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 24 

Abstract: 447 words 25 

Several countries have reported that deaths with a primary code of cancer did not rise during 26 

COVID-19 pandemic waves compared to baseline pre-pandemic levels. This is in apparent 27 

conflict with findings from cohort studies where cancer has been identified as a risk factor for 28 

COVID-19 mortality. Here we further elucidate the relationship between cancer mortality and 29 

COVID-19 on a population level in the US by testing the impact of death certificate coding 30 

changes during the pandemic and leveraging heterogeneity in pandemic intensity across US 31 

states. We computed excess mortality from weekly deaths during 2014-2020 nationally and for 32 

three states with distinct COVID-19 wave timing (NY, TX, and CA). We compared pandemic-33 

related mortality patterns from underlying and multiple cause (MC) death data for six types of 34 

cancer and compared to that seen for chronic conditions such as diabetes and Alzheimer’s. Any 35 

death certificate coding changes should be eliminated by study of MC data. 36 

Nationally in 2020, we found only modest excess MC cancer mortality (~13,600 deaths), 37 

representing a 3% elevation over baseline level. Mortality elevation was measurably higher for 38 

less deadly cancers (breast, colorectal, and hematologic, 2-7%) than cancers with a poor 5-year 39 

survival (lung and pancreatic, 0-1%). In comparison, there was substantial elevation in MC 40 

deaths from diabetes (37%) and Alzheimer’s (19%). Homing in on the intense spring 2020 41 

COVID-19 wave in NY, mortality elevation was 1-16% for different types of cancer and 128% 42 

and 49% for diabetes and Alzheimer’s, respectively. To investigate the peculiar absence of 43 

excess mortality on deadly cancers, we implemented a demographic model and simulated the 44 

expected covid-related mortality using COVID-19 attack rates, life expectancy, population size 45 

and mean age for each chronic condition. This model indicates that these factors largely explain 46 

the considerable differences in observed excess mortality between these chronic conditions 47 

during the COVID-19 pandemic, even if cancer had increased the relative risk of mortality by a 48 

factor of 2 or 5.  49 

In conclusion, we found limited elevation in cancer mortality during COVID-19 waves, even after 50 

considering MC mortality, and this was especially pronounced for the deadliest cancers. Our 51 

demographic model predicted low expected excess mortality in populations living with certain 52 

types of cancer, even if cancer is a risk factor for COVID-19 fatality, due to competing mortality 53 

risk. We also find a moderate increase in excess mortality from hematological cancers, aligned 54 

with other types of observational studies. While our study concentrates on the immediate 55 

consequences of the COVID-19 pandemic on cancer mortality in 2020, further research should 56 

consider excess mortality in the complete pandemic period. Also, a study of the delayed impact 57 

of the pandemic on cancer mortality due to delayed diagnosis and treatment during the 58 

pandemic period is warranted.   59 
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Introduction 60 

The dominant risk factors for COVID-19 mortality have consistently been shown to be advanced 61 

age, male gender and certain chronic diseases such as diabetes, obesity and heart disease 62 

(Chavez-MacGregor et al., 2022; Rüthrich et al., 2021; Williamson et al., 2020). Cancer has also 63 

been identified as a high-risk condition based on case-control and cohort studies, although 64 

these studies have provided conflicting results. In a large cohort study of  ~500,000 COVID-19 65 

inpatients, only cancer patients under recent treatment were at increased risk of COVID-19 66 

related deaths (OR=1.7) relative to non-cancer patients (Chavez-MacGregor et al., 2022). 67 

Conversely, a smaller European study of 3,000 COVID-19 inpatients found that cancer was not 68 

a risk factor (Rüthrich et al., 2021), as did an international, multicenter study of 4,000 confirmed 69 

COVID-19 inpatients (Raad et al., 2023). More recently a meta-analysis of 35 studies from 70 

Europe, North America, and Asia found a 2-fold increased risk of COVID-19 mortality among 71 

cancer patients (Di Felice et al., 2022). Similarly, a large analysis from the UK found that the risk 72 

of COVID-19 mortality for cancer patients had declined over the course of the pandemic but 73 

remained 2.5 times higher than for non-cancer patients into 2022 (Starkey et al., 2023). Taken 74 

together, such observational studies provide a mixed picture of cancer as a COVID-19 mortality 75 

risk factor, with several studies reporting that controlling for important factors such as age is a 76 

challenge. Furthermore, cancer is often considered as a single disease category despite the 77 

diversity of conditions and patients represented.  78 

Further evidence for the relationship between cancer and COVID-19 comes from population-79 

level analysis of vital statistics. A recent US study showed no elevation in underlying cancer 80 

deaths concomitant with COVID-19 waves, in stark contrast to the sharp rise in mortality from 81 

other chronic diseases (W.-E. Lee et al., 2023). In several other countries, including Sweden, 82 

Italy, Latvia, Brazil, England and Wales, underlying cancer mortality was found to be stable or 83 

decreasing during the first year of the pandemic (Alicandro et al., 2023; Fernandes et al., 2021; 84 

Gobiņa et al., 2022; Grande et al., 2022; Kontopantelis et al., 2022; Lundberg et al., 2023). 85 

Further, an excess mortality study of 240,000 cancer patients in Belgium found a 33% rise in 86 

mortality in April 2020, but concluded that this was no different from the rise observed in the 87 

general population (Silversmit et al., 2021). The apparent lack of association between cancer 88 

mortality and COVID-19 on a population level raises the question of the true relationship 89 

between cancer and COVID-19.  90 

The relationship between these two diseases could occur via multiple biological mechanisms. 91 

First, immunosuppression in cancer patients could increase susceptibility to SARS-CoV-2 92 

infection and/or risk of severe clinical outcome upon infection. Conversely, immunosuppression 93 

could act as a protective factor in the face of a severe respiratory infection that kills by over-94 

stimulating the immune system – the immune incompetence rescue hypothesis (Reichert 2004). 95 

This hypothesis was put forward to explain the observed absence in excess cancer mortality 96 

during the 1968 influenza pandemic, a departure from elevated mortality seen for other high-risk 97 

conditions such as heart disease and diabetes (Reichert 2004).  A further mechanism that could 98 

affect the observed relationship between cancer deaths and COVID-19 is changing guidelines 99 

for establishing the primary cause of death. Coding guidelines evolved throughout the pandemic 100 

https://paperpile.com/c/nLcQ0W/yuRK+gFo7+vbiV
https://paperpile.com/c/nLcQ0W/yuRK
https://paperpile.com/c/nLcQ0W/gFo7
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https://paperpile.com/c/nLcQ0W/LOqd
https://paperpile.com/c/nLcQ0W/iPSQ
https://paperpile.com/c/nLcQ0W/9QlO
https://paperpile.com/c/nLcQ0W/4a3V+1o27+w7vN+or0u+hFK5+7l80
https://paperpile.com/c/nLcQ0W/4a3V+1o27+w7vN+or0u+hFK5+7l80
https://paperpile.com/c/nLcQ0W/fFP3
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as testing for SARS-CoV-2 infection became more widespread, which presumably affected vital 101 

statistics studies.  102 

To further elucidate the relationship between cancer mortality and COVID-19 on a population 103 

level, we analyzed US vital statistics in detail to understand the potential role of death certificate 104 

coding changes during the pandemic and explored putative differences in mortality patterns 105 

between different types of cancer. We considered death certificates listing cancer as the 106 

underlying cause of death (UC) or anywhere on the death certificate (multiple-cause (MC)). 107 

