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ABSTRACT 

Background: Although previous studies have presented a relevance between 

pericardial adipose tissue (PAT) and cardiovascular diseases (CVDs), the precise role 

of PAT in CVDs remains uncertain. 

Methods: In the Mendelian randomization (MR) research, we extracted instrumental 

variants significantly correlated with PAT to assess its effects on CVDs. 

Inverse-variance weighted model was elected as the leading MR analytical method. 

F-statistic was utilized to assess the intensity of instrumental variants and avert 

weak-tool bias. Numerous sensitivity analyses were adopted to confirm the credibility 

of outcomes. The mediated effect of hypertension between PAT and CVDs was 

estimated in 2-step MR analysis. 

Results: The MR research demonstrated genetically determined PAT was remarkably 

correlated with greater risks of cardiovascular disease (OR 1.15; 95% CI 1.09--1.22, 

P=1.32*10
-6

), heart failure (OR 2.62; 95% CI 1.28--5.34, P=0.008), coronary heart 

disease (OR 3.53; 95% CI 1.55--8.06, P=0.003), ischemic heart disease (OR 2.31; 95% 

CI 1.14--4.67, P=0.020), ischemic stroke (OR 3.18; 95% CI 1.63--6.20, P=0.001), and 

venous thromboembolism (OR 1.02; 95% CI 1.00--1.04, P=0.015). And the 

correlation was partially mediated by hypertension. Results were verified by 

sensitivity analysis.  

Conclusions: Genetic determined PAT was remarkably correlated with additional 

risks of diverse CVDs. Identified as a mediator, hypertension had a significant 

influence on the causal association. The correlation between PAT and CVDs deserves 

further exploration. 
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NOVELTY AND RELEVANCE 

What Is New? 

This was the first Mendelian randomization research to detect the potential causal 

relationship of genetically determined PTA on multiple CVDs risks and confirm the 

mediating effect of hypertension on the causal association. 

What Is Relevant? 

The MR research not only estimated the causal effect of PAT on hypertension but also 

identified the mediating role of hypertension between PAT and CVDs.  

Clinical/Pathophysiological Implications? 

This study revealed PAT promoted CVDs progression and hypertension played an 

intermediary role, which indicated that PAT might serve as a potential therapeutic 

target and antihypertensive drugs could be conjunctly used to provide cardiovascular 

benefits.  

especially for people with obesity, because they had more PAT accumulation. 

 

Nonstandard Abbreviations and Acronyms 

AA: aortic aneurysm; AF: atrial fibrillation; CA: cardiac arrhythmias; CAD: coronary 

artery disease; CES: cardioembolic stroke; CHD: coronary heart disease; CI: 

confidence interval; CVD: cardiovascular disease; CVDs: cardiovascular diseases; 

GWAS: genome-wide association study; HCM: hypertrophic cardiomyopathy; HF: 

heart failure; IHD: ischemic heart disease; IS: ischemic stroke; IVs: instrumental 

variables; IVW: inverse-variance weighting; LAS: large artery stroke; LD: linkage 

disequilibrium; MI: myocardial infarction; MR: mendelian randomization; OR: odds 

ratio; PAT: pericardial adipose tissue; SAH: subarachnoid hemorrhage; SNPs: 

single-nucleotide polymorphism; SVS: small vessel stroke; VTE: venous 

thromboembolism. 

 

INTRODUCTION 

As a leading cause of death, cardiovascular diseases (CVDs) were accountable for 

almost 19 million fatalities in 2020.
1,2

 CVDs consist of diverse diseases, such as 

cerebrovascular disease, coronary artery disease (CAD), and ischemic stroke (IS).
1
 

And IS can be primarily categorized into three subtypes, involving cardioembolic 

stroke (CES), large artery stroke (LAS), and small vessel stroke (SVS).
3
 Lots of 

etiologic factors are responsible for the development of CVDs.
4
 Diabetes mellitus, 
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hypertension, and hyperlipidemia all contribute to CVDs risk.
5-7

