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 2

Author Summary 48 

Transcriptome-wide association studies (TWAS) can be used to understand the mechanisms of 49 

gene expression that underly disease etiology. However, to date, TWAS methods have mostly 50 

been used in a single ancestry group, especially European ancestry (EA), and few TWAS have 51 

focused on cognitive function or structural brain measures. We used a newly developed TWAS 52 

method called the Multi-ancEstry TRanscriptOme-wide analysis (METRO) to incorproate gene 53 

expression data from 801 EA and 1,032 African ancestry (AA) adults to identify genes 54 

associated with general cognitive function, structural brain changes called white matter 55 

hyperintensities (WMH) that predispose people to vascular dementia, and another form of 56 

dementia called Alzheimer’s disease (AD). We found that reduced gene expression of ICA1L 57 

was associated with more WMH and with AD, indicating its potential contribution to 58 

overlapping AD and vascular dementia neuropathologies. To our knowledge, our study is the 59 

first TWAS of cognitive function and neurocognitive disorders using multiple ancestries. This 60 

work may expand the benefits of TWAS studies beyond a single ancestry group and help to 61 

identify gene targets for pharmaceutical or preventative treatment for dementia. 62 

 63 
  64 
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 65 
Abstract 66 
 67 

Genetic variants increase the risk of neurocognitive disorders in later life including 68 

Vascular Dementia (VaD) and Alzheimer’s disease (AD), but the precise relationships between 69 

genetic risk factors and underlying disease etiology are not well understood. Transcriptome-wide 70 

association studies (TWAS) can be leveraged to better characterize the genes and biological 71 

pathways underlying genetic influences on disease. To date, almost all existing TWAS have been 72 

conducted using expression studies from individuals of a single genetic ancestry, primarily 73 

European. Using the joint likelihood-based inference framework in Multi-ancEstry 74 

TRanscriptOme-wide analysis (METRO), we leveraged gene expression data from European 75 

(EA) and African ancestries (AA) to identify genes associated with general cognitive function, 76 

white matter hyperintensity (WMH), and AD. Regions were fine-mapped using Fine-mapping Of 77 

CaUsal gene Sets (FOCUS). We identified 266, 23, 69, and 2 genes associated with general 78 

cognitive function, WMH, AD (using EA GWAS summary statistics), and AD (using AA 79 

GWAS), respectively (Bonferroni-corrected alpha=P<2.9x10-6), some of which were previously 80 

identified. Enrichment analysis showed that many of the identified genes were in pathways 81 

related to innate immunity, vascular dysfunction, and neuroinflammation. Further, 82 

downregulation of ICA1L was associated with higher WMH and with AD, indicating its potential 83 

contribution to overlapping AD and VaD neuropathology. To our knowledge, our study is the 84 

first TWAS of cognitive function and neurocognitive disorders that used expression mapping 85 

studies in multiple ancestries. This work may expand the benefits of TWAS studies beyond a 86 

single ancestry group and help to identify gene targets for pharmaceutical or preventative 87 

treatment for dementia. 88 

 89 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 5, 2024. ; https://doi.org/10.1101/2024.01.03.24300768doi: medRxiv preprint 

https://doi.org/10.1101/2024.01.03.24300768
http://creativecommons.org/licenses/by-nc-nd/4.0/


 4

90 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 5, 2024. ; https://doi.org/10.1101/2024.01.03.24300768doi: medRxiv preprint 

https://doi.org/10.1101/2024.01.03.24300768
http://creativecommons.org/licenses/by-nc-nd/4.0/


 5

Introduction  91 
 92 

Adult-onset dementia is comprised of a group of aging-related neurocognitive disorders 93 

caused by the gradual degeneration of neurons and the loss of brain function. These changes lead 94 

to a decline in cognitive abilities and impairment of daily activities and independent function. In 95 

the United States, Alzheimer’s disease (AD), the most common cause of dementia, affects 6.8 96 

million adults age 65 and older (1). The second most common form of dementia is vascular 97 

dementia (VaD), which often co-occurs with AD and is underdiagnosed (1,2). VaD is often 98 

difficult to distinguish from AD because these diseases share cognitive symptoms including 99 

noticeable impairment in episodic and semantic memory. While AD and VaD often co-occur, 100 

each form of dementia has differing pathophysiology that may precede the illness decades prior.  101 

AD is characterized by aggregation of amyloid-beta protein and neurofibrillary tangles in 102 

brain tissue (3,4), while VaD may be caused by reduced blood flow to the brain as a result of 103 

small vessel disease (SVD) or stroke and is commonly seen in people with hypertension (5). AD 104 

is diagnosed based on a battery of memory tests, brain-imaging tests for degeneration of brain 105 

cells and laboratory tests to assess the presence of amyloid and tau proteins in cerebrospinal fluid 106 

(6). SVD is primarily detected on magnetic resonance imaging (MRI) as white matter 107 

hyperintensities (WMH). It has been hypothesized that vascular and neurodegenerative changes 108 

in the brain may interact in ways that increase the likelihood of cognitive impairment. A further 109 

challenge in the field is distinguishing between individuals who are aging normally from those 110 

with dementia pathology.  111 

 A greater understanding of the pathological processes that influence cognitive function in 112 

older adults is critical for early intervention during the long preclinical or prodromal phase prior 113 

to dementia onset, especially in vulnerable populations (7,8). For example, individuals of African 114 
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ancestry (AA) have a greater burden of and risk for developing dementia compared to Non-115 

Hispanic Whites (9–12). Differences in gene expression, which are influenced by both genetic 116 

and non-genetic factors, likely play a role in shaping racial/ethnic health disparities in 117 

neurological outcomes. However, the underlying molecular and environmental mechanisms that 118 

influence gene expression are not fully understood, especially in populations with non-European 119 

ancestries. Given the multifactorial and complex nature of dementia, multi-omic data integration 120 

across ancestry groups may lend insight into these disparities, allowing the identification of 121 

targets for intervention and treatment in populations that are most at risk (13). 122 

 Genome-wide association studies (GWAS) have identified genetic variants associated 123 

with cognitive function and dementia; however, most GWAS variants are located in non-coding 124 

regions so their functional consequences are difficult to characterize (14). Transcriptome-wide 125 

association studies (TWAS) utilize gene expression and genetic data to increase power for 126 

identifying gene-trait associations and characterizing transcriptomic mechanisms underlying 127 

complex diseases. To date, however, few TWAS have been conducted on cognitive or structural 128 

brain measures. Further, previous TWAS have primarily been conducted in populations of 129 

European ancestry (EA), but these results cannot always be generalized to other genetic 130 

ancestries due to differences in allele frequencies, patterns of linkage disequilibrium (LD), and 131 

relationships between SNPs and gene expression between populations (15–18). To better identify 132 

gene-trait associations in non-EA ancestries, it is necessary to incorporate results from recent 133 

expression quantitative trait locus (eQTL) mapping studies, which identify genetic variants that 134 

explain variations in gene expression levels, conducted in different ancestry groups.(19) 135 

Multi-ancEstry TRanscriptOme-wide analysis (METRO)(20) is a TWAS method that 136 

uses a joint likelihood-based inference framework to borrow complementary information across 137 
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multiple ancestries to increase TWAS power. In this study, we used genotype and gene 138 

expression data from 1,032 AA and 801 EA from the Genetic Epidemiology Network of 139 

Arteriopathy (GENOA) and summary statistics from published GWAS (21–24) to identify genes 140 

associated with general cognitive function, white matter hyperintensity, and AD. We then 141 

examined the contribution of different ancestry-dependent transcriptomic profiles on the gene-142 

trait associations. Greater knowledge of the underlying molecular mechanisms of dementia that 143 

are generalizable to both EA and AA is a critical step in evaluating potential causal variants and 144 

genes that could be targeted for pharmaceutical development. 145 

 146 
 147 
2. Materials and Methods 148 
 149 
2.1. Sample 150 

The Genetic Epidemiology Network of Arteriopathy (GENOA) 151 

The GENOA study is a community-based longitudinal study aimed at examining the 152 

genetic effects of hypertension and related target organ damage (25). EA and AA hypertensive 153 

sibships were recruited if at least 2 siblings were clinically diagnosed with hypertension before 154 

age 60. All other siblings were invited to participate, regardless of their hypertension status. 155 

Exclusion criteria included secondary hypertension, alcoholism or drug abuse, pregnancy, 156 

insulin-dependent diabetes mellitus, active malignancy, or serum creatinine levels >2.5mg/dL. In 157 

Phase I (1996-2001), 1,854 AA participants (Jackson, MS) and 1,583 EA participants 158 

