers.48  

QC for enrolled subjects included verification of clinical eligibility and confirmation of data 

availability for all ‘omics types. Subjects passing QC were divided into 2 groups: one for training 

machine learning-based classifiers (training set; N = 1225) and one for validating classifier 

performance (validation set; N = 398) (Figure 1B). To begin to explore the differences in blood 

analytes between subjects with lung cancer and non-cancer subjects, univariate differential 

analysis was performed using data from the training set subjects for each ‘omics type 
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separately. After correcting for multiple-hypothesis testing, we detected 6109 peptides, 40,171 

mRNA transcripts, 9368 intronic regions, 241 metabolites, and 4 targeted proteins that were 

differentially abundant between the lung cancer and non-cancer cohorts (Bonferroni-corrected 

p-value < 0.05). To understand if these differentially abundant analyte features may be 

identifying distinct lung cancer signals across individuals, unsupervised bi-clustering of these 

features was performed. Substantial heterogeneity in molecular patterns was observed within 

both lung cancer and non-cancer cohorts. These findings provided the rationale for supervised 

machine learning on multi-omics data for lung cancer classification. 

Classifiers trained on untargeted proteomics features achieved an AUC > 0.9, which was 
further improved by combining additional ‘omics features 

We first trained a baseline classifier using only clinical variables (age, sex, and smoking 

status) to function as a performance comparator. The baseline classifier had an area under the 

receiver-operator characteristic (ROC) curve (AUC) of 0.78 (95% confidence interval [CI] 0.75-

0.80) for all-stage lung cancer.  

The performance of a classifier trained on only untargeted peptide features significantly 

outperformed this baseline model, achieving an AUC of 0.91 (95% CI 0.90-0.93) for all-stage 

lung cancer. To investigate if multi-omics data could further improve lung cancer classification, 

we trained a multi-omics classifier using analyte features from untargeted proteomics, 

metabolomics, RNA-seq, and the 4 immunoassayed proteins. This final multi-omics classifier 

had an all-stage lung cancer AUC of 0.96 (95% CI 0.96-0.97) and a stage I AUC of 0.93 (95% 

CI 0.92-0.95). The ROC curve for the multi-omics classifier showed that lung cancers could be 

detected with high sensitivity while maintaining high specificity (Figure 3). 
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Figure 3. Performance of trained lung cancer classifier models. ROC curve of the multi-

omics classifier (black) and untargeted proteomics classifier (pink) for all-stage lung cancers 

versus non-cancers. 

 

Because the performance of the multi-omics classifier was superior to that of the 

baseline classifier (Figure 3), it was evident that the multi-omics classifier incorporated cancer-

associated molecular patterns that cannot be solely attributed to age, sex, and smoking status 

to classify samples as cancer or non-cancer. Nonetheless, as these clinical variables were not 

balanced between lung cancer and non-cancer cohorts (Table 1), we needed to confirm that the 

multi-omics classifier was not fitting to these clinical variables rather than to cancer status. We 

evaluated the performance of the multi-omics classifier to predict sex across all subjects (AUC 

0.56; 95% CI 0.53-0.59), smoking status among subjects with and without lung cancer (AUC 

0.64; 95% CI 0.53-0.74 and AUC 0.65; 95% CI 0.61-0.69, respectively), and binarized age 
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(above or below the median value of 67 years) among subjects with and without lung cancer 

(AUC 0.53; 95% CI 0.47-0.60 and AUC 0.69; 95% CI 0.66-0.73, respectively). These results 

were significantly better than random (AUC = 0.5), but much worse than what was seen for lung 

cancer classification, reinforcing that the multi-omics classifier is predictive of cancer status 

specifically. Since the clinical variables were not used as inputs during classifier training, we 

further surmised that these non-random results may reflect molecular signatures of sex, age, 

and smoking linked to cancer, as all 3 clinical variables are themselves risk factors of disease. 
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   Overall Lung cancer 
cohort 