 Furthermore, 

pericardial adipose tissue is also reported as a suspected risk factor for CVDs.
8
    

Pericardial adipose tissue (PAT), as a special constituent of body fat, is a unique 

fat storage surrounding the outermost layer of pericardium.
9
 PAT is divided into 

paracardial fat, epicardial fat, and perivascular fat from outside to inside.
10

 Owing to 

its proximity to heart, PAT has been intuitively assumed to have a vital influence in 

the pathobiology of CVDs.
11

 The lack of an anatomical barrier allows crosstalk 

between PAT and the contiguous myocardium. Although one of PAT’s roles is 

mechanical protection and energetic support,
12,13

 over-expanding PAT turns into a 

deleterious pro-inflammatory character from a beneficial anti-inflammatory role 

through paracrine and vasocrine.
9,14

 Amounts of observational studies already 

demonstrated that PAT is positively correlated with higher risks of hypertension,
15

 

heart failure (HF),
16

 atrial fibrillation (AF),
17

 CAD,
18

 and stroke.
19

 However, some 

research revealed that there was inconsistent relationship between PAT and 

obstructive CAD, and coronary artery calcification extent had no obvious association 

with increased PAT volume even after adjusting for age and sex.
20,21

  

Of note, most of the previous studies are cross-sectional research, which has a 

weak strength to explain the causal relationship, so recent research challenged the 

relationship and emphasized longitudinal studies.
20,22

 Besides, traditional 

observational research is vulnerable to confounders and reverse causation bias. 

Therefore, causality in the associations of PAT with CVDs is worth further 

exploration. 

Mendelian randomization (MR) is a nascent methodology for epidemiological 

studies. MR study adopts instrumental variables (IVs) derived from heritable variants  

that are dependably correlated with potential risk factors to assess the causal 

correlation between exposure for phenotype and outcome for disease based on a 

genome-wide association study (GWAS).
23

 Because of the peculiar strength of IVs, 

MR research is less vulnerable to reverse causation and confounders compared with 

conventional observational studies.
24

 Fortunately, a recent GWAS identified multiple 

heritable variants related to pericardial fat.
25

 By utilizing those single-nucleotide 

polymorphisms (SNPs) as IVs, we here performed MR research to evaluate the 

genetical effect of PAT on CVDs, including cardiovascular disease (CVD), HF, 

cardiac arrhythmias (CA), AF, aortic aneurysm (AA), coronary heart disease (CHD), 

hypertrophic cardiomyopathy (HCM),  ischemic heart disease (IHD), myocardial 

infarction (MI), IS, CES, SVS, LAS, subarachnoid hemorrhage (SAH) and venous 

thromboembolism (VTE), and to further inquire the mediating role of hypertension on 
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the causal association. 

METHODS 

Study Design 

A summarization of the MR design was presented (Figure 1). The MR research was 

adopted to assess the causal correlation between PAT and CVDs risks by utilizing 

heritable variants as IVs. And IVs fulfill the following three principal assumptions: (1) 

directly related to exposure; (2) separate from confounders; and (3) act on the risk of 

outcomes only through exposure.
26

  

The statistical data for exposure of PAT accumulation were derived from a 

largest and latest GWAS. PAT was measured by cardiac magnetic resonance images 

in 28,161 participants with white British heritage.
25

 GWAS datasets for outcomes of 

all CVDs were retrieved from IEU OpenGWAS project. Statistical data from the 

MEGASTROKE was acquired for CES, SVS, LAS, and IS.
27

 GWAS datasets for 

CVD, AF, HTN,
28

 MI, SAH,
29

 and VTE
30

 were derived from UK Biobank. And we 

acquired most of the GWAS data from Finngen, including CHD, IHD, HCM, AA, CA, 

and HF.
31

 The details of data sources are described (Table S1). Ethical approval and 

inform consent of all contributors have been obtained. 