(Rochester, MN) were recruited (25). In Phase II (2000-2004), 1,482 AA and 1,239 EA 159 

participants were successfully followed up, and their potential target organ damage from 160 

hypertension was measured. Demographics, medical history, clinical characteristics, information 161 

on medication use, and blood samples were collected in each phase. After data cleaning and 162 
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quality control, a total of 1,032 AA and 801 EA with genotype and gene expression data were 163 

available for analysis. Written informed consent was obtained from all participants, and approval 164 

was granted by participating institutional review boards (University of Michigan, University of 165 

Mississippi Medical Center, and Mayo Clinic). 166 

 167 

2.2. Measures 168 

2.2.1. Genetic Data 169 

 AA and EA blood samples were genotyped using the Affymetrix® Genome-Wide 170 

Human SNP Array 6.0 or the Illumina 1M Duo. We followed the procedures outlined by Shang 171 

et al.(18) for data processing. For each platform, samples and SNPs with a call rate <95%, 172 

samples with mismatched sex, and duplicate samples were excluded. After removing outliers 173 

identified from genetic principal component analysis, there were 1,599 AA and 1,464 EA with 174 

available genotype data. Imputation was performed using the Segmented HAPlotype Estimation 175 

& Imputation Tool (SHAPEIT) v.2.r(26)  and IMPUTE v.2(27) using the 1000 Genomes project 176 

phase I integrated variant set release (v.3) in NCBI build 37 (hg19) coordinates (released in 177 

March 2012). Imputation for each genotyping platform was performed separately and then 178 

combined. The final set of genotype data included 30,022,375 and 26,079,446 genetic variants 179 

for AA and EA, respectively. After removing genetic variants with MAF ≤ 0.01, imputation 180 

quality score (INFO score) ≤ 0.4 in any platform-based imputation, and indels, a total of 181 

13,793,193 SNPs in AA and 7,727,215 SNPs in EA were available for analysis. We used the 182 

GENESIS package(28) in R to infer population structure in the analytic sample, and the PC-AiR 183 

function was used to extract the first five genotype PCs which were subsequently used to adjust 184 

for population structure. 185 
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2.2.2. Gene Expression Data 186 

 Gene expression levels were measured from Epstein-Barr virus (EBV) transformed B-187 

lymphoblastoid cell lines (LCLs) created from blood samples from a subset of GENOA AA 188 

(n=1,233) and EA (n=919). Gene expression levels of AA samples were measured using the 189 

Affymetrix Human Transcriptome Array 2.0, while gene expression levels of EA samples were 190 

measured using Affymetrix Human Exon 1.0 ST Array. We followed the procedures outlined by 191 

Shang et al.(18) In particular, the Affymetrix Expression Console was used for quality control 192 

and all array images passed visual inspection. In AA, 28 samples were removed due to either low 193 

signal-to-noise ratio (n=1), abnormal polyadenylated RNA spike-in controls (Lys < Phe < Thr < 194 

Dap; n=24), sample mislabeling (n=2), or low RNA integrity (n=1), resulting in a total of 195 

n=1,205 AA samples for analysis. In EA, duplicated samples (n=31), control samples (n=11) and 196 

sex mismatch samples (n=2) were removed, resulting in n=875 EA samples for analysis. We 197 

processed data in each population separately. Raw intensity data were processed using the 198 

Affymetrix Power Tool software (29). AffymetrixCEL files were normalized using the Robust 199 

Multichip Average (RMA) algorithm which included background correction, quantile 200 

normalization, log2-transformation, and probe set summarization.(30) The algorithm also 201 

includes GC correction (GCCN), signal space transformation (SST), and gain lock (value=0.75) 202 

to maintain linearity. The Brainarray custom CDF(31) v.19 was used to map the probes to genes. 203 

This custom CDF uses updated genomic annotations and multiple filtering steps to ensure that 204 

the probes used are specific for the intended gene cluster. Specifically, it removes probes with 205 

non-unique matching cDNA/EST sequences that can be assigned to more than one gene cluster. 206 

As a result, gene expression data processed using custom CDF are expected to be largely free of 207 

mappability issues. After mapping, ComBat(32) was used to remove batch effects. For each 208 
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gene, we applied a linear regression model to adjust for age, sex, and first five genotype principal 209 

components (PCs). We then extracted the residuals and quantile normalized residuals across all 210 

samples. We analyzed a common set of 17,238 protein coding genes that were annotated in 211 

GENCODE (release 12) (33). 212 

  213 

2.2.3. GWAS summary statistics 214 

 We used summary statistics from GWAS for general cognitive function (21), WMH (22), 215 

AD in EA(23), and AD in AA(24) as input for METRO. Three of the GWASs, Davies et al. 216 

(2018), Sargurupremraj et al. (2020), and Bellenguez et al. (2022), were selected because they 217 

are the largest meta-analyses to date with publicly available summary statistics; however, we 218 

note that all three were conducted in primarily EA samples. We also selected the Kunkle et al. 219 

(2021) GWAS because it is the largest meta-analysis to date with public available summary 220 

statistics in primarily AA samples. Below, we describe each GWAS and also provide 221 

information about the corresponding TWAS analyses that were reported in two of the input 222 

GWAS (WMH(22) and AD in EA(23)) which use the same GWAS summary statistics as our 223 

analysis but different gene expression data. 224 

 225 

General cognitive function 226 

 We obtained GWAS summary statistics for general cognitive function from a meta-227 

analysis by Davies et al. (2018) that includes the Cohorts for Heart and Aging Research in 228 

Genomic Epidemiology (CHARGE), the Cognitive Genomics Consortium (COGENT) consortia 229 

and the UK Biobank (UKB; Table 1) (21). This study included 300,486 EA individuals with ages 230 

between 16 and 102 years from 57 population-based cohorts. This is the largest available GWAS 231 
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for general cognitive function, and there are currently no large-scale GWAS studies available in 232 

non-EA. General cognitive function was constructed from a number of cognitive tasks. Each 233 

cohort was required to have tasks that tested at least three different cognitive domains. Principal 234 

component (PC) analysis was performed on the cognitive tests scores within each cohort, and the 235 

first unrotated component was extracted as the measure of general cognitive function. Models 236 

performed within each cohort were adjusted for age, sex, and population stratification. Exclusion 237 

criteria included clinical stroke (including self-reported stroke) or prevalent dementia. 238 

 239 

White matter hyperintensity  240 

 We obtained the GWAS summary statistics for WMH from a meta-analysis conducted by 241 

Sargurupremraj et al. (2020) that included 48,454 EA and 2,516 AA with mean age of 66.0 242 

(SD=7.5) years from 23 population-based studies from the CHARGE consortium and UKB 243 

(Table 1) (22). We obtained publicly available GWAS summary statistics from only EA 244 

individuals. Summary statistics for only EA are publicly available for this GWAS. WMH was 245 

measured from MRI scans obtained from scanners with field strengths ranging from 1.5 to 3.0 246 

Tesla and interpreted using a standardized protocol blinded to clinical or demographic features. 247 

In addition to T1 and T2 weighted scans, some cohorts included fluid-attenuated inversion 248 

recovery (FLAIR) and/or proton density (PD) sequences to measure WMH from cerebrospinal 249 

fluid. WMH volume measures were inverse normal transformed, and models adjusted for sex, 250 

age, genetic PCs and intracranial volume (ICV). Exclusion criteria included history of stroke or 251 

other pathologies that influence measurement of WMH at the time of MRI.  252 

 To functionally characterize and prioritize individual WMH genomic risk loci, 253 

Sargurupremraj et al.(22) (2020) conducted TWAS using TWAS-Fusion(34) with summary 254 
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statistics from the WMH SNP-main effects (EA only) analysis and weights from gene expression 255 

reference panels from blood (Netherlands Twin Registry; Young Finns Study), arterial 256 

(Genotype-Tissue Expression, GTEx), brain (GTEx, CommonMind Consortium) and peripheral 257 

nerve tissue (GTEx). This study did not perform fine-mapping following TWAS analysis. 258 

 259 

Alzheimer’s disease (GWAS in EA) 260 

We obtained the EA GWAS summary statistics for Alzheimer’s disease from stage I 261 

meta-analysis by Bellenguez et al. (2022) that included EA from the European Alzheimer and 262 

Dementia Biobank (EADB), GR@ACE, EADI, GERAD/PERADES, DemGene, Bonn, the 263 

Rotterdam study, CCHS study, NxC and the UKB (Table 1) (23). The meta-analysis was 264 

performed on 39,106 clinically diagnosed AD cases, 46,828 proxy-AD and related dementia 265 

(ADD) cases, and 401,577 controls. AD cases were clinically diagnosed in all cohorts except 266 

UKB, where individuals were identified as proxy-ADD cases if their parents had dementia. 267 