Assuming there is a high propensity to attribute a primary code of COVID-19 during the 108 

pandemic in any patient with COVID-19, deaths among individuals with both cancer and 109 

COVID-19 near the time of death would be coded as UC COVID-19. However, cancer should 110 

still be captured in the MC data, and thus, analysis of MC death data should control for any 111 

changes in death certificate coding practices during the pandemic (Fedeli et al., 2024). The US 112 

provides a particularly useful case study as the timing of COVID-19 waves varied considerably 113 

between states, so that elevations in cancer deaths, should they exist, should also be 114 

heterogeneous. For comparison, we also assessed population-level excess mortality patterns 115 

for other chronic conditions such as diabetes, ischemic heart disease (IHD), kidney disease, 116 

and Alzheimer’s, for which the association with COVID-19 is less debated. 117 

Results 118 

Establishing patterns and timing of COVID-19 related deaths  119 

We obtained individual ICD-10 coded death certificate data from the US for the period January 120 

1, 2014, to December 31, 2020. We compiled time series by week and cause of death, for 121 

underlying cause (UC) and for multiple-cause (MC) mortality. We considered 10 causes of 122 

death, including diabetes, Alzheimer's disease, ischemic heart disease (IHD), kidney disease, 123 

and 6 types of cancer (all-cause cancer, colorectal, breast, pancreatic, lung, and hematological; 124 

see Table 1 and Appendix 1 - Table 1 for a list of disease codes). We chose these specific 125 

cancers to illustrate conditions for which the 5- year survival rate is low (13% and 25%, 126 

respectively, for pancreatic and lung cancers) and high (65% and 91%, respectively, for 127 

colorectal and breast cancers) (National Cancer Institute, n.d.). Hematological cancer (67% 5-128 

year survival rate) was included because it has been singled out as a risk factor in several 129 

previous studies due to the immune suppression associated with both its malignancy and 130 

treatment. (Chavez-MacGregor et al., 2022; X. Han et al., 2022; Rüthrich et al., 2021; 131 

Williamson et al., 2020). To compare mortality patterns with the timing of COVID-19 pandemic 132 

waves, we accessed national and state-level counts of reported COVID-19 cases from the 133 

Centers for Disease Control and Prevention (CDC)(Centers for Disease Control and Prevention, 134 

2022). 135 

In national data, time series of COVID-19-coded death certificates (both UC and MC) tracked 136 

with the temporal patterns of laboratory-confirmed COVID-19 cases (Figure 1), revealing three 137 

distinct COVID-19 waves: a spring wave peaking on April 12, 2020, a smaller summer wave 138 

peaking on July 26, 2020, and a large winter wave that had not yet peaked by the end of the 139 

https://paperpile.com/c/nLcQ0W/zTkE
https://paperpile.com/c/nLcQ0W/vbiV+yuRK+gFo7+OBXm
https://paperpile.com/c/nLcQ0W/vbiV+yuRK+gFo7+OBXm
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study in December 2020. This correspondence between COVID-19 case and death activity 140 

represents a “signature” mortality pattern of COVID-19.  141 

Analysis of state-level data reveals variable timing, intensity, and number of COVID-19 waves 142 

across the US during 2020. To focus on periods with substantial COVID-19 activity and explore 143 

the association with cancer, we identified three large US states with unique, well-defined waves 144 

(Figure 1). New York (NY) state experienced a large, early wave in March-May 2020, based on 145 

recorded COVID-19 cases and deaths and high seroprevalence of SARS-CoV-2 antibodies in 146 

this period (over 20% (Stadlbauer et al., 2021)). Meanwhile, California (CA) experienced a large 147 

COVID-19 wave at the end of the year and had little activity during the spring and summer. 148 

Finally, Texas (TX) had two large waves; one during late summer, followed by one in winter 149 

2020.  150 

National patterns in excess mortality from cancer 151 

Similar to other influenza and COVID-19 population-level mortality studies (Islam et al., 2021; 152 

Karlinsky and Kobak, 2021; W.-E. Lee et al., 2023; Msemburi et al., 2023), we established a 153 

weekly baseline model for expected mortality in the absence of pandemic activity by modeling 154 

time trends and seasonality in pre-pandemic data and letting the model run forward during the 155 

pandemic (see Methods).  Each cause of death (UC and MC) and geography (aggregated 156 

National, NY, TX, and CA) was modeled separately. We then computed excess mortality as the 157 

difference between observed deaths and the model-predicted baseline. We summed weekly 158 

estimates to calculate excess mortality for the full pandemic period and during each of the 3 159 

waves (see Methods). In addition to these absolute effects of the pandemic on mortality, we 160 

also calculated the relative effects by dividing excess mortality by baseline mortality. This 161 

approach has been used in the past to standardize mortality effects in strata with very different 162 

underlying risks (e.g., age groups, geographies, or causes of death, see Methods). 163 

Nationally, we found a drop in UC cancer deaths during spring 2020 (Figure 2, panel a; Table 164 

2), although the drop was not statistically significant. A similar non-significant decline was also 165 

seen for specific cancer types (Figure 2, panels d-f; Appendix 1 - Figure 1, panels a,f-j). Further, 166 

pre-pandemic mortality trends for each cancer type continued unabated during the first 167 

pandemic year. We reasoned that this early drop in UC cancer deaths may be explained by 168 

changes in coding practices, so we next turned to MC mortality to resolve this question. 169 

Time series of MC cancer mortality showed a significant increase in all three waves (Figure 2, 170 

panel a; Appendix 1 - Table 2). A similar pattern was seen in MC time series for colorectal 171 

(Figure 2, panel h), breast (Appendix 1 - Figure 1, panel i), and hematological cancer (Appendix 172 

1 - Figure 1, panel j). However, the total excess mortality was modest with 13,600 excess 173 

cancer deaths in 2020, representing a statistically significant 3% elevation over baseline (Table 174 

2). The largest relative increase in MC mortality was observed in hematological cancer at 7% 175 

(statistically significant, 3,600 excess deaths). No excess in MC mortality was seen for the two 176 

deadliest cancers, pancreatic cancer (Figure 2, panel f) and lung cancer (Appendix 1 - Figure 1, 177 

panel g).  178 

https://paperpile.com/c/nLcQ0W/yAtM
https://paperpile.com/c/nLcQ0W/9QlO+ga2x+rjs0+7t97
https://paperpile.com/c/nLcQ0W/9QlO+ga2x+rjs0+7t97
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National patterns in deaths due to other chronic conditions  179 

We considered diabetes and Alzheimer’s as “positive controls” as they are also considered 180 

COVID-19 risk factors and can illustrate how positive associations between chronic conditions 181 

and COVID-19 manifest in population level excess mortality studies. Diabetes provides a 182 

particularly useful comparator for cancer as the mean age at death is similar (~72 years, Table 183 

1) and because few individuals live in a nursing home (Appendix 1 - Supplemental Methods). 184 

Mortality time series from UC and MC diabetes and Alzheimer’s were highly correlated with 185 