Non-cancer 
cohort P-Value 

n   2513 873 1640   
n (clinically 

eligible subjects)    2094 816 1278   

Age, median 
years [Q1,Q3]   63.0 

[53.0,71.0] 
68.0 

[62.0,75.0] 
58.0 

[47.0,67.0] <0.001 

Sex, n (%) Female 1141 (54.5) 393 (48.2) 748 (58.5) <0.001 
 Male 948 (45.3) 423 (51.8) 525 (41.1)   

 Unknown 5 (0.2)   5 (0.4)   

Smoking history, 
n (%) Current/past 1314 (62.8) 750 (91.9) 564 (44.1) <0.001 

 Never 780 (37.2) 66 (8.1) 714 (55.9)   

Category, n (%) Cancer, stage I 236 (11.3) 236 (28.9)   <0.001 
 Cancer, stage II 74 (3.5) 74 (9.1)     

 Cancer, stage III 190 (9.1) 190 (23.3)     

 Cancer, stage IV 232 (11.1) 232 (28.4)     

 Cancer, stage 
unknown 84 (4.0) 84 (10.3)     

 Non-cancer, 
comorbid 627 (29.9)   627 (49.1)   

 Non-cancer, 
non-comorbid 651 (31.1)   651 (50.9)  

 
Table 1. Subject composition in the MOSAIC study. 
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Validation of the multi-omics classifier shows high sensitivity and specificity for 
detection of early-stage lung cancer 

Given the high performance of the multi-omics classifier in the training set, we next 

assessed the sensitivity and specificity of this classifier on the held-out validation set of 398 

study subjects (Table 1). First, we fixed the decision threshold of the multi-omics classifier to 

87.5% sensitivity across all lung cancer stages from the training set (Methods) and then 

evaluated the performance of the classifier at this threshold (henceforth, “model”) in the 

validation set. Specificity was 89% (95% CI 84-93) and sensitivity was 89% (95% CI 83-93) 

across all lung cancer stages (Figure 4). Sensitivities for stage I, stage II, and stage III-IV (late-

stage) lung cancer were 80% (95% CI 68-88), 88% (95% CI 69-98), and 99% (95% CI 94-100), 

respectively (Figure 4). These values were similar to those observed in cross-validation on the 

training set using the same model. 

 

Figure 4. Performance of the validated multi-omics classifier.  Stage-wise sensitivity and 

specificity of the multi-omics classifier for subjects from training (black) and validation (pink) 

datasets. Error bars indicate 95% Clopper-Pearson confidence intervals. The number of 

subjects in each sub-group is denoted in parentheses. 
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No individual ‘omics type dominate the most important features of the validated model 
To gain a broader understanding of the relative contributions of the different ‘omics types 

to the validated model, the 682 analyte features that comprise the model were ranked based on 

the mean-information-gain criterion (see Figure 5 for the ‘omics-type distribution among the top 

50 features). 211 of these features were peptide sequences that mapped to 149 distinct 

proteins, and 354 of the features were transcripts (gene isoforms as well as introns) that 

mapped to 346 distinct genes. The remaining 117 features were metabolites from 77 distinct 

metabolic pathways. No individual ‘omics type appeared over-represented among these 

features. At least 2 features from each ‘omics type were present in the top 20 features, further 

underscoring the complementary information coming from the different ‘omics types and the 

importance of a multi-omics approach to enhance classifier performance.  
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Figure 5. Features of the multi-omics model ranked by importance score as determined 
by information gain. Colors indicate ‘omics type. For ease of interpretation, only importance 

scores for the top 50 features are shown. 
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The important features of the validated model associate with cancer stage progression 
To investigate the biological significance of the 682 analyte features of the validated 

model, we evaluated if the abundance of each individual feature trended with lung cancer stage. 