IVs Selection  

IVs significantly correlated with PAT were extracted in SNPs from GWAS when the 

p-value was less than 5×10
-8

. To identify the corresponding linkage disequilibrium 

(LD) of IVs, we further clumped marked SNPs with 10,000 kb and r
2
 < 0.001 from 

the 1000 Genomes linkage disequilibrium European samples.
32

 Then we searched 

each single SNP in PhenoScanner V2 to avoid obvious pleiotropic effects, excluded 

SNPs corresponding to potential confounding factors and selected the remained SNPs 

for further analysis.
33

 To estimate the intensity of IVs and control the weak-tool bias, 

we utilized R
2
 and F-statistic. The calculation method follows: F = (N-2) × R

2
 / (1-R

2
). 

The R
2 

suggests the percentage of exposure variance construed by IVs, which is 

computed by the following equation: 

R
2
=[2×β

2
×EAF×(1−EAF)]/[2×β

2
×EAF×(1−EAF)+2×N×SE

2
×EAF×(1−EAF)].

34
 Here, 

β, EAF, N, and SE separately refer to the assessed effect, effect allele frequency, 

sample size, and standard error. Usually, little probability of weak-tool bias is 

considered if F>10.
34

   

MR Analysis 

Inverse-variance weighting (IVW) model was elected as the leading MR analytical 

method. Although vulnerable to pleiotropy and bias, IVW method can provide the 

most precise estimated effects.
35

 Thus, in order to infer the association between PAT 
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and CVD, several sensitivity analyses were employed, including MR-RAPS,
36

 

MR-Egger,
37

 weighted median,
38

 and MR-PRESSO.
39

 Weighted median analysis 

gives a permission to estimate causality consistently even though up to 50% of IVs 

are of invalidity.
38

 MR-Egger was implemented to measure and rectify the possible 

horizontal multiplicity.
40

 The p-value of intercept greater than 0.05 indicates few 

remarkable bias of horizontal multiplicity is noted. MR-PRESSO can identify 

outlying SNPs automatically and exclude outliers to correct MR estimates.
39

 In 

addition, Q statistics was employed to detect heterogeneity between individual SNP in 

IVW analysis, which could guide to an appropriate method.
38

 When the p-value for Q 

statistic is smaller than 0.05, which indicates the possibility of heterogeneity, IVW 

method of random effect is considered; otherwise, IVW method of fixed effect will be 

selected to evaluate the causal effect. Furthermore, we used leave-one-out test to 

detect outliers and applied funnel and forest plots to examine the pleiotropy intuitively. 

Finally, a 2-step MR was carried out to estimate the mediated effect of hypertension 

between PAT and CVDs.
41

 Coefficients analysis was utilized to evaluate indirect 

effect (β1×β2). β1 and β2 represented the estimated causal effects of PAT on HTN, 

and HTN on CVDs respectively. Then, Delta method was applied to derive standard 

error and calculate the proportion of mediated effect in total effect.
42

  

To display the estimated causal effect of PAT on CVDs, odds ratio (OR) as well 

as 95% confidence interval (CI) was employed. All p-values were doubled tailed and 

corrected by FDR method. Statistical analysis was mainly executed in R project (4.3.1 

version) by applying MR-PRESSO and TwoSampleMR packages.  

 

RESULTS 

Traits of Selected SNPs 

After screening P (P < 5 × 10
−8

), eliminating LD (r
2
 < 0.001, 10,000 kb), retrieving in 

PhenoScanner, and excluding palindromic SNPs, 11 significantly independent SNPs 

of PAT were extracted as IVs, which summarized 1.32% of the variability (R
2
). 

F-statistics greater than 10 indicated the strength of the IVs and reflected no 

weak-instrument bias acquiescently. More details were provided (Table S2 and S3). 