COVID-19 activity, with statistically significant mortality elevation synchronous with pandemic 186 

waves (Figure 2 b-c; Appendix 1 - Figures 2-5). For diabetes, we measured an excess of 10,800 187 

and 82,300 deaths (UC and MC, respectively), corresponding to statistically significant 188 

elevations of 16% and 37% over baseline level mortality (Table 2). For Alzheimer’s, we 189 

estimated 8,500 and 21,700 excess deaths, corresponding to statistically significant elevations 190 

of 9% and 19% elevation over baseline, respectively. Pandemic-related excess mortality was 191 

also seen for IHD and kidney disease (see supplement for estimates, Appendix 1 - Table 2).  192 

State-level patterns in excess mortality  193 

Similar to patterns seen in national level data, none of the state-level analyses revealed notable 194 

increases in UC cancer mortality, while there was a modest, non-significant increase in MC 195 

cancer mortality (Figures 3-5; Appendix 1 - Figures 6-8). The largest mortality increase was 196 

seen in NY during the spring wave, with a 6% rise in MC cancer mortality above the model 197 

baseline (Table 2; Appendix 1 - Table 3). The magnitude of the increase seen during the spring 198 

wave varied by cancer type, with minimal increases seen in pancreatic and lung cancers (1%) 199 

and higher increases in colorectal, hematological, and breast cancers (9%, 10%, and 16%, 200 

respectively). For comparison, there was a statistically significant rise in Alzheimer’s and 201 

diabetes deaths during this wave of 49% and 128%.  202 

In CA and TX, mortality fluctuations were less pronounced than in NY, coinciding with less 203 

intense COVID-19 waves, and this was seen across all conditions. MC excess mortality 204 

estimates remained within +/-4% of baseline levels for cancers, irrespective of the type of 205 

cancer and pandemic wave, except for hematological cancers which saw an 11% rise in Texas 206 

during the summer wave and an 8% rise in California during the winter wave. None of these 207 

elevations were statistically significant. In comparison, there was statistically significant excess 208 

mortality elevation for both Alzheimer’s and diabetes deaths (range, 18-59% in the CA winter 209 

wave, and 45-77% in the TX summer wave, Table 2, Appendix 1- Tables 4-5). 210 

Demographic mortality projections under the null hypothesis that cancer in and of itself is not a 211 

risk factor for COVID-19 mortality  212 

Next, to get a sense of the expected mortality elevation, we ran simulations to gauge the level of 213 

individual-level association (traditionally measured as relative risk, RR) between COVID-19 and 214 

the studied chronic conditions that is consistent with the population-level excess mortality 215 

patterns observed during the pandemic. Using cancer as an example, two main factors could 216 

drive cancer mortality patterns during COVID-19, namely the size and age of the population 217 
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living with cancer (since age is such a pronounced risk factor for COVID-19), and the life 218 

expectancy under cancer diagnosis. These factors would operate irrespective of the true 219 

biological relationship between COVID-19 severity and cancer. The same logic applies to 220 

mortality from other chronic conditions, such as diabetes or Alzheimer’s.  221 

To test the hypothesis that these population factors alone could explain differences in excess 222 

mortality between chronic conditions, we designed a simple model of COVID-19 mortality for 223 

individuals with chronic conditions (see methods for details). The model projected excess 224 

mortality during the pandemic under the null hypothesis that the chronic condition was not in 225 

and of itself a risk factor for COVID-19 mortality, with only the demography of the population 226 

living with the disease (namely, the age and size of the at-risk populations and baseline risk of 227 

death from each condition) affecting excess mortality. In the demographic model, we first 228 

estimated the number of expected SARS-CoV-2 infections among persons with a certain 229 

condition, by multiplying the estimated number of US individuals living with the condition (CDC, 230 

Division of Population Health, n.d.; Dhana et al., 2023; Rajan et al., 2021; U.S. Cancer Statistics 231 

Working Group, released in November 2023) by the reported SARS-CoV-2 seroprevalence at 232 

the end of our study period (December 2020 for the national, or after each wave for the state 233 

data)(Centers for Disease Control and Prevention, 2023). We focused on seroprevalence 234 

among individuals ≥65 years, the most relevant age group for the conditions we considered (we 235 

also run a sensitivity analysis considering seroprevalence in adults 50-64 years, see 236 

discussion). We then multiplied the estimated number of SARS-CoV-2 infections by an age-237 

specific infection-fatality ratio (IFR) for SARS-CoV-2 (COVID-19 Forecasting Team, 2022). This 238 

gave an estimate of COVID-19-related deaths, or excess deaths, for a given condition. To 239 

estimate a percent elevation over baseline and compare with our vital statistics analysis, we 240 

divided the excess death estimate derived from the demographic model by the total deaths for 241 

that condition for a similar period of time in 2019 (see Methods). We repeated this analysis for 242 

each cancer type, diabetes, and Alzheimer’s. In addition to the null hypothesis, we also 243 

projected alternative hypotheses of a biological association between chronic conditions and 244 

COVID-19, assuming that a given chronic condition would raise the risk of COVID-19 mortality 245 

(via the infection fatality ratio) by a factor of 2 or 5. We compared these modeled expectations 246 

for the null and alternative hypotheses with the observed excess mortality in 2020, using MC 247 

mortality as the outcome (Table 2).  248 

Under the null hypothesis we projected a 0-2% elevation over the 2019 baseline in deaths for all 249 

cancer types in national data, and 0-9% elevations in state-level data (Table 3). Under the 250 

alternative hypothesis that cancer increases COVID-19 mortality risk by a factor of 2, the 251 

projected elevation is 0-5% in national data and 0-18% in state-level data. In general, the largest 252 

projected increases were found in NY state, driven by the higher attack rates. We also see 253 

systematic differences in the percent elevation over baseline by type of cancer, related to the 254 

lethality of different cancers. For instance, even if cancer increases COVID-19 mortality risk by a 255 

factor of 2, we expect to see only a 0-1% increase for particularly deadly cancers such as 256 

pancreatic and lung cancer, in part driven by the high competing risk of death from these 257 

cancers (short life expectancy) and the small size of the population-at-risk. The expected 258 

increases for less deadly cancers, such as colorectal and breast, were notably higher (2-5% in 259 

national data, and 9-18% during the large spring wave in New York), in part driven by the lower 260 

https://paperpile.com/c/nLcQ0W/TXMK+7MIf+PRyw+1d2r
https://paperpile.com/c/nLcQ0W/TXMK+7MIf+PRyw+1d2r
https://paperpile.com/c/nLcQ0W/TXMK+7MIf+PRyw+1d2r
https://paperpile.com/c/nLcQ0W/jF2J
https://paperpile.com/c/nLcQ0W/9frj
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risk of death from these cancers (longer life expectancy). Based on the observations from our 261 

time series analysis of MC mortality in all states, non-hematological cancers are most consistent 262 

with a 1- to 2-fold increase in mortality, with the caveat that most of the confidence intervals 263 

include zero, and the differences in projected mortality under these hypotheses are minimal. In 264 

contrast, for hematological cancer, the observed rise in mortality exceeds the expected 265 

elevation even under the assumption of a 5-fold increase in mortality.  266 

We repeated this analysis for diabetes and Alzheimer’s (Table 3). For diabetes under the null 267 

hypothesis, we projected an 8% elevation over baseline in national data and 12-30% in state-268 

level data based on the age distribution and substantial size of the population-at-risk alone. In 269 

fact, we observed in vital statistics analysis a 37% elevation over baseline in national US data 270 

and 59-128% in state-level data, with the largest increase seen in NY and lowest increase in 271 