Of the 682 features, 412 (60.4%) were significantly associated with cancer stage (Bonferroni-

corrected p-value < 0.05; Figure 6). This finding suggests that individual features of the 

validated model might themselves be informative of cancer pathophysiology.  

 

Figure 6. Association of analyte feature abundance and lung cancer stage. Plot of the 

slope and statistical significance of all 682 features from the validated multi-omics classifier with 

respect to association with cancer stage. Features with a statistically significant association to 

cancer stage (Bonferroni-corrected p-value < 0.05) are denoted in pink. 
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Discussion 

This study represents the largest deep multi-omics interrogation to date, with a lung 

cancer case-control cohort of 2513 subjects. We leveraged an untargeted approach to collect 

and analyze over 750,000 orthogonal protein, transcript, and metabolite features that were used 

to train a machine learning-based lung cancer classifier. This multi-omics classifier detected all-

stage and early-stage lung cancer with high specificity and sensitivity in a held-out validation 

set. The unprecedented breadth and depth of this multi-omics approach presents new 

opportunities for biomarker discovery. This variety of newly accessible blood analytes has not 

been adequately represented in previous individual- or multi-analyte approaches that focus on 

capturing disease signals wholly from genetic material. As the features of the validated model 

comprise a mix of proteins, transcripts, and metabolites, we hypothesize that different aspects 

of disease are captured by different ‘omics approaches, suggesting differential and 

complementary sampling of biological space. 

Despite the very large number of individual features detected across all ‘omics types in 

this study, after modeling, the final multi-omics classifier was composed of a manageable 

number of features representing 149 distinct proteins, 346 distinct genes, and 77 distinct 

metabolic pathways that facilitate further development of a practicable assay for early detection 

of lung cancer. Clinical development of this assay would address a critical clinical need for early 

cancer detection given the classifier’s performance at detecting stage I disease, which 

comprised a majority (51.8%) of lung cancer cases in the National Lung Screening Trial.22 

Although the high performance of the multi-omics classifier suggests a potential future 

impact on lung cancer health outcomes, there are limitations associated with this study. In 

particular, although we have designed this study to include all stages of lung cancer, as well as 

control subjects with pulmonary comorbidities and subjects who smoke, the findings from this 

work will need to be validated in an appropriately powered prospective study of the intended use 

population of high-risk individuals aligned with USPSTF, ACS, and NCCN recommendations for 

annual LDCT screening for lung cancer.10-12 This work is ongoing. Despite these caveats, the 

depth and breadth of the novel biological space interrogated in this study suggest favorable 

generalization to the prospective intent-to-test setting and supports the further development of a 

test for the early detection of all- and early-stage lung cancer using plasma from peripheral 

blood samples. 
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We have demonstrated the high performance of a novel, untargeted multi-omics 

biomarker discovery approach with unprecedented interrogative depth and breadth for the early 

detection of all- and early-stage lung cancer. This platform is generally extensible to additional 

applications, such as companion diagnostics, recurrence monitoring, and minimal residual 

disease testing.49 Given the potential broad clinical utility of the multi-omics approach 

demonstrated in this study, we anticipate that the growing number of population studies that 

collect peripheral blood samples50,51 will enable commensurate expansion of multi-omic 

interrogations of additional complex diseases with great unmet medical need. 
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Methods 

Study overview and enrollment criteria 
This report describes the MOSAIC study, an observational case-control study of 2513 

subjects (Table 1) enrolled from 77 unique clinical sites in the US per 2 separate IRB-approved 

protocols, denoted as 102 and 201. This study was initiated in 2018 and designed to provide 

peripheral blood samples for discovery and validation of lung cancer biomarkers. All enrolled 

subjects were adults ≥ 18 years of age and provided written informed consent. Study 102 

subjects included diagnosis-aware but treatment-naïve histopathologically confirmed lung 

cancer subjects (lung cancer cohort) as well as subjects with no prior history of malignancy 

except non-melanoma skin cancer (non-cancer cohort). Comorbidities of interest, including 

clinically significant pulmonary (e.g., chronic obstructive pulmonary disease, emphysema, 

pulmonary fibrosis) and gastrointestinal (e.g., inflammatory bowel disease, pancreatitis, 

hereditary gastrointestinal cancer syndromes) comorbidities were recorded for all subjects. 