Participants without the clinical diagnosis of AD, or those without any family history of 268 

dementia, were used as controls. Models performed within each cohort were adjusted for PCs 269 

and genotyping centers, when necessary.  270 

 To examine the downstream effects of new AD-associated variants on molecular 271 

phenotypes in various AD-relevant tissues, Bellenguez et al. (2022) conducted a TWAS with 272 

stage I AD GWAS results. The TWAS was performed by training functional expression and 273 

splicing reference panels based on the Accelerating Medicines Partnership (AMP)-AD bulk brain 274 

and EADB lymphoblastoid cell lines (LCL) cohorts, while leveraging pre-calculated reference 275 

panel weights(35) for the GTEx dataset(36) in tissues and cells of interest. TWAS associations 276 

were then fine-mapped using Fine-mapping Of CaUsal gene Sets (FOCUS) (37). 277 
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 278 

Alzheimer’s disease (GWAS in AA) 279 

 We also acquired the AA GWAS summary statistics for Alzheimer’s disease from meta-280 

analysis by Kunkle et al. (2021)(24) that included individuals of African American ancestry from 281 

15 cohort studies from the AD Genetics Consortium (ADGC; Table 1). The meta-analysis was 282 

performed on 2,748 clinically diagnosed AD cases and 5,222 controls with a mean age of 74.2 283 

years (SD=13.6). Models performed within each cohort were adjusted for age, sex, and PCs for 284 

population substructure.  285 

 286 

2.3 Statistical Methods 287 

2.3.1. Multi-ancestry transcriptome-wide association study 288 

Using the Multi-ancEstry TRanscriptOme-wide analysis (METRO) (20), we conducted a 289 

high-powered TWAS with calibrated type I error control to identify the key gene-trait 290 

associations and transcriptomic mechanisms underlying general cognitive function, WMH and 291 

AD. Since gene expression prediction models constructed in different ancestries may contain 292 

complementary information, even when the input GWAS was conducted in a single ancestry 293 

(20), we used METRO to model gene expression from EA and AA simultaneously. METRO 294 

uses a joint-likelihood framework that accounts for SNP effect size heterogeneity and LD 295 

differences across ancestries. The framework selectively upweights information from the 296 

ancestry that has greater certainty in the gene expression prediction model, increasing power and 297 

allowing characterization of the relative contribution of each ancestry to the TWAS results. 298 

METRO is described in Li et al.(20) Briefly, each gene is examined separately using gene 299 

expression data from M different genetic ancestries. Zm is the nm-vector of gene expression 300 
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measurements on nm individuals in the mth ancestry with m∈{1,…,M}. For the gene of interest, 301 

all cis-SNPs (p), which are in potential linkage disequilibrium (LD) with each other, were 302 

extracted as predictors for gene expression. Gm is denoted as the nm x p genotype matrix for these 303 

cis-SNPs. Besides the gene expression data, we also used GWAS summary statistics from n 304 

individuals for an outcome trait of interest. γ  is the n-vector of outcome measurements in the 305 

GWAS data and G is the corresponding n x p genotype matrix on the same set of p cis-SNPs. 306 

The expression vector zm, the outcome vector γ, and each column of the genotype matrixes are 307 

centered and standardized. Gm and G have a mean of zero and variance of one. For each TWAS, 308 

we used GWAS summary statistics in the form of marginal z-scores and a SNP-SNP correlation 309 

(LD) matrix estimated with genotype data from our GENOA sample that correspond with the 310 

ancestry of the GWAS (EA or AA). The following equations describe the relationships between 311 

the SNPs, gene expression and the outcome: 312 

 313 

Equation (1) describes the relationship between gene expression and the cis-SNP 314 

genotypes in the gene expression study in GENOA for the mth ancestry (EA or AA). βm is a p 315 

vector of the cis-SNP effects on the gene expression in the mth ancestry and εm is an nm-vector of 316 

residual errors with each element following an independent and normal distribution N(0, σ2
m) 317 

with an ancestry specific variance σ2
m. Equation (2) describes the relationship between the 318 

genetically regulated gene expression (GReX), calculated from estimated SNP prediction 319 

weights, and the outcome trait (general cognitive function, WMH or AD) from the GWAS. 320 

There, Gβ denotes an n-vector of GReX constructed for the GWAS individuals, where β = Σm 321 

14

se 

f 
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wmβm is a p-vector of SNP effects on the gene expression in the GWAS data, where the weights 322 

ΣM
m=1 wm=1 and wm≥0. The alpha value (α) is the effect of GReX constructed for the GWAS 323 

individuals on the outcome trait, and εy is an nm-vector of residual errors with each element 324 

following an independent and normal distribution N(0, σ2
m). Both equations, specified based on 325 

separate studies, are connected through the predictive SNP effects on the gene expression (βm 326 

and β). A key assumption made is that the SNP effects on the gene expression in the GWAS, β, 327 

can be expressed as a weighted summation of the SNP effects on gene expression in the 328 

expression studies conducted across ancestries. 329 

We derived the overall GReX effect α  and the contribution weight of each ancestry (w1 330 

for AA and w2 for EA) to infer the extent and contribution of the two genetic ancestries in 331 

informing the GReX-trait association. The joint model defined in Equations 1 and 2 allows us to 332 

borrow association strength across multiple ancestries to enable powerful inference of GReX-333 

trait associations for general cognitive function, WMH and AD. We declared the gene to be 334 

significant if the p-value was below the corresponding Bonferroni corrected threshold for the 335 

number of tested genes (P<0.05/17,238 = 2.90x10-6). Manhattan plots and quantile-quantile (QQ) 336 

plots were generated using the qqman(38) R package. 337 

 338 

2.3.2 Fine-mapping analysis 339 

Since genes residing in the same genomic region may share eQTLs or contain eQTL 340 

SNPs in LD with each other, TWAS test statistics for genes in the same region can be highly 341 

correlated, making it difficult to identify the true biologically relevant genes among them. To 342 

prioritize the putatively causal genes identified by METRO for general cognitive function, 343 

WMH, and AD, we conducted TWAS fine-mapping using FOCUS (Fine-mapping Of CaUsal 344 
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gene Sets) (37). To identify a genomic region with at least one significant gene detected by 345 

METRO, we obtained a set of independent, non-overlapping genomic regions, or LD blocks, 346 

using Ldetect (39). In each analyzed genomic block, using a standard Bayesian approach, we 347 

assigned a posterior inclusion probability (PIP) for each gene to be causal, given the observed 348 

TWAS statistics. We used gene-level Z scores, created from p-values using the inverse 349 

cumulative distribution function (CDF) of a standard normal distribution, as input into FOCUS. 350 

We then ranked the PIPs and computed the 90%-credible set that contains the causal gene with 351 

90% probability. In the FOCUS analysis, a null model which assumes none of the genes in the 352 

region are causally associated with the trait is also considered as a possible outcome and may be 353 

included in the credible set. Through fine-mapping, we narrowed down significantly associated 354 

genes identified by METRO to a shorter list of putatively true associations. 355 

 356 

2.3.3 Characterization of identified genes 357 

To interpret our TWAS findings, both before and after fine-mapping, we further 358 

examined whether the genes identified by METRO overlapped with those previously identified 359 

by their corresponding input GWAS. We created a set of Venn diagrams of overlapping genes 360 

identified using METRO with those from the SNP-based GWAS association results(21–24) 361 

mapped to the nearest gene using the VennDiagram R package (40). We then constructed a 362 

second set of Venn diagrams showing overlapping genes identified using METRO with genes 363 

identified by gene-based association analyses in each of the input GWAS studies. The gene-364 

based analyses were conducted using MAGMA(41) (general cognitive function,(21) WMH(22), 365 

and AD (AA GWAS)(24)) or gene prioritization tests (AD (EA GWAS)(23)). Finally, we 366 

created a set of Venn diagrams comparing genes identified using METRO with those identified 367 
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in the TWAS that were conducted as part of the WMH(22) and AD (EA GWAS)(23) input 368 

GWAS studies. We used the geneSynonym R package(42) to ensure that genes named differently 369 

across studies were captured. 370 

 371 

2.3.4 Functional Enrichment Analysis 372 

To characterize the biological function of the identified genes by METRO for general 373 

cognitive function, WMH and AD, we performed gene set enrichment analysis. Specifically, we 374 

used the g:GOSt(43) tool on the web software g:Profiler and mapped the genes to known 375 

functional informational sources, including Gene Ontology (GO): molecular function (MF), GO: 376 

biological process (BP), GO: cellular component (CC), Kyoto Encyclopedia of Genes and 377 

Genomes (KEGG), Reactome (REAC), WikiPathways (WP), Transfac (TF), MiRTarBase 378 