CA. These observations are most consistent with a 5-fold increase in mortality based on our 272 

demographic model (projected elevation 40% nationally and 62-148% at the state level). For 273 

Alzheimer’s under the null hypothesis, we projected a 28% increase over baseline nationally, 274 

and 30-191% increases at the state level, largely driven by the advanced age of the population-275 

at-risk. In contrast, analysis of vital statistics data reveals a 19% increase nationally and 18-49% 276 

across states, which is in fact lower than the null hypothesis (we return to this surprising result in 277 

the discussion).  Strikingly, our demographic model supports that COVID-19 will manifest 278 

differently in population-level excess mortality for each of these chronic conditions, even under 279 

the null hypothesis of no biological association between viral infection and these underlying 280 

comorbidities. Overall, these projections support the idea that demography alone (age, size, and 281 

baseline mortality of the population living with each of these conditions) can explain much of the 282 

differences in absolute and relative mortality elevations seen during the pandemic across 283 

conditions like cancer, diabetes, and Alzheimer’s.   284 

Discussion 285 

Cancer is generally thought of as a risk factor for severe COVID-19 outcomes, yet observational 286 

studies have produced conflicting evidence. With recent availability of more detailed US vital 287 

statistics data, we used statistical time series approaches to generate excess mortality 288 

estimates for multiple cause of death data, different types of cancer, and several geographic 289 

locations during 2020. We accounted for potential changes in coding practices during the 290 

pandemic, for instance capturing a COVID-19 patient with cancer whose death may have been 291 

coded as an underlying COVID-19 death and not a cancer death. Based on multiple cause of 292 

death data, we estimated 13,600 national COVID-19-related excess cancer deaths, which aligns 293 

well with reporting on death certificate data, where 13,400 deaths are ascribed to COVID-19 in 294 

cancer patients (Appendix 1 - Figure 9) (Fedeli et al., 2024). Yet these deaths only represent a 295 

3% elevation over the expected baseline cancer mortality. Percent mortality elevation was 296 

measurably higher for less deadly cancers (breast and colorectal) than cancers with a poor 5-297 

year survival (lung and pancreatic). Consistent with other studies (Chavez-MacGregor et al., 298 

2022; S. Han et al., 2022; Rüthrich et al., 2021; Williamson et al., 2020), we found that the 299 

largest mortality increase for specific cancer types was seen in hematological cancers with a 7% 300 

elevation over baseline in national data. Across the board, the largest elevations in cancer 301 

https://paperpile.com/c/nLcQ0W/yuRK+vbiV+77Cp+gFo7
https://paperpile.com/c/nLcQ0W/yuRK+vbiV+77Cp+gFo7
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mortality were observed in the states most impacted by the first year of the COVID-19 pandemic 302 

(e.g., NY), lending support to the specificity of our excess mortality approach. 303 

In contrast to cancer, we observed substantial COVID-19-related excess mortality for diabetes 304 

and Alzheimer’s, temporally and geographically consistent with the three-wave “signature” 305 

pattern observed in reported COVID-19 cases and deaths across the US. To investigate 306 

whether demographic differences in underlying patient populations (age distribution, population 307 

size, and baseline risk of death due to chronic condition) could explain differences in excess 308 

mortality during the pandemic, we ran a simple demographic model for each condition – first 309 

assuming the condition in and of itself was not a risk factor for COVID-19-related mortality (null 310 

hypothesis). Doing so we found that the rise in cancer deaths during COVID-19 was expected to 311 

remain low compared to these other chronic conditions, largely driven by the higher risk of death 312 

from cancer itself compared to diabetes and Alzheimer’s. These demographic projections 313 

illustrate the importance of competing risks (Figure 6), where the risk of cancer death 314 

predominates over the risk of COVID-19 death in 2020. This is exacerbated in cancers with high 315 

mortality rates. For instance, even if pancreatic cancer had in fact doubled the risk of dying of 316 

COVID-19 (IFR = 4.2% vs. 2.1%), we would only expect a rise in excess mortality around 0.4% 317 

during the pandemic (Table 3), while the 2019 baseline risk of death for pancreatic cancer itself 318 

is over 60% (Figure 6). On the other hand, for conditions with a lower baseline level mortality, 319 

such as diabetes, we expect substantial COVID-19 driven elevations in mortality.  320 

Our analysis revealed interesting differences between types of cancers. Both nationally and at 321 

the state-level, the observed excess mortality for non-hematological cancers was consistent 322 

with a 1- to 2-fold increase in COVID-19 mortality risk in patients with these types of cancer. 323 

Importantly, our analysis ignores any behavioral effects associated with the pandemic. It is 324 

conceivable that cancer patients may have shielded themselves from COVID-19 more than the 325 

average person in 2020. Our projections assume an average risk of infection for a typical 326 

individual over 65 years as there is no serologic data on infection attack rates for specific clinical 327 

population subgroups (of any age). If shielding from exposure to SARS-CoV-2 was high among 328 

cancer patients, our projections of cancer excess mortality during the pandemic would be 329 

inflated. In other words, if shielding was particularly pronounced, cancer may conceivably be a 330 

higher risk factor than shown here. Retrospective serologic analysis of banked sera from the 331 

first year of the pandemic, broken down by underlying comorbidities, may shed light on whether 332 

infection risk may have varied by chronic condition.  333 

State-level mortality patterns can potentially provide complementary insights on the question of 334 

shielding. Because NY state experienced the earliest and most intense COVID-19 wave of the 335 

US, with over 20% of the population infected in Spring 2020 (Stadlbauer et al., 2021), and 336 

because social distancing did not come into effect until March 2020, shielding would have had a 337 

more limited impact there than in other states. Thus, a biological relationship between cancer 338 

and COVID-19 would have been most dramatic in NY in spring 2020. Indeed, cancer excess 339 

mortality was exacerbated in NY, including an 9-16% increase in colorectal and breast cancer 340 

mortality, consistent with a 2-fold increase in COVID-19 mortality risk from these cancers, and a 341 

10% increase in hematological cancers, consistent with a 5-fold increase in COVID-19 mortality 342 

risk. In NY, the absence of excess mortality in lethal cancers, such as pancreatic and lung 343 

https://paperpile.com/c/nLcQ0W/yAtM
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cancers (1% over baseline) are, as discussed above, still consistent with what would be 344 

expected under a high competing risk situation.  345 

We used diabetes and Alzheimer as positive controls for a known biological association 346 

between COVID-19 and chronic conditions. Diabetes stood out in our analyses with the highest 347 

absolute and relative increases in excess mortality during the pandemic. The magnitude of the 348 

mortality increases, both nationally and at the state level, were close to what would be expected 349 

if diabetes increased COVID-19 mortality by 5-fold. Many studies have shown that diabetes 350 

increases the risk of COVID-19 mortality, with an effect size around 2 (Williamson et al. 2020; 351 

Huang et al. 2020; Kastora et al. 2022). Impaired immune function and chronic inflammation 352 

have been identified as mechanisms driving poor outcomes for diabetes patients (Figueroa-353 

Pizano et al. 2021). The discrepancy between the observed excess and our expectations may 354 

come down to uncertainty in the SARS-CoV-2 infection rates assumed in our demographic 355 

model. The population living with diabetes is slightly younger than that of the other conditions 356 