Study 201 included subjects without any prior history of malignancy with 1 or more pulmonary 

nodules that were 6-30 mm in largest diameter and confirmed radiologically prior to enrollment 

with planned subsequent histopathological characterization. Study 201 subjects were included 

in both the lung cancer and non-cancer cohorts consistent with histopathological 

characterization of the biopsied pulmonary nodule(s). A common exclusion criterion for all 

subjects and studies included the concomitant receipt of biological therapeutics for any 

indication; no specific small molecule therapeutics for any non-exclusionary condition were 

prohibited. 

Of the 2513 total subjects, 2094 were clinically eligible, consisting of 816 with lung 

cancers (all stages) and 1278 non-cancer controls (Table 1 and Figure 1B). Malignancies were 

confirmed histopathologically and staged by the subject’s treating physician(s). At the time of 

enrollment, subjects with lung cancer were treatment-naïve, with some aware of their diagnosis 

(Study 102) and others not (Study 201). Pulmonary nodules classified as benign had been 

either confirmed histopathologically or presumed benign given a history of multiple stable scans 

over ≥ 1 year consistent with Lung-RADS® 1 guidelines. 276 subjects who had indeterminate 

pulmonary nodules with nondiagnostic histopathological characterization and/or insufficient 

radiographic surveillance to support presumptive classification of their pulmonary nodules as 

benign per stability on successive scans were excluded. Subjects with histopathologically 

confirmed benign lung pathologies were categorized as non-cancer controls. Non-cancer control 

subjects with no lung nodules were further categorized as those with and without comorbidities 
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of interest (defined above). Comorbidities were confirmed by subjects’ medical history collected 

by the participating sites. Of the 1278 non-cancer control subjects, 105 had benign pathologies. 

Of the remaining 1173 non-cancer subjects, 673 had comorbidities of interest and 500 had 

neither benign pathologies nor comorbidities of interest.  

Blood sample collection 
For all subjects, the median time from enrollment to blood sample collection was 0 days. 

Per subject, 3 blood samples with a total volume ≤ 50 mL were collected with 3 distinct tube 

types, specifically dipotassium ethylenediaminetetraacetic acid (K2 EDTA) plasma tubes, serum 

separator (SST) tubes, and PAXgene® RNA tubes (Figure 1A). All sample collection was 

consistent with manufacturer’s instructions for each tube type. K2 EDTA plasma tubes were 

centrifuged within 1 hour of collection, and SST tubes were held at room temperature for at least 

30 minutes prior to centrifugation. Plasma and serum were aspirated and frozen within 1 hour of 

centrifugation. Samples were stored at -20°C (or -80°C where available) at the collection site for 

up to 1 week prior to shipment. Plasma samples, serum samples, and PAXgene® tubes were 

shipped on dry ice. No additional processing of any tube was performed at the collection site. 

Molecular assay sample processing  
Prior to any molecular assay sample processing, study subjects were randomly assigned 

into either a training set or validation (i.e., testing) set such that clinical site separation was 

maximized between the 2 partitions. Sample processing to isolate and measure analytes from 

the corresponding collection tubes was done in a blinded fashion for both the training and 

validation partitions. 

Metabolomics and RNA-seq sample processing were conducted by Metabolon Inc. 

(Morrisville, NC) and Discovery Life Sciences (Huntsville, AL), respectively. Proteograph™ 

sample processing and liquid chromatography-mass spectrometry (LC-MS) proteomics data 

acquisition was done internally and described as follows. 