Genetic Effect of PAT on CVDs  

The MR results especially for IVW model indicated biologically determined PAT was 

remarkably correlated with greater risks of CVD (OR 1.15; 95% CI 1.09--1.22, 

P=1.98*10
-5

), HF (OR 2.62; 95% CI 1.28--5.34, P=0.024), HTN (OR 1.11; 95% CI 

1.05--1.17, P=8.53*10
-5

), CHD (OR 3.53; 95% CI 1.55--8.06, P=0.014), IHD (OR 

2.31; 95% CI 1.14--4.67, P=0.043), IS (OR 3.18; 95% CI 1.63--6.20, P=0.005), and 
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VTE (OR 1.02; 95% CI 1.00--1.04, P=0.038). However, compared with the controls, 

no obvious relevance was discovered between genetically determined PAT and other 

CVDs, including CA (OR 1.44; 95% CI 0.72--2.82, P=0.374), AF (OR 0.99; 95% CI 

0.98--1.01, P=0.320), AA (OR 1.15; 95% CI 0.19--6.91, P=0.878), HCM (OR 0.27; 

95% CI 5.78*10
-3

--12.61, P=0.577), MI (OR 1.39; 95% CI 0.76--2.55, P=0.374), CES 

(OR 1.50; 95% CI 0.41--5.39, P=0.577), SVS (OR 3.37; 95% CI 0.97--11.78, 

P=0.106), LAS (OR 4.05; 95% CI 0.77--21.39, P=0.165), and SAH (OR 0.17; 95% CI 

2.67*10
-2

--1.07, P=0.060). Results are presented (Figure 2).  

Sensitivity Analysis 

The p-value for Q statistics greater than 0.05 instructed no heterogeneity between 

individual SNP and guided to the fixed-effect IVW model to estimate causal effects 

chiefly. MR-RAPS and weighted median analyses conducted to detect the causal 

effect of increased PAT on CVDs were fairly consistent with the IVW model. No 

significant horizontal multiplicity was discovered based on the intercept of MR-Egger 

analysis. Besides, no outlying SNPs were identified and excluded using MR-PRESSO 

analysis. Further, leave-one-out test, along with forest and funnel plots gave an 

intuitive presence of potential heterogeneity. All results of sensitivity analysis are 

available (Table S7 and S8). 

2-step Mediation MR 

To figure out what role HTN played between PAT and CVDs, we adopted 2-step MR 

analysis to assess the intermediary effect. After a bundle of sensitivity analyses, the 

salient results supported that associations of PAT with CVD, HF, CHD, IHD, and IS 

were mediated by HTN to some extent. The mediated proportions of HTN were for 

HF (13.23%; 95% CI 11.47%--15.00%), CHD (13.51%; 95% CI 11.48%--15.55%), 

IHD (19.18%; 95% CI 17.13%--21.24%), IS (14.51%; 95% CI 12.67%--16.35%). 

Results are shown (Figure 3 and 4). 

 

DISCUSSION 

In the MR study, IVs containing 11 SNPs were designated to assess the causal effect. 

The result suggested that biologically determined PAT was significantly correlated 

with greater risks of CVD, HF, HTN, CHD, IHD, IS, and VTE after standard MR and 

sensitivity analyses. Hypertension was proved to play a strong mediating role in the 

linkage. But limited evidence supported a potential causal association between PAT 

and CA, AF, AA, HCM, MI, CES, SVS, LAS, SAH risks.  

Classical anthropometric metrics including body mass index have limitations in 

evaluating the correlation between PAT and CVDs.
43,44

 Nowadays, amounts of studies 
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have addressed the association. Satish et al. revealed that elevated PAT volume came 

with a greater risk of HF with preserved ejection fraction after adjusting for 

abdominal visceral adipose tissue.
16

 Pugliese et al. demonstrated patients suffering 

from HF of reduced ejection fraction were observed with significantly decreased PAT 

thickness compared to controls.
45

 But the lack of GWAS data prevented us estimating 

the effect of PAT on HF with different subtypes. A meta-analysis declared patients 

with AF were significantly associated with increased PAT volume.
46

 Iacobellis G et al. 