(mean age, 58-60 years), while we used serologic infection rates reported for individuals over 357 

65 years in our main analysis. The SARS-CoV-2 attack-rate among those 50-64 years was 358 

10.1% at the end of 2020, compared to 6.3% in individuals over 65 (Centers for Disease Control 359 

and Prevention, 2023). A sensitivity analysis using this higher attack rate in our demographic 360 

model lends more support to the hypothesis that diabetes increases COVID-19 mortality by 2-361 

fold, rather than 5-fold as found in our main analysis.  362 

Our second positive control, Alzheimer’s, revealed surprising results. Although we observed 363 

significant excess mortality in MC Alzheimer’s data, it was still less than expected under the null 364 

hypothesis that Alzheimer’s was not a risk factor for COVID-19 mortality. This is unexpected in 365 

light of several observational studies that have shown Alzheimer’s to be a risk factor (Tahira et 366 

al., 2021; Wang et al., 2021; Zhang et al., 2021). As with cancer and diabetes, there is 367 

uncertainty in the SARS-CoV-2 infection rates used in the demographic model, due to the 368 

potential effect of shielding and the age-specific SARS-CoV-2 infection risk of the Alzheimer’s 369 

population. We estimated that the average age of the population living with Alzheimer’s disease 370 

was 80-81 years, and the infection rates for the general population over 65 years may not 371 

accurately reflect exposure in this subpopulation. Decreasing the attack rates by 20-30% (down 372 

to 4.4-5.0%) puts the observed estimates in the range of the expectations under the null 373 

hypothesis. Overall, given uncertainty in SARS-CoV-2 attack-rates and the age and size of the 374 

population-at-risk for all studied conditions, our demographic model projections are not an exact 375 

tool to titrate excess mortality nor the relative risk associated with each condition. Our model 376 

merely serves as an illustration of the role of demography and competing risks. 377 

Most vital statistics studies of the COVID-19 pandemic have relied on underlying cause-specific 378 

deaths, which are prone to changes in coding practices. Our initial hypothesis going into this 379 

work was that coding changes associated with a better recognition of the impact of SARS-CoV-380 

2 led to an underestimation of excess mortality from cancer, affecting our perception of the 381 

relationship between cancer and COVID-19. We certainly found an effect of coding changes, 382 

where for instance a drop in excess mortality in underlying cancer deaths turned into an 383 

increase in multiple-cause (any-listed) cancer deaths, particularly in the first COVID-19 384 

pandemic wave. A similar observation was made by Fedeli et al. The impact of coding changes 385 

https://paperpile.com/c/nLcQ0W/vbiV+Kcbh+V2eS
https://paperpile.com/c/nLcQ0W/vbiV+Kcbh+V2eS
https://paperpile.com/c/nLcQ0W/0RzL
https://paperpile.com/c/nLcQ0W/0RzL
https://paperpile.com/c/nLcQ0W/jF2J
https://paperpile.com/c/nLcQ0W/jF2J
https://paperpile.com/c/nLcQ0W/0hQD+56xH+SUwd
https://paperpile.com/c/nLcQ0W/0hQD+56xH+SUwd
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was also seen in mortality from other chronic conditions but was particularly important for 386 

cancer. Yet both the absolute and relative excess mortality elevation remained modest for 387 

cancer, even after adjustment for coding changes, highlighting the importance of additional 388 

mechanisms such as competing mortality risks between COVID-19 and cancer. 389 

An interesting hypothesis was put forward 20 years ago proposing that immunosuppression 390 

from cancer may explain the lack of excess cancer mortality in the 1968 influenza pandemic – 391 

the immune incompetence rescue hypothesis (Reichert et al 2004). This hypothesis contends 392 

that it is a detrimental immune response that leads to influenza death. A similar hypothesis was 393 

put forward to explain the extreme mortality in young healthy adults in the 1918 pandemic (Short 394 

et al., 2018). However, observational studies have found that patients with hematological 395 

cancers have twice the risk of dying compared to patients without cancer, likely due to the 396 

immunosuppression associated with their malignancy and treatment (X. Han et al., 2022; 397 

Starkey et al., 2023; Williamson et al., 2020). Under the immune incompetence rescue 398 

hypothesis, hematological cancers would be expected to have the lowest excess mortality of all 399 

types of cancers. Our excess mortality analysis reveals instead that hematologic cancers were 400 

the most impacted by the pandemic, relative to other types of cancer, with observed mortality 401 

patterns consistent with a 5-fold increase in risk of COVID-19 death in patients with 402 

hematological cancers. Overall, we do not find any support for the immune competence rescue 403 

hypothesis. 404 

Our study is subject to limitations. First, we did not study the potential long-term consequences 405 

of the pandemic on cancer care, which may have resulted in avoidance of the health care 406 

system for diagnosis or treatment. We did not see any delayed pandemic effect on mortality 407 

from pancreatic cancer, which may have manifested in 2020 given the very low survival rate of 408 

this cancer (Lemanska et al., 2023), but we cannot rule out longer-term effects on breast or 409 

colorectal cancers that would not be seen until 2021 or later (Doan et al., 2023; Han et al., 2023; 410 

Haribhai et al., 2023; R. Lee et al., 2023; Nascimento de Lima et al., 2023; Nickson et al., 2023; 411 

Nonboe et al., 2023; Tope et al., 2023). Interestingly, in the US, all-cause underlying cancer 412 

mortality rates do not appear to rise between 2020 and 2023 (Appendix 1 - Figure 10), but data 413 

prior to the pandemic show a rise in cancer incidence, largely driven by increasing cancer rates 414 

in younger adults (Zhao et al. 2023; Siegel et al. 2024). Additional years of data will be 415 

important to evaluate the long-term impacts of the COVID-19 pandemic and these changing 416 

demographics on cancer mortality rates. Additional years of data will also be important for 417 

assessing the impact of vaccination on the relationship between cancer and COVID-19; there is 418 

evidence that vaccines may be less immunogenic in patients with cancer compared to those 419 

without (Seneviratne et al., 2022). Another limitation of our study is the reliance on mortality as 420 

an outcome, and not the risk of COVID-19-related hospitalization and morbidity, and Long 421 

COVID in cancer patients. A small US study reported that 60% of cancer patients suffered Long 422 

COVID symptoms (Dagher et al., 2023). Future analyses using hospitalization data and 423 

electronic medical records may provide additional insights on how different cancer stages or 424 

other comorbidities may contribute to increased risk of severe COVID-19 outcomes. Lastly, a 425 

few methodological limitations are worth raising. Though it was important to assess excess 426 

mortality in state level data because of asynchrony in pandemic waves, confidence intervals in 427 

state-level estimates were large, particularly for specific types of cancers, affecting significance 428 

https://paperpile.com/c/nLcQ0W/obMh
https://paperpile.com/c/nLcQ0W/obMh
https://paperpile.com/c/nLcQ0W/vbiV+iPSQ+OBXm
https://paperpile.com/c/nLcQ0W/vbiV+iPSQ+OBXm
https://paperpile.com/c/nLcQ0W/Wsk4
https://paperpile.com/c/nLcQ0W/yEi4+Q9Ga+VSNK+KfHn+5DRH+PXNd+4Il6+AjQd
https://paperpile.com/c/nLcQ0W/yEi4+Q9Ga+VSNK+KfHn+5DRH+PXNd+4Il6+AjQd
https://paperpile.com/c/nLcQ0W/yEi4+Q9Ga+VSNK+KfHn+5DRH+PXNd+4Il6+AjQd
https://paperpile.com/c/nLcQ0W/hQdy+4o8D
https://paperpile.com/c/nLcQ0W/pxg8
https://paperpile.com/c/nLcQ0W/KVpt
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levels. Additional methodological limitations relate to our demographic model, especially as 429 

regards assumptions about SARS-CoV-2 infection rates in populations of different ages and 430 

with different chronic conditions. Importantly, our conclusions regarding the importance of 431 

competing risks are robust to these assumptions. Lastly, our study is a time-trend analysis and 432 