Proteomics sample processing  
A total of 2094 K2 EDTA plasma samples were processed with the Proteograph Assay 

(Seer, Redwood City, CA) using a 5 nanoparticle (NP1-5) panel following the manufacturer’s 

protocol. Process control samples were collected, processed, and aliquoted by BioIVT 

(Westbury, NY). Each batch was balanced to have proportionate representation of cases and 

controls as well as clinical variables of age, sex, and smoking status. Prior to loading onto the 

Proteograph instrument, plasma samples were thawed for 60 minutes at 4˚C and transferred to 
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2 mL tubes provided with the Proteograph assay kit. Following Proteograph-processing, the 

eluted peptide concentration was measured using a quantitative fluorometric peptide assay kit 

(Cat. No. 23290, Thermo Scientific, Waltham, MA). Following peptide quantification, plates of 

eluted peptides were dried down in a CentriVap® vacuum concentrator (LabConco, Kansas City, 

MO) at room temperature overnight and then stored at -80˚C. Prior to use, the dried peptide 

plates were equilibrated at room temperature for 30 minutes and then reconstituted to a 

concentration of 30 µg/mL for NP1-3,5 and 15 µg/mL for NP4 in a reconstitution buffer (0.1% 

formic acid [Thermo Fisher, Waltham, MA] in LC-MS grade water [Honeywell, Charlotte, NC] 

spiked with heavy isotope-labeled retention time peptide standards [iRT, Biogynosys, 

Switzerland and PepCal, SciEX, Redwood City, CA] prepared according to manufacturer’s 

instructions). Peptides were fully reconstituted by shaking for 10 minutes at 1000 rpm at room 

temperature on an orbital shaker and spun down briefly (approximately 10 seconds) in a 

centrifuge and then loaded onto Evotip separation tips (Evosep, Denmark) following the 

manufacturer’s protocol. The processed tips were placed on the Evosep One LC system 

(Evosep, Denmark) and peptides were separated on a reversed-phase 8 cm, 150 μM, 1.5 μM, 

100 Å column packed with C18 resin (Pepsep, Germany) using a 60 samples per day (SPD) LC 

gradient at 40˚C (Sonation column oven, Lab Sweden AB). 

LC-MS data acquisition  
The LC-MS platform consisted of 4 Evosep One LC systems coupled to 4 timsTOF HT 

mass spectrometers (Bruker, Germany) set to data independent acquisition (DIA) with parallel 

accumulation-serial fragmentation (dia-PASEF®) mode.52 Proteograph-processed plasma 

samples were analyzed simultaneously across the 4 LC-MS platforms. A proportional number of 

samples from subjects with lung cancer and non-cancer control subjects with and without 

comorbidities of interest were run on each of the 4 LC-MS platforms. Source capillary voltage 

was set to 1700 V and 200°C. The first MS scan (MS1) to identify peptide precursors was 

across 100 – 1700 m/z range and an ion mobility window spanning 1/K0 0.75 – 1.31. Peptide 

precursors were fragmented using collision energies following a linear step-function ranging 

between 20 eV – 63 eV. Trapped ion mobility spectrometry cell accumulation time was set at 

100 milliseconds and the ramp time at 85 milliseconds. For the second MS scan (MS2), variable 

m/z and ion mobility windows were selected for fragmentation utilizing a Python package for DIA 

with automated isolation design (py_diAID).53  

All raw files were analyzed with DIA-Neural Network (NN) (version 1.8.1).54 Trypsin 

protease cleavage with a maximum of 2 missed cleavages was allowed. Cysteine 
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carbamidomethylation was set as fixed modification, while oxidation of methionine and N-

terminal protein acetylation were set as variable modifications. MS1 and MS2 mass tolerances 

were automatically determined by DIA-NN. A cutoff of 1% peptide precursor false discovery rate 

was used. For other parameters, default DIA-NN settings were applied. DIA-NN outputs were 

analyzed and visualized with a Python Jupyter notebook and Python packages, pandas 

(1.5.1),55,56 scipy (1.10.1),57 numpy (1.23.5),58 seaborn (0.12.2),59 and matplotlib (3.5.1).60  

Data normalization and transformation 
Peptide precursor quantity was summed per NP per detected peptide to yield a total 

intensity for an NP-sequence pair. Modified peptides with different post-translational 

modifications were treated as different features when summing. Intensity values were natural 

log-transformed and then DESeq2 normalization61 was separately applied to the data for each 

respective NP. 