highlighted PAT thickness quantified by echocardiography was related to the 

seriousness of CAD.
47

 According to Bryan et al., the hazard of MI conferred with 

increased PAT thickness measured by computed tomography.
48

 However, some 

reports presented contradictory results. Park J et al. demonstrated no remarkable 

relationship was observed between PAT and AF.
49

 An observational study presented 

PAT was uncorrelated with CAD.
50

 Also, research confirmed that an upper 

component in PAT promoted the recovery of cardiac function after MI.
51

 Although 

traditional transect studies are vulnerable to inverse causation bias and confounders, 

these inconsistent observational outcomes still confuse us. Looking forward to more 

high-quality studies to give an affirmative answer. The association between PAT and 

CVDs worth exploring further.    

In general, the MR research revealed that PAT was an expected predictor for 

increased risk of CVDs. PAT, as a specific type of visceral fat, is related to metabolic 

syndrome and hazard of CVDs.
52

 And amounts of inflammatory and bioactive factors, 

including adipocytokines, Interleukin-6, and tumor necrosis factor-α could be secreted 

by PAT through paracrine and vasocrine functions, which promoted cardiovascular 

disease progression.
53,54

 Unexpectedly, a strong connection was discovered between 

PAT and HTN. Known as a major hazard for CVDs,
7
 it was reasonable to conjecture 

that HTN played an important intermediary role between PAT and CVDs. The 

mediating effect was confirmed by 2-step mediation MR analysis, which might point 

the way to understanding how PAT facilitated CVDs occurrence. Recent studies have 

declared glucagon-like peptide-1 analogue and sodium-dependent glucose 

transporters 2 inhibitors could diminish PAT accumulation.
55,56

 These above paint 

such a picture of prospect that PAT might act as a potential drug target to provide 

cardiovascular benefits and antihypertensive drugs could be conjunctly used in CVDs 

progression. Nowadays, obesity and cardiovascular diseases are heavy burdens on 

global health. Specific and effective drugs targeting PAT would offer significant 

health consequences, especially for people with obesity who were more susceptible to 

developing CVDs because of greater PAT accumulation. 
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But as far as the causal effect of PAT on AF, our results are discrepant with most 

previous research. Several possible explanations can be made for this inconsistency. 

Firstly, whether PAT is an independent impact factor for atrial fibrillation is still 

critical.
46,49

 Secondly, the occurrence of AF is genetically and environmentally driven, 

but we assessed the association between PAT and AF only genetically. Besides, MR 

research usually considers long-term impacts. Thirdly, confounding factors are 

unignorable in previous observational studies, such as hyperlipidemia, and drug 

utilization. And the poor reproducibility of PAT thickness measured by 

echocardiography may account for part of these differing discoveries.
57

 In addition, 

cross-sectional and observational studies have their limitations and shortcomings. 

Here, we expect for more prospectively longitudinal and experimental research with 

greater persuasive power. Finally, no matter whether as a contributor or follower or a 

double-edged sword of both protection and destruction, the role played by PAT in 

CVDs remains to be further confirmed in humans.  

Our research has several advantages. First of all, it is the first MR research to 

detect the prospective causal association between genetically determined PAT and 

multiple CVDs. Next, the latest and large-scale GWAS datasets used in the MR study 

provide a more persuasive way to assess causal relationship. Furthermore, diverse 

sensitivity analyses, MR methods, and IVs strength evaluation were conducted to 

validate the credibility of outcomes and avoid weak-tool bias as well as traditional 

confounding factors. 