(MIRNA), Human Protein Atlas (HPA), CORUM protein complexes, and Human Phenotype 379 

Ontology (HP). In this analysis, we used the default option g:SCS method (Set Counts and Sizes) 380 

in g:Profiler for multiple testing correction and presented pathways identified with an adjusted p-381 

value < 0.05. Driver terms in GO are highlighted using a two-stage algorithm for filtering GO 382 

enrichment results, providing a more efficient and reliable approach compared to traditional 383 

clustering methods. This feature groups significant terms into sub-ontologies based on their 384 

relations, and the second stage identifies leading gene sets that give rise to other significant 385 

functions in the same group of terms. This method uses a greedy search strategy that recalculates 386 

hypergeometric p-values and results in the consideration of multiple leading terms in a 387 

component, rather than selection of terms with the highest significance level. 388 

 389 

Results 390 
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In Table 1, we provide descriptive statistics for the samples used in the eQTL mapping 391 

study (e.g., 1,032 AA and 801 EA from GENOA) and the four input GWAS.(21–23) The 392 

GENOA eQTL study included participants with a mean age of 56.9 (SD=10.0) years. More than 393 

half of participants were female (65.6%). Mean age of participants was 56.9 (SD=7.8) years in 394 

the general cognitive function GWAS(21), and 64.2 years in the WMH GWAS.(22) In the AD 395 

GWAS in EA (23), mean age was 73.6 (SD=8.1) years for cases and 67.9 (SD=8.6) years for 396 

controls. In the AD GWAS in AA (24), mean age was 74.2 (SD=13.6) years for all participants.  397 

Using METRO, we identified 602 genes associated with general cognitive function, 45 398 

genes associated with WMH, 231 genes associated with AD (EA GWAS), and 9 genes 399 

associated with AD (AA GWAS) that were significant at the Bonferroni corrected alpha level 400 

(P<2.90x10-6; Figure 1, Tables S1-3). Genomic inflation factors for the TWAS p-values ranged 401 

from 1.00 to 2.55 (Figure 2). Among the three neurocognitive outcomes, prior to fine-mapping, 402 

METRO TWAS identified the ICA1L gene overlapping between WMH and AD (from EA 403 

GWAS); the FMNL1 gene overlapping between WMH and general cognitive function; and 22 404 

genes enriched in AD-related pathways and functions overlapping between general cognitive 405 

function and AD (from EA GWAs) (Figure 3a; Figure S1). After fine-mapping, the only 406 

overlapping gene that remained was ICA1L between WMH and AD (Figure 3b). The METRO 407 

TWAS for AD (AA GWAS) identified 9 genes overlapping with those identified in AD (EA 408 

GWAS); however, following fine-mapping, only TOMM40 overlapped between the two AD 409 

TWASs (Figure 3b).  410 

For all identified genes, we also examined the contribution weights of expression 411 

prediction models for the EA and AA ancestries, prior to fine-mapping (P<2.90x10-6; Figure 4). 412 

For the WMH TWAS, we found that a large proportion of genes had stronger contributions from 413 
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EA weights than AA weights (65.2%). This is consistent with Li et al. (2022)(20) who found that 414 

the gene expression prediction models constructed in the same ancestry as the input GWAS, in 415 

this case EA, often have larger contribution weights than those constructed in other ancestries. 416 

However, for both general cognitive function and AD (EA and AA GWAS), the contributions 417 

from EA and AA weights were similar, which likely increased power to identify genes relevant 418 

to AA. 419 

After fine-mapping, there were 266 genes in the 90%-credible set across 172 different 420 

genomic regions for general cognitive function. This gene set included 82 genes that were not 421 

previously identified in the SNP-based GWAS results (mapped to the nearest gene) or the gene-422 

based analysis results from Davies et al. (2018)(21) (Figure 5, Table S1); however, it is likely 423 

that some of these genes are in broader genomic regions tagged by the GWAS-identified SNPs. 424 

Specifically, there were 126 and 168 overlapping genes between METRO and the SNP-based 425 

and gene-based associations from Davies et al. (2018)(21), respectively (Figure 5). The 266 426 

METRO-identified genes were enriched in regulatory pathways involved in protein binding (padj 427 

= 1.17 x 10-5), developmental cell growth (padj = 3.33 x 10-5), and protein metabolic process (padj 428 

= 7.18 x 10-4), as well as neurodevelopmental processes such as neuron to neuron synapse (padj = 429 

1.22 x 10-3) and neuron projection (padj = 7.14 x 10-3; Figure 6). The 82 genes that were not 430 

previously identified in Davies et al. (2018)(21) were enriched for positive regulation of 431 

biological process (padj = 1.77 x 10-2), proteasome activator complex (padj = 1.00 x 10-2), 432 

nucleoplasm (padj = 1.29 x 10-2) and chromatin (padj = 4.71 x 10-5; Figure S2).  433 

After fine-mapping, there were 23 genes in the 90%-credible set across 15 genomic 434 

regions for WMH, including 12 genes that were not previously identified in the SNP-based 435 

GWAS results mapped to the nearest gene or the gene-based analysis results from 436 
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Sargurupremraj et al. (2020)(22) (Figure 7, Table S2). Specifically, there were 7 and 12 437 

overlapping genes between METRO and the SNP-based and gene-based associations from 438 

Sargurupremraj et al. (2020)(22), respectively (Figure 7). The 23 METRO-identified genes were 439 

enriched for zinc finger motif (padj = 1.27 x 10-2), miRNA has-212-5p (padj = 1.94 x 10-2) and 440 

retinal inner plexiform layer (padj = 3.86 x 10-2; Figure 8). The 12 genes associated with WMH 441 

that were previously not identified by Sargurupremraj et al. (2020)(22) were enriched for DNA 442 

binding domain Zinc Finger Protein 690 (ZNF690; padj = 2.52 x 10-3) and ClpX protein 443 

degradation complex (padj = 4.97 x 10-2; Figure S3). 444 

After fine-mapping, there were 69 genes in the 90%-credible set across 56 genomic 445 

regions associated with AD (EA GWAS), including 45 genes that were not previously identified 446 

in the SNP-based GWAS results mapped to the nearest gene or the gene prioritization analysis 447 

results from Bellenguez et al. (2022)(23) (Figure 9, Table S3). Specifically, there were 16 and 14 448 

overlapping genes between METRO and the SNP-based and gene prioritization test results from 449 

Bellenguez et al. (2022)(23), respectively (Figure 9). The 69 METRO-identified genes were 450 

enriched for AD-associated processes including regulation of amyloid fibril formation (padj = 451 

1.87 x 10-3), amyloid-beta clearance (padj = 1.90 x 10-3), microglial cell activation (padj = 5.79 x 452 

10-3), amyloid-beta metabolic process (padj = 1.07 x 10-2), and neurofibrillary tangle (padj = 2.80 x 453 

10-4; Figure 10). The 45 genes associated with AD that were previously not identified by 454 

Bellenguez et al. (2022)(23) were enriched for hematopoietic cell lineage (padj = 1.73 x 10-3) and 455 

neurofibrillary tangle (padj = 9.13 x 10-3; Figure S4). 456 

We identified 2 genes, APOE and PVRL2, in the 90%-credible set associated with AD 457 

(AA GWAS) (Table S4). After fine-mapping, none of these genes overlapped with SNP-based 458 

GWAS results mapped to the nearest gene or the gene-based analysis results from Kunkle et al. 459 
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(2021), since they are both in the broader APOE region, which was the only identified gene in 460 

Kunkle et al (2021). The 2 METRO-identified genes were enriched for coreceptor-mediated 461 

virion attachment to host (padj = 4.96 x 10-2; Figure 11). 462 

We compared the genes identified by METRO before and after fine-mapping with those 463 

identified by TWAS studies in Sargurupremraj et al. (2020)(22) and Bellenguez et al. (2022)(23) 464 

which used TWAS-Fusion (Figure 12). For WMH, there were 16 and 10 genes identified both by 465 

METRO before and after fine-mapping and by the TWAS-Fusion analysis conducted by 466 

Sargurupremraj et al. (2020)(22), respectively (Table 2). For AD, there were 24 and 10 genes 467 

identified both by METRO before and after fine-mapping and by the TWAS-Fusion followed by 468 

FOCUS fine-mapping analysis conducted by Bellenguez et al. (2022)(23) (Table 3). ICA1L was 469 

the only gene overlapping between all four AD and WMH TWAS association results.  470 

 471 

Discussion 472 

While previous studies have identified genes associated with cognitive function, WMH, 473 

and AD, there are few TWAS that utilize genetic and gene expression data from multiple 474 

ancestries to elucidate gene-trait associations and molecular mechanisms underlying the 475 

etiologies of cognitive function and neurocognitive disorders. Using the METRO method in 476 