– like cohort and case-control studies – correlation does not necessarily imply causation. 433 

However, the intensity and brevity of COVID-19 pandemic waves in space and time lends 434 

support to our analyses.  435 

Conclusion 436 

Our detailed excess mortality study considered six cancer types and found that there is at most 437 

a modest elevation in cancer mortality during the COVID-19 pandemic in the US. Our results 438 

demonstrate the importance of considering multiple-causes-of-death records to accurately 439 

reflect changes in coding practices associated with the emergence of a new pathogen. In 440 

contrast to earlier studies, we propose that lack of excess cancer mortality during the COVID-19 441 

pandemic reflects the competing mortality risk from cancer (especially for deadly types like 442 

pancreatic and lung cancers) itself rather than protection conferred from immunosuppression. 443 

We note the more pronounced elevation in mortality from hematological cancers during the 444 

pandemic, compared to other cancers and to expectations from a demographic model, which 445 

aligns with a particular group of cancer patients singled out in several cohort studies. Future 446 

research on the relationship between COVID-19 and cancer should concentrate on additional 447 

outcomes, such as excess hospitalizations, Long COVID, changes in screening practices during 448 

COVID-19, and longer-term patterns in cancer mortality.  449 

Materials and Methods 450 

Data sources  451 

US National vital statistics.  452 

We obtained individual ICD-10 coded death certificate data with exact date of death from the 453 

United States for the period January 1, 2014, to December 31, 2020. Each death certificate has 454 

one underlying cause (UC) of death, defined as the disease or injury that initiated the train of 455 

events leading directly to death, and up to twenty causes of death in total, referred to here as 456 

multiple cause mortality (MC). We considered 10 conditions, including diabetes, Alzheimer's 457 

disease, ischemic heart disease (IHD), kidney disease, and 6 types of cancer (all-cause cancer, 458 

colorectal, breast, pancreatic, lung, and hematological; see Table 1 and Appendix 1 – Table 1 459 

for a list of disease codes). We chose these types of cancer to illustrate conditions for which the 460 

5- year survival rate is low  (13% and 25%, respectively, for pancreatic and lung cancers) and 461 

high (65% and 91%, respectively, for colorectal and breast cancers) (National Cancer Institute, 462 

n.d.). Hematological cancer (67% 5-year survival) was included because it was singled out as a 463 

risk factor by previous studies. We compiled time series by week, geography (aggregated 464 

National, NY, TX, and CA) and cause of death, separately for underlying and multiple cause 465 

mortality.  466 

https://paperpile.com/c/nLcQ0W/zTkE
https://paperpile.com/c/nLcQ0W/zTkE
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To observe longer-term trends in later years of the COVID-19 pandemic, we downloaded 467 

aggregated weekly-level data from 2021 to 2023 for all-cause cancer, diabetes, and Alzheimer’s 468 

disease from CDC Wonder.  469 

Estimated populations living with each chronic condition.  470 

We estimated the size of the population-at-risk for all-cause and specific cancers using the 5-471 

year limited duration prevalence estimates provided by the U.S. Cancer Statistics webpage 472 

(U.S. Cancer Statistics Working Group ...). Estimates for diabetes were drawn from CDC’s 473 

Behavioral Risk Factor Surveillance System Chronic Disease Indicators (CDC, Division of 474 

Population Health). Estimates for Alzheimer’s disease were taken from publications from the 475 

Alzheimer’s Association (Rajan et al. 2021; Dhana et al. 2023).  476 

For each condition, age-specific prevalence data were tabulated for the US and for each state 477 

separately. For cancer, age-level data were only available at the national level so these age-478 

specific prevalence estimates were applied to the populations for each of the three states 479 

considered (NY, CA, TX). Age-level data were provided for all ages for cancer (<20 years, 20-480 

80 years in 10-year groupings, ≥80 years), for adults ≥ 18 for diabetes (18-44years, 45-64years, 481 

≥65 years) and for adults ≥65 for Alzheimer’s disease (65-74years, 75-84yrs, ≥85years). A 482 

weighted mean age for the population-at-risk for each condition was calculated using the mid-483 

point for each age group.  484 

Other data sources  485 

To compare vital statistics patterns with COVID-19 surveillance data, we accessed national and 486 

state counts of laboratory-confirmed COVID-19 cases in 2020, from the CDC (Centers for 487 

Disease Control and Prevention, 2022).  488 

To clarify the expected role of COVID-19 on excess mortality, we compiled data on the 489 

proportion of the population with serologic evidence of SARS-CoV-2 infection from the CDC 490 

dashboard (Centers for Disease Control and Prevention, 2023). We further compiled data on 491 

estimated age-specific infection-fatality ratios from COVID-19, provided by single year of age 492 

(COVID-19 Forecasting Team, 2022). 493 

 494 

Statistical approach  495 

Weekly excess mortality models 496 

Similar to other influenza and COVID-19 excess mortality studies (Islam et al., 2021; Karlinsky 497 

and Kobak, 2021; W.-E. Lee et al., 2023; Msemburi et al., 2023), we established a predicted 498 

baseline of expected mortality for each time series, and computed the excess mortality as the 499 

excess in observed deaths over this baseline. To establish baselines for each disease nationally 500 

and in each state, we applied negative binomial regression models to weekly mortality counts 501 

for each cause of death, smoothed with a 5-week moving average and rounded to the nearest 502 

https://paperpile.com/c/nLcQ0W/TXMK
https://paperpile.com/c/nLcQ0W/7MIf
https://paperpile.com/c/nLcQ0W/7MIf
https://paperpile.com/c/nLcQ0W/PRyw+1d2r
https://paperpile.com/c/nLcQ0W/o3Bg
https://paperpile.com/c/nLcQ0W/o3Bg
https://paperpile.com/c/nLcQ0W/jF2J
https://paperpile.com/c/nLcQ0W/9frj
https://paperpile.com/c/nLcQ0W/9QlO+rjs0+ga2x+7t97
https://paperpile.com/c/nLcQ0W/9QlO+rjs0+ga2x+7t97
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integer. Models included harmonic terms for seasonality, time trends, and an offset for 503 

population size. For each condition and location, we used Akaike Information Criterion (AIC) to 504 

select between three models with different time trends (see Appendix 1 - Supplemental 505 