Univariate differential analysis 
 Wilcoxon tests were performed to identify individual, differentially abundant analytes 

between subjects with lung cancer and non-cancer subjects in the training set. P-values within 

each ‘omics type were adjusted for multiple hypotheses testing using the Bonferroni correction 

and a pre-specified threshold of 0.05 was used to denote statistical significance. 

Machine learning and the lung cancer classifier model 
Of the 2094 histopathologically confirmed subjects meeting clinical eligibility, 1623 

subjects (1225 in training and 398 in validation) were profiled across all molecular assays and 

passed QC checks on sample contamination and sample swaps. 

To train the machine learning model, only subjects from the training set were used. For 

training of ‘omics-based classifiers, molecular analytes detected in < 25% of training subjects 

were excluded. Data on all remaining analytes were collated and any remaining missing values 

were imputed to the minimum value seen across training samples for each respective ‘omics 

type. For training the baseline classifier built on clinical variables (age, sex, and smoking 

status), age values were used as-is while sex (male/female) and smoking status (ever/never) 

categories were one-hot encoded. No exclusions nor imputations were made. Finally, for 

training of all classifiers, analyte feature values were standardized to zero mean and unit 

variance across the training subjects. All reference values used for normalization, imputation, 

and standardization were recorded.  
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A regularized, tree-based gradient boosted model (XGBoost)62 was fitted to the training 

data using hyperparameters optimized across 10 repeats of 10-fold cross validation. 

Specifically, for each repeat, the sample mean AUC of each group of hyperparameters was 

determined based on 10-fold cross validation. The mean of the sampling distribution of sample 

mean AUCs across the 10 repeats was then calculated and used as the generalized 

performance estimate of that hyperparameter group. The hyperparameter group with the 

highest estimated generalized performance was used to fit the final multi-omics lung cancer 

classifier model on the full training dataset. 

To generate a prediction for each subject, the probability value corresponding to 87.5% 

sensitivity on the training set subjects (across all cancer stages) was selected as the 

classification threshold for cancer.  

Validation of the multi-omics lung cancer classifier model 
As an important safeguard against information leakage that may impact model 

generalizability, the machine learning team was blinded to the validation data until after 

classifier training was completed and the trained cancer classifier model was locked. QC checks 

(used to disqualify samples for inclusion in validation) were defined with the training dataset only 

to prevent information leakage. 

Data from the held-out validation set of 398 subjects were processed in a similar fashion 

as the training set; however, the reference values used for normalization, imputation, and 

standardization were based on what was recorded in the training set rather than calculated 

anew from the validation set. 

The trained and locked multi-omics lung cancer classifier was then applied to each 

subject in the validation set. Specificities and sensitivities for all subgroup analyses (overall and 

individual stage) were calculated based on these predictions. 

Trend analysis with cancer stage 
 Ordinary least squares regression was used to fit a univariate model of lung cancer 

stage across subjects in the training set to each of the 682 analyte features. Non-cancer 

subjects were encoded as 0, and subjects with lung cancer but no stage information were 

excluded from these analyses. For each model, the fitted coefficient (and statistical significance 

thereof) of the lung cancer stage was used to indicate the direction of association between 

cancer stage and the corresponding feature. P-values were adjusted for multiple hypotheses 
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testing using the Bonferroni correction and a pre-specified threshold of 0.05 was used to denote 

statistical significance. 
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