GWAS consisting primarily of EA followed by FOCUS fine-mapping, we identified 266, 23, and 477 

69 genes associated with general cognitive function, WMH, and AD, respectively, with 82, 12 478 

and 45 of them not previously identified in the original GWAS. In addition, using an AA 479 

GWAS, we identified 2 fine-mapped genes associated with AD, both of which are proximal to 480 

APOE. Studying the transcriptomic mechanisms underlying cognitive function, WMH and 481 

dementia using both EA and AA expression data may enhance our understanding of cognitive 482 
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health prior to and following the onset of dementia and further allow us to generalize findings 483 

from large scale EA GWAS to other ancestries. 484 

AD and SVD have overlapping features that contribute to dementia neuropathology 485 

including breakdown of the blood-brain barrier(44) and the presence of small cortical and 486 

subcortical infarcts, microbleeds, perivascular spacing, and WMH in brain tissue(45). After fine-487 

mapping, Islet Cell Autoantigen 1 Like (ICA1L) was identified in both the WMH and AD 488 

TWAS. This is as a highly plausible prioritized gene that is likely to modulate the metabolism of 489 

amyloid precursor protein (APP)(23) and increase risk of AD. ICA1L encodes a protein whose 490 

expression is activated by type IV collagen and plays a crucial role in myelination(46). Increased 491 

ICA1L expression is also associated with lower risk of AD(47–49) and small vessel strokes 492 

(SVS), the acute outcomes of cerebral SVD, which may lead to VaD(50). Consistent with these 493 

studies, our TWAS found that decreased expression of ICA1L is associated with increased risk of 494 

AD and WMH, a subclinical indicator of SVD. Single-cell RNA-sequencing has shown ICA1L 495 

expression to be enriched in cortical glutamatergic excitatory neurons, which are crucial 496 

components in neural development and neuropathology through their role in cell proliferation, 497 

differentiation, survival, neural network formation and cell death(51,52). ICA1L has been 498 

examined as a possible drug target for SVD, AD, and other neurodegenerative diseases(50,53); 499 

however, it is not recommended as a prioritized drug at this time due to potential side effects 500 

including increased risk of coronary artery disease and myocardial infarction as well as lower 501 

diastolic blood pressure(53). Nevertheless, ICA1L may contribute to overlapping AD and VaD 502 

neuropathology, and it could be a potential target for therapeutics and/or preventative treatments 503 

for AD and VaD in the future if adverse events can be reduced. 504 
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Our TWAS of AD (from EA GWAS) identified 45 genes that were not identified in the 505 

SNP-based GWAS results mapped to the nearest gene or the gene-based analysis reported in 506 

Bellenguez et al. (2022)(23). The 45 genes were enriched for hematopoietic cell lineage, which 507 

are progenitors of red and white blood cells including those related to immunity (e.g., natural 508 

killer cells, T- and B- lymphocytes and other types of leukocytes)(54–60). Our TWAS identified 509 

genes that have been previously associated with AD, including APOE, TOMM40, APOC4, CLU, 510 

PICALM and CR2, among others(23,61,62). While we identified APOE, the strongest genetic 511 

risk factor for AD in most populations, after fine-mapping, we did not identify ABCA7 which 512 

confers an equal or even greater risk for AD in AA(63–65). This finding is perhaps not 513 

surprising considering that our TWAS was conducted using an EA GWAS, and the strength of 514 

association between ABCA7 and AD is comparatively weaker in EA than in AA.(65) To identify 515 

genes associated with AD risk in AA populations, specifically, it would be beneficial to perform 516 

a TWAS utilizing a well-powered AD GWAS in AA.  517 

Our TWAS of AD (from AA GWAS) (24) identified only TOMM40 and PVRL2, both 518 

proximal to APOE. TOMM40 was also identified in our TWAS of AD (from EA GWAS), as 519 

well as other AD GWAS (23,61,62). PVRL2 has been associated with metabolic syndrome, 520 

diabetic dyslipidemia, and AD(66,67). One study found that polymorphisms in PVRL2 interact 521 

with variants in TOMM40 to increase AD risk through pathways related to amyloid-beta 522 

metabolism in older Chinese adults(67). As larger AD GWAS in AA become available, we may 523 

be able to identify additional genes associated with disease while leveraging transcriptomic data 524 

from EA and AA. 525 

In our AD EA TWAS, we also identified genes associated with other neurological and 526 

autoimmune diseases including Parkinson’s disease (CYB561(68) and SLC25A39(69)), Crohn’s 527 
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disease (ATG16L1(70)), Amyotrophic lateral sclerosis (SIGLEC9(71)), and Riboflavin Transport 528 

Deficiency (SLC52A1(72)). These diseases have in common the progressive peripheral and 529 

cranial degeneration of neurons that impact processes such as voluntary muscle movement, 530 

vision, hearing and sensation. Although not explicitly identified in Bellenguez et al. (2022)(23), 531 

we also identified genes that were associated with AD in other studies including RIN3 that is 532 

implicated in tau-mediated pathology, the MS4A (4A and 6A) locus associated with mast cell 533 

activation, TP53INP1 and ZYX that have been linked to myeloid enhancer activity(73), and 534 

APOC4, which is located proximal to APOE(74). We also identified additional genes involved in 535 

B cell autoimmunity (HLA-DQA2(75,76) and CSTF1(77)), neurodegenerative processes 536 

(SUPT4H1(78), C6orf10(79), IKZF1(80), and DEDD(81)), and neuronal growth (IKZF1(80) and 537 

STYX(82)). Our findings support the hypothesis that chronic activation of immune cells resident 538 

in the brain and peripheral nervous system appear to play a critical role in neuroinflammatory 539 

responses that drive the progression of neurodegeneration in AD.(83) Further, consistent with 540 

findings that AD and VaD often co-exist, our AD TWAS identified genes that were associated 541 

with lacunar and ischemic strokes as well as cerebral small vessel disease in other studies, 542 

including SLC39A13(84), RAPSN(84), MAF1(85), and MME(86,87).  543 

Although our WMH TWAS identified 12 genes that were not included in the SNP-based 544 

GWAS results mapped to the nearest gene or the gene-based analysis reported in Sargurupremraj 545 

et al. (2020)(22), other studies found associations between MAP1LC3B(88), ARMS2(89,90) and 546 

HTRA1(84) with ischemic stroke, lacunar stroke, and cerebral SVD. The WMH TWAS also 547 

identified genes associated with AD (ARMS2)(91), atrial fibrillation (NEURL(92) and 548 

GJC1(93)), innate immunity (EFTUD2(94)) and apoptosis and neurodevelopment (PDCD7(95), 549 

FBXO31(96), and ClpX(97)). The 12 unique genes identified for WMH were enriched for DNA 550 
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binding domain Zinc Finger Protein 690(98), which plays an essential role in gene regulation, 551 

transcription and various cellular processes, and ClpX protein degradation complex(99), which 552 

maintains protein homeostasis. Our findings were consistent with studies that showed 553 

neuroinflammation to be an immunological cascade reaction by glial cells of the central nervous 554 

system where innate immunity resides.  555 

While our TWAS for general cognitive function did not show overlapping genes between 556 

the TWAS for AD and VaD, we identified genes associated with general cognitive function that 557 

were not explicitly identified by Davies et al. (2018)(21) which were associated with pre-clinical 558 

AD and VaD risk factors including cardiovascular diseases, immunity and Alzheimer’s 559 

neuropathology. Our TWAS also identified genes previously associated with cognitive domains, 560 

neuropathology, and psychiatric illness including reading-related skills and neural structures 561 

(SEMA6D(100) and SETBP1(101)), working memory tasks (CDH13(102)) and Schizophrenia 562 

(HP(103,104), C18orf1(105) and TMEM180(106)). There are likely also distinct transcriptomic 563 

mechanisms that differentiate cognitive function and normal age-related brain changes from 564 

pathways related to dementia. Individuals who never develop dementia or significant cognitive 565 

decline still experience brain deterioration in normal aging that includes gray and white matter 566 

loss and ventricular enlargement which is accompanied by memory decline(107). Further, 567 

previous GWAS for general cognitive function and AD have shown few overlapping 568 

loci(21,108). In addition, studies of older individuals who are cognitively “resilient” with intact 569 

cognitive function, despite the presence of AD neuropathology, have found the genetic 570 

architecture of cognitive resilience to be distinct from that of AD(109). As such, relatively little 571 

is known about the pathways underlying cognitive aging in those without dementia. Thus, 572 
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studying transcriptomic mechanisms that affect general cognitive function before development of 573 

dementia may shed light on cognitive aging without dementia. 574 

We also compared genes identified by METRO after fine-mapping with those identified 575 

by TWAS-Fusion in Sargurupremraj et al. (2020)(22) and Bellenguez et al. (2022)(23). Among 576 

the 92 genes associated with WMH in Sargurupremraj et al. (2020)(22) and 23 genes identified 577 

by METRO, 10 genes overlapped. We note that the Sargurupremraj et al. (2020)(22) did not 578 

perform fine-mapping of their TWAS results, which is likely why we identified substantially 579 

fewer genes. There were also 10 overlapping genes among the 66 genes associated with AD in 580 