Methods, Appendix 1- Figure 11, for the final model selection for each location and condition), 506 

following:  507 

Model 1:  508 

Weekly_mortality = t + cos(2𝜋t/52.17) + sin(2𝜋t/52.17) + offset(log(population)), where t 509 

represents week. 510 

Model 2:  511 

Weekly_mortality = t + t2 + cos(2𝜋t/52.17) + sin(2𝜋t/52.17) + offset(log(population)), where t 512 

represents week. 513 

Model 3:  514 

Weekly_mortality = t + t2 + t3 + cos(2𝜋t/52.17) + sin(2𝜋t/52.17) + offset(log(population)), where t 515 

represents week. 516 

We fitted national and state-level models for each mortality outcome from January 19, 2014, to 517 

March 1, 2020, and projected the baseline forward until December 6, 2020, the last complete 518 

week of smoothed mortality data.  Models were fitted using the MASS package in R version 4.3. 519 

Using COVID-19 coded death certificates from March 1, 2020, to December 6, 2020, we 520 

established the timing of each pandemic wave from trough to trough. We found that nationally, 521 

the first wave occurred from March 1, 2020, to June 27, 2020; the second wave from June 28, 522 

2020, to October 3, 2020, and the third from October 4, 2020, to December 6, 2020 (the 3rd 523 

wave was not completed by the last week of available smoothed data on December 6, 2020). 524 

For NY, the pandemic pattern was characterized by an intense first wave in Spring 2020, while 525 

TX had its major wave in summer 2020 and CA in late 2020. Comparison of mortality patterns 526 

from these three states provides an opportunity to separate the effect of SARS-CoV-2 infection 527 

from that of behavioral changes later in the pandemic. For instance, the effects of healthcare 528 

avoidance would predominate in CA or TX in Spring 2020, as there was little SARS-CoV-2 529 

activity but much media attention on COVID-19, with cancer patients potentially avoiding 530 

medical care out of fear of getting infected. In contrast, risk of infection would dominate in NY in 531 

Spring 2020, and behavioral factors may only play a role as SARS-CoV-2 awareness increased 532 

and the wave was brought under control by social distancing.   533 

We estimated weekly excess mortality by subtracting the predicted baseline from the observed 534 

mortality. We summed weekly estimates to calculate excess mortality for the full pandemic 535 

period and for each of the 3 waves within the first year of the pandemic. In addition to estimating 536 

the absolute effects of the pandemic on mortality, we also calculated relative effects by dividing 537 

excess deaths in each diagnosis group by the model baseline. Confidence intervals on excess 538 

mortality estimates were calculated by resampling the estimated model coefficients 10,000 539 
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times using a multivariate normal distribution and accounting for negative binomial errors in 540 

weekly mortality counts. 541 

We used Pearson correlation to test synchronicity patterns in weekly excess mortality from 542 

different cancers and chronic conditions to underlying COVID-19 deaths. Correlation analysis 543 

assumes a direct and immediate effect of COVID-19 on cancer mortality. We also investigated 544 

the possibility of delayed effects or harvesting by inspecting the time series for evidence of such 545 

effects and by comparing total excess deaths for distinct pandemic waves and the whole of 546 

2020.  547 

Projections of excess mortality under the null hypothesis of no specific COVID-19 mortality risk 548 

of each condition 549 

To further test the impact of age on the association between chronic conditions and COVID-19 550 

and clarify the additional risk due to each chronic condition, we projected the number of COVID-551 

19 deaths under the null hypothesis that demographic characteristics alone (size, age, and 552 

baseline mortality risk for each condition) are driving excess mortality, and that there is no 553 

interaction between the condition and SARS-CoV-2 infection. Excess mortality projections were 554 

then compared with observed excess mortality. We only used MC deaths for this approach to 555 

account for the possibility that some individuals may suffer from multiple conditions. For 556 

example, an estimated 11.5% of US adults with type 2 diabetes also have a history of cancer 557 

(Yeh et al., 2018).  558 

We first calculated the number of expected COVID-19 infections among persons living with a 559 

certain chronic condition, by multiplying the estimated number of individuals living with the 560 

condition by the reported SARS-CoV-2 seroprevalence among individuals ≥65 years at specific 561 

time points during 2020. For the national data and California, we used results from the survey 562 

conducted from November 23 - December 12, 2020. For New York we used estimates from the 563 

survey conducted from July 27 - August 13, 2020 (the earliest data available). And for Texas we 564 

used the survey conducted from October 5-19, 2020 (following the large summer wave). 565 

(Centers for Disease Control and Prevention, 2023). We then multiplied this by the COVID-19 566 

IFR based on the estimated mean age of individuals living with the condition (COVID-19 567 

Forecasting Team, 2022) to arrive at the projected number of COVID-19-related excess deaths 568 

for a particular condition during 2020. We put uncertainty intervals around these estimates using 569 

the lower and upper bounds from the estimated attack-rates and COVID-19 IFRs. 570 

To obtain a relative metric of expected COVID-19 burden, we divided projected COVID-19 571 

excess deaths by total deaths in each diagnosis group in the 2019 baseline period (March to 572 

December 2019, for the national data. For the states we used the months in 2019 573 

corresponding to their large waves in 2020), resulting in an expected percentage elevation over 574 

baseline in 2020. We compared this null expectation to the observed percentage elevation over 575 

baseline from our excess mortality models. We also generated the expected number of excess 576 

deaths under alternative hypotheses where each condition is associated with a 2- or 5-fold 577 

increased risk of COVID-19 related death given infection (i.e., the baseline age-adjusted 578 

infection fatality ratio used in the null hypothesis was increased 2- or 5-fold).  579 

https://paperpile.com/c/nLcQ0W/Xrvc
https://paperpile.com/c/nLcQ0W/jF2J
https://paperpile.com/c/nLcQ0W/9frj
https://paperpile.com/c/nLcQ0W/9frj
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The equation for the expected percent increase in excess mortality over baseline deaths under 580 

the null hypothesis, for a specific risk condition (cancer, diabetes., Alzheimer) and time-period, 581 

can be written as:  582 

Expected percent increase in excess mortality for a chronic condition and time period = (size of 583 

population-at-risk for the condition * SARS-CoV-2 infection rate for the period * age-specific 584 

IFR) / baseline mortality for the condition in comparable period in 2019 585 

The expected mortality increases under the alternative hypothesis of a 2- or 5-fold increased 586 

risk of COVID-19 death from the condition under study is modeled by multiplying the right-hand 587 

side of the above equation by the increased risk (i.e., we assume that presence of the 588 

underlying condition will increase the IFR by 2- or 5-fold compared to the IFR for the general 589 

population). 590 
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Table 1. Each diagnosis group and its corresponding ICD-10 codes, number of underlying deaths, mean age in years at time of 789 

death, the percentage of deaths occurring at home, and the percentage of deaths occurring in nursing homes for 2019 and 2020.  790 

Year 

  
 
Diagnosis Group ICD-10 Codes    No. Deaths 

Mean age, 
years (IQR) %Home/ER %Nursing Home 

  