Of note, there are some limitations in the MR research. Firstly, due to the lack of 

original GWAS data of PAT, we could not further carry out multi-variable MR to 

evaluate the causal effects deeply and control potential confounders, such as BMI, 

visceral adipose tissue, triglyceride, and hypertension. Secondly, participants in the 

MR study are all European, which means these findings do not necessarily apply to 

another population. Thirdly, some degree of sample overlap appeared between PAT 

and CVDs, the maximum possible percentages of which were for CVD (5.81%), AF 

(6.08%), HTN (5.81%), MI (6.10%), SAH (5.95%), and VTE (7.80). But Pierce has 

revealed that 10% of IVs still retain 90% of analytical power.
58

 And the 

corresponding F-statistics were large enough to compensate for its effect to some 

extent. Fourthly, in view of insufficient statistical efficacy, susceptibility to outlying 

SNPs, and larger standard deviation than other methods, the MR-Egger sometimes 

presented inconsistent results. Otherwise, although a series of sensitivity analyses 

were adopted, potential multiplicity and bias might still remain. Finally, the cases of 

AA (2825), HCM (556), LAS (4373), SAH (1693), and VTE (4620) were fairly small 
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when compared with other outcomes.  

 

CONCLUSION  

MR research indicated biologically determined PAT was significantly correlated with 

greater risks of CVD, HF, HTN, CHD, IHD, IS, and VTE. The study demonstrates the 

potential that PAT serves as a drug target for several cardiovascular diseases. But the 

correlation between PAT and multiple CVDs deserves further exploration. 

  

PERSPECTIVES  

Our study discovered the causal effect of PAT on CVDs and HTN played a vital 

intermediary role in it. PAT demonstrates significant potential as a therapeutic target 

for CVDs, and antihypertensive strategies might be taken into account. Usually, 

people with obesity get additional PAT cumulation and are more prone to CVDs. In 

terms of obesity and CVDs being heavy burdens on global health, drugs specifically 

targeting PAT will offer huge health benefits. However, the pathophysiologic 

mechanism between PAT and CDVs remains unclear, more scientifically-designed 

studies are required to clarify the relationship. 
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Figure 1. Flowchart of the MR research. 

Instrumental variants (IVs) fulfill three principal assumptions: (1) directly related to

exposure;  (2)  separate  from  confounders;  and  (3)  act  on  outcomes  just  through

exposure.

MR, mendelian randomization.
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Figure 2. MR estimates of PAT on CVDs. 
CI,  confidence  interval;  IVW,  inverse-variance  weighted;  MR,  Mendelian
randomization;  MR-RAPS,  MR-robust  adjusted  profile  score;  MR-PRESSO,  MR-
pleiotropy  residual  sum  and  outlier;  OR,  odds  ratio;  SNPs,  single  nucleotide
polymorphisms; *no outlier; AA, aortic aneurysm; AF, atrial fibrillation; CA, cardiac 
arrhythmias;  CES,  cardioembolic  stroke;  CHD,  coronary  heart  disease;  CVD,
cardiovascular  disease;  CVDs,  cardiovascular  diseases;  HCM,  hypertrophic
cardiomyopathy; HF, heart failure; HTN, hypertension; IHD, ischemic heart disease;
IS,  ischemic  stroke;  LAS,  large  artery  stroke;  MI,  myocardial  infarction;  PAT,
pericardial adipose tissue; SAH, subarachnoid hemorrhage; SVS, small vessel stroke;
VTE, venous thromboembolism. 
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Figure 3. MR estimates of HTN on CVDs. 
CI,  confidence  interval;  IVW,  inverse-variance  weighted;  MR,  Mendelian
randomization;  MR-RAPS,  MR-robust  adjusted  profile  score;  MR-PRESSO,  MR-
pleiotropy  residual  sum  and  outlier;  OR,  odds  ratio;  SNPs,  single  nucleotide
polymorphisms; CHD, coronary heart disease; CVDs, cardiovascular diseases; HF,
heart failure; HTN, hypertension; IHD, ischemic heart disease; IS, ischemic stroke.
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Figure  4.  MR estimates  of  proportions  mediated  by  HTN between  PAT and
CVDs. 
CI, confidence interval; MR, Mendelian randomization; CHD, coronary heart disease;
CVDs, cardiovascular diseases; HF, heart failure; HTN, hypertension; IHD, ischemic
heart disease; IS, ischemic stroke; PAT, pericardial adipose tissue.
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