Bellenguez et al. (2022)(23) and 69 genes identified by METRO. For both TWAS comparisons, 581 

a relatively small number of genes overlap likely due to differences in eQTL prediction 582 

modeling. Sargurupremraj et al. (2020)(22) and Bellenguez et al. (2022)(23) used eQTL data 583 

from brain tissue, while we used eQTL data from transformed beta lymphocytes in blood tissue. 584 

While brain tissue is more relevant to WMH and AD phenotypes, blood cells do touch every cell 585 

bed that affects the brain, and are related to chronic inflammation, immunity, and oxidative 586 

stress, which are linked to cognitive performance and dementia. TWAS results from blood tissue 587 

in multiple ancestries provide complementary information to those reported in the GWAS. 588 

Several limitations in the present study should be noted. First, our gene expression levels 589 

were measured using transformed B-lymphocytes from immortalized cell lines in GENOA. 590 

While transformed B-lymphocytes are a convenient source of DNA from blood tissue, we lack 591 

eQTL data for tissues that may be most relevant for AD and WMH (e.g., brain tissue, small brain 592 

vessels, and microglia). However, B-lymphocytes provide a unique and efficient way to examine 593 

the functional effects of genetic variations on gene expression that minimizes environmental 594 

influences(110). Second, METRO follows the standard TWAS approach of analyzing one gene 595 
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at a time. Since genes residing in the same genomic region may share eQTLs or contain eQTL 596 

SNPs that are in LD with each other, the TWAS test statistics of genes in the same region may be 597 

highly correlated. To that end, it may be challenging to identify the truly biologically relevant 598 

genes among them(37,111). As such, we paired METRO with FOCUS to allow us to narrow 599 

down the list of potential causal genes for AD, VaD, and cognitive decline(37,112). Lastly, we 600 

primarily utilized EA GWAS that were publicly available with large sample sizes for general 601 

cognitive function, WMH, and AD. As expected, the gene expression prediction models 602 

constructed in the same ancestry as the GWAS (EA) tended to have larger contribution weights 603 

than AA. While we conducted a TWAS of AD in AA, the sample size of the AA GWAS likely 604 

did not allow us to properly power our TWAS. As such, a future direction would be to conduct 605 

TWAS of these traits using summary statistics from well-powered GWAS with AA ancestry or 606 

multiple ancestries as they become available.  607 

Our study also has notable strengths. To our knowledge, our study is the first TWAS 608 

using expression mapping studies in multiple ancestries (EA and AA) to identify genes 609 

associated with cognitive function and neurocognitive disorders. By leveraging the 610 

complementary information in gene expression prediction models constructed in EA and AA, as 611 

well as the uncertainty in SNP prediction weights, we were able to conduct a highly powered 612 

TWAS to identify important gene-trait associations and transcriptomic mechanisms related to 613 

innate immunity, vascular dysfunction and neuroinflammation underlying AD, VaD, and general 614 

cognitive function. Using METRO, we were also able to estimate the ancestry contribution 615 

weights for specific genes and identify the extent to which a gene in EA or AA may contribute to 616 

the trait. However, it is noteworthy that the larger the contribution of the expression prediction 617 

models in the same ancestry as the GWAS (primarily EA, in this study) may allow for better 618 
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predictive performance in the same ancestry. We also conducted FOCUS fine-mapping to 619 

narrow in on a list of putatively causal genes among multiple significant genes in a region. Our 620 

results suggest that there are similar pathways that contribute to healthy cognitive aging and 621 

progression of dementia, as well as distinct pathways that are unique to each neuropathology. By 622 

understanding overlapping and unique genes and transcriptomic mechanisms associated with 623 

each outcome, we may identify possible targets for prevention and/or treatments for cognitive 624 

aging and dementia. 625 

 626 

Conclusion 627 

 In the present study, we conducted a multi-ancestry TWAS in EA and AA to identify 628 

genes associated with general cognitive function, WMH and AD. We identified genes associated 629 

with innate immunity, vascular dysfunction, and neuroinflammation. The WMH and AD TWAS 630 

also indicated that downregulation of ICA1L may contribute to overlapping AD and VaD 631 

neuropathology. To our knowledge, this study is the first TWAS analysis using expression 632 

mapping studies in multiple ancestries to identify genes associated with cognitive function and 633 

neurocognitive disorders, which may help to identify gene targets for pharmaceutical or 634 

preventative treatment for dementia. 635 

 636 
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 663 
Table 1. Sample characteristics of expression quantitative trait locus (eQTL) mapping study and 
genome-wide association studies (GWAS) participants 
eQTL mapping study: Genetic Epidemiology Network of Arteriopathy (GENOA)  

Mean (SD) or N (%) or N 
N   N=1833 
Age (years) 56.85 (10.0) 
Female 1202 (65.6%) 
Race/Ethnicity   
  African Americans 1032 (56.3%) 
  European Americans 801 (43.7%) 
   
General cognitive function GWAS: CHARGE, COGENT, UKBa (Davies et al., 2018) 

Mean (SD) or N (%) or N 
N   300,486 
Age (years) 56.91 (7.8) 
Female 52.20% 
Excluded for dementia and/or stroke diagnosis N=4919 
  
White matter hyperintensity (WMH) GWAS: CHARGE and UKBa (Sargurupremraj et al., 2020) 

Mean (SD) or N (%) or N 
N   48,454 
Age (years) 64.17 
Female 29215 (57.6%) 
WMH volume (cm3) 7.06 (8.8) 
Excluded for stroke or pathologies N=1572 
  
EA Alzheimer's Disease (AD) GWAS: EADB, GR@ACE, EADI, GERAD/PERADES, DemGene, Bonn, 
the Rotterdam study, the CCHS study, NxC and the UKBa (Bellenguez et al., 2022) 

Mean (SD) or N (%) or N 
Discovery sample   
  AD cases N=39,106 
  AD proxy cases N=46,828 
  Controls N=401,577 
Age (years)   
  AD cases or proxy cases 73.55 (8.1) 
  controls 67.86 (8.6) 
Female   
  AD cases or proxy cases 62.90% 
  controls 56.10% 
   
AA Alzheimer’s Disease (AD) GWAS: AD Genetics Consortiumb (Kunkle et al., 2021) 
  Mean (SD) or N (%) or N 
N 7,970 
  AD cases 2,748 (34.5%) 
  controls 5,222 (65.5%) 
Age (years) 74.2 (13.6) 
Female   
  AD cases 1,944 (69.8%) 
  controls 3,743 (71.7%) 
   
Abbreviations: EA, European ancestry; AA, African ancestry 664 
a GWAS include only European ancestry participants.  665 
b GWAS includes only African ancestry participants. 666 
  667 
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 668 
Table 2. Genes for WMH identified both by METRO followed by fine-mapping with FOCUS and by TWAS-Fusion 
conducted by Sargurupremraj et al. (2020)  
Gene ENSG Chr Start  End Gene Name  Accession number 

CALCRL ENSG00000064989 2 188206691 188313187 calcitonin receptor like receptor  Source: HGNC Symbol; Acc: HGNC:16709

DCAKD ENSG00000172992 17 43100706 43138499 dephospho-CoA kinase domain containing  Source: HGNC Symbol; Acc: HGNC: 2623

EFEMP1 ENSG00000115380 2 56093102 56151274 EGF containing fibulin extracellular matrix 
protein 1  

Source: HGNC Symbol; Acc: HGNC: 3218

GJC1 ENSG00000182963 17 42875816 42908184 gap junction protein gamma 1  Source: HGNC Symbol; Acc: HGNC: 4280

ICA1L ENSG00000163596 2 203637873 203736489 islet cell autoantigen 1 like  Source: HGNC Symbol; Acc: HGNC: 1444

KLHL24 ENSG00000114796 3 183353398 183402307 kelch like family member 24  Source: HGNC Symbol; Acc: HGNC: 2594

NBEAL1 ENSG00000144426 2 203879331 204091101 neurobeachin like 1  Source: HGNC Symbol; Acc: HGNC: 2068

NEURL ENSG00000107954 10 105253462 105352303 neuralized E3 ubiquitin protein ligase 1  Source: HGNC Symbol; Acc: HGNC: 7761

NMT1 ENSG00000136448 17 43035360 43186384 N-myristoyltransferase 1  Source: HGNC Symbol; Acc: HGNC: 7857

WBP2 ENSG00000132471 17 73841780 73852588 WW domain binding protein 2  Source: HGNC Symbol; Acc: HGNC: 1273

Abbreviations: HGNC, Human Genome Organisation Gene Nomenclature Committee 669 
  670 
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Table 3. Genes for AD identified both by METRO followed by fine-mapping with FOCUS and by 671 
TWAS-Fusion followed by fine-mapping with FOCUS conducted by Bellenguez et al. (2022) 672 
Gene ENSG Ch

r Start  End Gene Name  Accession number 

BLNK ENSG000000955
85 

10 97948927 98031344 B cell linker  Source:HGNC 
Symbol;Acc:HGNC:14211 

CPSF3 
ENSG000001192
03 

2 9563780 9613230 
cleavage and polyadenylation specific 
factor 3  

Source:HGNC 
Symbol;Acc:HGNC:2326 

DDX54 
ENSG000001230
64 

12 
11359497
8 

11362328
4 

DEAD-box helicase 54  
Source:HGNC 
Symbol;Acc:HGNC:20084 

GRN 
ENSG000000305
82 

17 42422614 42430474 granulin precursor  
Source:HGNC 
Symbol;Acc:HGNC:4601 

ICA1L 
ENSG000001635
96 

2 
20363787
3 

20373648
9 

islet cell autoantigen 1 like  
Source:HGNC 
Symbol;Acc:HGNC:14442 

KLF16 
ENSG000001299
11 

19 1852398 1863578 KLF transcription factor 16  
Source:HGNC 
Symbol;Acc:HGNC:16857 

LACTB 
ENSG000001036
42 

15 63414032 63434260 lactamase beta  
Source:HGNC 
Symbol;Acc:HGNC:16468 

PPP4C 
ENSG000001499
23 

16 30087299 30096697 protein phosphatase 4 catalytic subunit  
Source:HGNC 
Symbol;Acc:HGNC:9319 

SHARPI
N 

ENSG000001795
26 

8 
14515353
6 

14516302
7 

SHANK associated RH domain interactor  
Source:HGNC 
Symbol;Acc:HGNC:25321 

TBX6 
ENSG000001499
22 

16 30097114 30103245 T-box transcription factor 6  
Source:HGNC 
Symbol;Acc:HGNC:11605 

Abbreviations: HGNC, Human Genome Organisation Gene Nomenclature Committee 673 
 674 
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(a) General cognitive function from Davies et al. (2018) GWAS 676 
 677 

678 
  679 
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(b) White matter hyperintensity from Sargurupremraj et al. (2020) GWAS 680 
 681 
 682 

683 
  684 
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(c) Alzheimer’s Disease from Bellenguez et al. (2022) (EA GWAS sample) 685 

 686 
 687 
  688 
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(d) Alzheimer’s Disease from Kunkle et al. (2021) (AA GWAS sample) 689 

 690 
  691 

36

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 5, 2024. ; https://doi.org/10.1101/2024.01.03.24300768doi: medRxiv preprint 

https://doi.org/10.1101/2024.01.03.24300768
http://creativecommons.org/licenses/by-nc-nd/4.0/


 37

Figure 1. Manhattan plots of -log10 p-values for gene-trait associations in METRO. 692 
Manhattan plots of the association between genes and (a) general cognitive function using 693 
summary statistics from Davies et al. (2018), (b) White matter hyperintensity from 694 
Sargurupremraj et al. (2020), (c) Alzheimer’s disease from Bellenguez et al. (2022) (EA GWAS 695 
sample) and (d) Alzheimer’s disease from Kunkle et al. (2021) (AA GWAS sample) using 696 
GENOA gene expression data. The red line indicates significance after Bonferroni correction 697 
(P<2.90x10-6). 698 
  699 
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700 
 701 

702 
 703 
 704 
Figure 2. Quantile-quantile plots of -log10 p-values for gene-trait associations in METRO. 705 
Q-Q plots of the associations between genes and (a) general cognitive function (λ= 2.55) using 706 
summary statistics from Davies et al. (2018), (b) white matter hyperintensity (λ= 1.45) from 707 
Sargurupremraj et al. (2020), (c) Alzheimer’s disease (λ= 2.09) from Bellenguez et al. (2022) 708 
(EA GWAS sample) and (d) Alzheimer’s disease (λ= 1.0) from Kunkle et al. (2021)(AA GWAS 709 
sample) using GENOA gene expression data. 710 
 711 
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Figure 3. Venn diagrams comparing number of genes associated with general cognitive 714 
function, white matter hyperintensity and Alzheimer’s disease (AD) in European ancestry 715 
(EA) and AD in African ancestry (AA) using METRO, prior to and following FOCUS fine-716 
mapping. 717 
Venn diagrams comparing the number of genes associated with general cognitive function 718 
(purple; N=266 genes), white matter hyperintensity (WMH; green; N=23 genes) Alzheimer’s 719 
disease (AD) in  EA (orange; N=69 genes), and AD in AA (yellow; N=2 genes),  (a) prior to 720 
fine-mapping and (b) following FOCUS(5) fine-mapping using METRO and GENOA 721 
expression data after Bonferroni correction (P<2.90x10-6), with GWAS summary statistics 722 
obtained from the Davies et al. (2018), Sargurupremraj et al. (2020), Bellenguez et al. (2022), 723 
and Kunkle et al. (2021).  724 
  725 
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726 
 727 
Figure 4. Contribution weights of expression prediction models across all significant fine-728 
mapped genes identified by METRO. 729 
Barplots of general cognitive function, white matter hyperintensity and Alzheimer’s disease 730 
(AD) in European ancestry (EA) and AD in African ancestry (AA) comparing the proportion of 731 
significant genes with higher contribution weights of expression prediction models across all 732 
significant genes (P<2.90x10-6). Black bars are the standard errors for the estimated proportions. 733 
 734 
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 736 

737 

Figure 5. Venn diagram comparing number of METRO-identified genes associated with 738 
general cognitive function following FOCUS fine-mapping and genes identified by Davies 739 
et al. (2018) gene-based and SNP-based analyses. 740 
Venn diagram comparing the number of genes associated with general cognitive function 741 
obtained from METRO using GENOA gene expression data after Bonferroni correction 742 
(P<2.90x10-6) and FOCUS fine-mapping (red) and Davies et al. (2018). Davies et al. results 743 
included SNP-based association results that were mapped to the nearest gene (P<5x10-8; yellow), 744 
and gene-based association results (P<2.75x10-6; blue). 745 
  746 
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 747 

748 
 749 
ID Term ID Term Name Adjusted P-value 

GO:MF 

1 GO:0005515 protein binding 1.17E-05 

2 GO:0140110 Transcription regulator activity 6.23E-03 

3 GO:0003677 DNA binding 2.23E-02 

GO:BP 

4 GO:0048588 developmental cell growth 3.33E-05 

5 GO:0019538 Protein metabolic process 7.18E-04 

6 GO:0006357 Regulation of transcription by RNA polymerase II 4.79E-03 

7 GO:0051171 Regulation of nitrogen compound metabolic processes 4.79E-03 

8 GO:0080090 Regulation of primary metabolic process 5.86E-03 

9 GO:0061387 Regulation of extent of cell growth 1.56E-02 

10 GO:0042221 Response to chemical 3.06E-02 

11 GO:0050794 Regulation of cellular process 3.13E-02 

12 GO:0048518 Positive regulation of biological process 3.24E-02 

GO:CC 

13 GO:0005654 nucleoplasm 8.23E-05 

14 GO:0000785 chromatin 7.56E-04 

15 GO:0098984 Neuron to neuron synapse 1.22E-03 

16 GO:0005737 cytoplasm 1.84E-03 

17 GO:0043005 neuron projection 7.14E-03 

18 GO:0031967 organelle envelope 1.96E-02 

 750 
Figure 6. Functional enrichment analysis on the fine-mapped gene set identified for general 751 
cognitive function using METRO TWAS (N=266 genes). The top panel consists of a 752 
Manhattan plot that illustrates the enrichment analysis results. The x-axis represents functional 753 
terms that are grouped and color-coded by data sources, including Gene Ontology (GO): 754 
molecular function (MF; red), GO: biological process (BP; orange), GO: cellular component 755 
(CC; dark green), Kyoto Encyclopedia of Genes and Genomes (KEGG; pink), Reactome 756 
(REAC; dark blue), WikiPathways (WP; turquoise), Transfac (TF; light blue), MiRTarBase 757 
(MIRNA; emerald green), Human Protein Atlas (HPA; dark purple), CORUM protein complexes 758 
(light green), and Human Phenotype Ontology (HP; violet), in order from left to right. The y-axis 759 
shows the adjusted enriched -log10 p-values <0.05. Multiple testing correction was performed 760 
using g:SCS method (Set Counts and Sizes) that takes into account overlapping terms. The top 761 
panel highlights driver GO terms identified using the greedy filtering algorithm in g:Profiler. The 762 
light circles represent terms that were not significant after filtering. The circle sizes are in 763 
accordance with the corresponding term size (i.e., larger terms have larger circles). The number 764 
in parentheses following the source name in the x-axis shows how many significantly enriched 765 
terms were from this source. 766 
 767 
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 768 
 769 
 770 

771 

Figure 7. Venn diagram comparing number of METRO-identified genes associated with 772 
white matter hyperintensity following FOCUS fine-mapping and genes identified by 773 
Sargurupremraj et al. (2020) gene-based and SNP-based analyses. 774 
Venn diagram comparing the number of significantly associated genes associated with white 775 
matter hyperintensity (WMH) obtained from METRO using GENOA expression data after 776 
Bonferroni correction (P<2.90x10-6), and fine-mapping (red) and Sargurupremraj et al. (2020). 777 
Sargurupremraj et al. results included SNP-based association results that were mapped to the 778 
nearest gene (P<5x10-8; yellow), and gene-based association results (P<2.77x10-6; blue). 779 
  780 
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783 

ID Term ID Term Name Adjusted P-value 

TF 

1 TF:M12713 Factor: ZNF690; motif: GTCTACRCNG 1.27E-02 

MIRNA 

2 MIRNA: has-miR-212-5p hsa-miR-212-5p 1.94E-02 

HPA 

3 HPA:0411242 Retina; inner plexiform layer [≥Medium] 3.86E-02 

 784 
Figure 8. Functional enrichment analysis on the fine-mapped gene set identified for white 785 
matter hyperintensity using METRO TWAS (N=23 genes). The top panel consists of a 786 
Manhattan plot that illustrates the enrichment analysis results. The x-axis represents functional 787 
terms that are grouped and color-coded by data sources, including Gene Ontology (GO): 788 
molecular function (MF; red), GO: biological process (BP; orange), GO: cellular component 789 
(CC; dark green), Kyoto Encyclopedia of Genes and Genomes (KEGG; pink), Reactome 790 
(REAC; dark blue), WikiPathways (WP; turquoise), Transfac (TF; light blue), MiRTarBase 791 
(MIRNA; emerald green), Human Protein Atlas (HPA; dark purple), CORUM protein complexes 792 
(light green), and Human Phenotype Ontology (HP; violet), in order from left to right. The y-axis 793 
shows the adjusted enriched -log10 p-values < 0.05. Multiple testing correction was performed 794 
using g:SCS method (Set Counts and Sizes) that takes into account overlapping terms. The top 795 
panel highlights driver GO terms identified using the greedy filtering algorithm in g:Profiler. The 796 
light circles represent terms that were not significant after filtering. The circle sizes are in 797 
accordance with the corresponding term size (i.e., larger terms have larger circles). The number 798 
in parentheses following the source name in the x-axis shows how many significantly enriched 799 
terms were from this source. 800 
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 803 

804 

Figure 9. Venn diagram comparing number of METRO-identified genes associated with 805 
Alzheimer’s disease (EA GWAS) following FOCUS fine-mapping and genes identified by 806 
Bellenguez et al. (2022) gene prioritization and SNP-based analyses. 807 
Venn diagram comparing the number of significantly associated genes associated with 808 
Alzheimer’s disease (from EA GWAS) obtained from METRO using GENOA expression data 809 
after Bonferroni correction (P<2.90x10-6) and fine-mapping (red) and Bellenguez et al. (2022). 810 
Bellenguez et al. results included SNP-based association results that were mapped to the nearest 811 
gene (P<5x10-8; yellow), and gene prioritization results for the genes in the novel AD risk loci 812 
(blue). In the gene prioritization analysis, Bellenguez et al. analyzed the downstream effects of 813 
new AD-associated loci on molecular phenotypes (i.e., expression, splicing, protein expression, 814 
methylation and histone acetylation) in various cis-quantitative trait loci (cis-QTL) catalogues 815 
from AD-relevant tissues, cell types and brain regions. 816 
 817 
 818 
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820 

ID Term ID Term Name Adjusted P-value 

GO:BP 

1 GO:1905906 regulation of amyloid fibril formation 1.87E-03 

2 GO:0097242 amyloid-beta clearance 1.90E-03 

3 GO:0001774 microglial cell activation 5.79E-03 

4 GO:0050435 amyloid-beta metabolic process 1.07E-02 

5 GO:0030450 regulation of complement activation, classical pathway 2.71E-02 

6 GO:0050794 regulation of cellular process 3.60E-02 

GO: CC 

7 GO:0097418 neurofibrillary tangle 2.80E-04 

8 GO:0005794 Golgi apparatus 4.39E-03 

 821 
Figure 10. Functional enrichment analysis on the fine-mapped gene set identified for 822 
Alzheimer’s disease (EA GWAS) using METRO TWAS (N=69 genes). The top panel consists823 
of a Manhattan plot that illustrates the enrichment analysis results. The x-axis represents 824 
functional terms that are grouped and color-coded by data sources, including Gene Ontology 825 
(GO): molecular function (MF; red), GO: biological process (BP; orange), GO: cellular 826 
component (CC; dark green), Kyoto Encyclopedia of Genes and Genomes (KEGG; pink), 827 
Reactome (REAC; dark blue), WikiPathways (WP; turquoise), Transfac (TF; light blue), 828 
MiRTarBase (MIRNA; emerald green), Human Protein Atlas (HPA; dark purple), CORUM 829 
protein complexes (light green), and Human Phenotype Ontology (HP; violet), in order from left 830 
to right. The y-axis shows the adjusted enriched -log10 p-values < 0.05. Multiple testing 831 
correction was performed using g:SCS method (Set Counts and Sizes) that takes into account 832 
overlapping terms. The top panel highlights driver GO terms identified using the greedy filtering 833 
algorithm in g:Profiler. The light circles represent terms that were not significant after filtering. 834 
The circle sizes are in accordance with the corresponding term size (i.e., larger terms have larger 835 
circles). The number in parentheses following the source name in the x-axis shows how many 836 
significantly enriched terms were from this source. 837 
 838 
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 840 
 841 

842 
ID Term ID Term Name Adjusted P-value 

1 GO:0046814 Coreceptor-mediated virion attachment to host 4.96E-02 

 843 
Figure 11. Functional enrichment analysis fine-mapped gene set identified for Alzheimer’s 844 
disease (AA GWAS) using METRO TWAS (N=2 genes). The top panel consists of a 845 
Manhattan plot that illustrates the enrichment analysis results. The x-axis represents functional 846 
terms that are grouped and color-coded by data sources, including Gene Ontology (GO): 847 
molecular function (MF; red), GO: biological process (BP; orange), GO: cellular component 848 
(CC; dark green), Kyoto Encyclopedia of Genes and Genomes (KEGG; pink), Reactome 849 
(REAC; dark blue), WikiPathways (WP; turquoise), Transfac (TF; light blue), MiRTarBase 850 
(MIRNA; emerald green), Human Protein Atlas (HPA; dark purple), CORUM protein complexes 851 
(light green), and Human Phenotype Ontology (HP; violet), in order from left to right. The y-axis 852 
shows the adjusted enriched -log10 p-values < 0.05. Multiple testing correction was performed 853 
using g:SCS method (Set Counts and Sizes) that takes into account overlapping terms. The top 854 
panel highlights driver GO terms identified using the greedy filtering algorithm in g:Profiler. The 855 
light circles represent terms that were not significant after filtering. The circle sizes are in 856 
accordance with the corresponding term size (i.e., larger terms have larger circles). The number 857 
in parentheses following the source name in the x-axis shows how many significantly enriched 858 
terms were from this source. 859 
 860 
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 50

Figure 12. Venn diagram comparing METRO TWAS results prior to and following 864 
FOCUS fine-mapping with TWAS results from Sargurupremraj et al. (2020) and 865 
Bellenguez et al. (2022). 866 
Venn diagram comparing METRO TWAS results (a) prior to and (b) following FOCUS fine-867 
mapping with TWAS results using Fusion for white matter hyperintensity from Sargurupremraj 868 
et al. (2020) without fine-mapping and Alzheimer’s disease from Bellenguez et al. (2022) (EA 869 
GWAS) with FOCUS fine-mapping. 870 
 871 
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