2019 Cancer C00-C99 493,397 72 (64-81) 45 12   

Pancreatic Cancer C25 37,864 72 (64-80) 51 9   

Colorectal Cancer   C18-C20 42,484 71 (61-82) 46 13   

Hematologic Cancers C81-C96 47,174 74 (67-84) 35 11  

Diabetes E10-E14 70,763 72 (63-82) 53 17   

Alzheimer’s G30 98,675 87 (82-92) 29 50   

2020 Cancer C00-C99 513,275 72 (64-81) 55 8   

Pancreatic Cancer C25 39,893 72 (65-80) 61 6   

Colorectal Cancer C18-C20 43,990 71 (61-82) 56 9   

Hematologic Cancers C81-C96 49,161 74 (67-84) 46 8  

Diabetes   E10-E14 88,124 71 (62-82) 58 15   

Alzheimer’s G30 115,256 86 (82-92) 33 46   
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Table 2. The estimated number of excess deaths and the percentage over baseline for each diagnosis group when listed as both the underlying 791 

cause or anywhere on the death certificate (multiple cause). Estimates for the national-level data are provided for the full pandemic period and for 792 

each state based on when the first large wave was experienced.  793 

Cause of Death State Wave 

Multiple Cause Underlying Cause 

Excess Deaths % Over Baseline Excess Deaths % Over Baseline 

Cancer National Overall 13601* 3.0 11 0.0 

New York   1  747 6.0 -474 -5.0 

Texas 2  467 4.0 39 0.0 

California   3  529 4.0 82 1.0 

Pancreatic Cancer National Overall -25 -0.0 -282 -1.0 

New York 1  8 1.0 -16 -2.0 

Texas 2  17 2.0 24 3.0 

California 3 0 0.0 -18 -2.0 

Colorectal Cancer National Overall  988 2.0 -168 -0.0 

New York 1 91 9.0 -16 -2.0 

Texas 2  4 0.0 -34 -3.0 

California 3  27 2.0 -1 -0.0 

Hematologic Cancers National Overall 3615* 7.0 111 0.0 

 New York 1 121 10.0 -107 -11.0 

 Texas 2 136 11.0 21 2.0 

 California 3 114 8.0 20 2.0 

Diabetes National Overall  82318* 37.0 10784* 16.0 

New York 1 5945* 128.0 568* 40.0 

Texas 2  4612* 77.0 420* 23.0 

California 3  3474* 59.0 575* 33.0 

Alzheimer's National Overall  21712* 19.0 8528* 9.0 

New York 1  734* 49.0 188 16.0 

Texas 2  1398* 45.0 805* 31.0 

California 3  726* 18.0 259 8.0 

 *Confidence interval does not include zero 794 

 795 
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Table 3. Projections of COVID-19-related excess mortality patterns for different cancers and chronic conditions in the US, 796 

under different hypotheses for the association between the condition and COVID-19. Projections are provided for the null 797 

hypothesis of no biological interaction between the condition and COVID-19; these projection are solely driven by the size and mean 798 

age of the population living with each condition (where age determines the infection-fatality ratio from COVID-19), and the baseline 799 

risk of death from the condition over a similar time period (March to December 2019 for the national data, and for the states 800 

comparable dates in 2019 corresponding to the relevant COVID-19 wave). Additional projections are provided under alternative 801 

hypotheses, where each condition is associated with a relative risk (RR) of 2 or 5 for COVID-19 related death (infection-fatality ratio 802 

multiplied by 2 or 5). 803 

 804 

Chronic 

condition 

State Population 

at risk 

Mean 

age 

Wave Observed 

MC deaths 

over same 

period in 

2019 

Observed 

excess  

(% over 

baseline) in 

2020 

Expected 

excess (null) 

Expected 

excess 

(RR=2) 

Expected 

excess (RR=5) 

All cancers National 5718925 65 Overall 546453 3 (1-4) 1 (1-2) 2 (1-4) 6 (4-10) 

 New York 400891 65 Wave 1 12244 6 (-1-15) 4 (2-10) 9 (3-20) 22 (8-51) 

 Texas 397993 63 Wave 2 12187 4 (-3-11) 2 (1-6) 5 (2-12) 11 (4-29) 

 California 599552 64 Wave 3 16713 4 (-1-10) 2 (0-5) 4 (1-9) 9 (2-23) 

Pancreatic National 66319 67 Overall 39798 0 (-6-7) 0 (0-0) 0 (0-1) 1 (1-2) 

New York 2584 67 Wave 1 963 1 (-21-35) 0 (0-1) 1 (0-2) 2 (1-5) 

Texas 2264 66 Wave 2 882 2 (-19-34) 0 (0-1) 0 (0-1) 1 (0-3) 

 California 3482 67 Wave 3 1277 0 (-17-24) 0 (0-0) 0 (0-1) 1 (0-2) 

Lung cancer National 425015 70 Overall 123622 1 (-3-5) 1 (0-1) 1 (1-2) 3 (2-5) 

 New York 17709 71 Wave 1 2643 1 (-13-20) 2 (1-4) 3 (1-8) 8 (3-20) 

 Texas 12700 70 Wave 2 2513 2 (-11-20) 1 (0-2) 1 (1-4) 4 (1-9) 
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 California 19079 70 Wave 3 2861 3 (-10-18) 1 (0-2) 1 (0-3) 3 (1-8) 

Hematological  National 459463 62 Overall 57892 7 (1-13) 1 (0-1) 1 (1-2) 3 (2-5) 

New York 15577 62 Wave 1 1305 10 (-11-40) 1 (0-3) 2 (1-5) 6 (2-13) 

 Texas 14927 59 Wave 2 1231 11 (-9-38) 1 (0-1) 1 (0-3) 3 (1-7) 

 California 21290 61 Wave 3 1916 8 (-8-29) 0 (0-1) 1 (0-2) 2 (1-5) 

Colorectal  National 473264 66 Overall 49053 2 (-4-8) 1 (1-2) 2 (1-4) 6 (4-10) 

New York 30859 66 Wave 1 1048 9 (-13-44) 4 (2-10) 9 (3-20) 22 (8-51) 

 Texas 36641 65 Wave 2 1224 0 (-18-26) 3 (1-7) 5 (2-13) 13 (4-33) 

 California 51863 65 Wave 3 1575 2 (-14-24) 2 (1-5) 4 (1-10) 9 (3-24) 

Breast  National 1097917 64 Overall 43519 2 (-4-9) 2 (2-4) 5 (3-8) 12 (8-21) 

New York 74459 64 Wave 1 981 16 (-8-53) 9 (3-21) 18 (7-42) 46 (17-106) 

Texas 77860 62 Wave 2 1019 3 (-17-32) 5 (2-12) 10 (3-24) 24 (8-61) 

 California 123433 63 Wave 3 1421 2 (-15-25) 4 (1-10) 8 (2-20) 20 (5-51) 

Diabetes National 29105146 60 Overall 229326 37 (31-43) 8 (5-14) 16 (10-28) 40 (26-69) 

 New York 1792926 60 Wave 1 4804 128 (104-158) 30 (11-68) 59 (22-136) 148 (55-340) 

 Texas 2450005 58 Wave 2 5898 77 (61-96) 17 (6-44) 35 (12-87) 86 (30-218) 

 California 3514440 59 Wave 3 8399 59 (47-74) 12 (3-32) 25 (7-64) 62 (17-160) 

Alzheimer's National 6070000 81 Overall 118993 19 (11-28) 28 (18-48) 57 (36-96) 142 (90-240) 
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 New York 426500 81 Wave 1 1563 49 (23-87) 191 (70-432) 381 (140-863) 953 (350-2158) 

 Texas 459300 80 Wave 2 2974 45 (27-69) 63 (21-158) 126 (43-315) 315 (107-788) 

 California 719700 81 Wave 3 5394 18 (6-33) 39 (11-98) 78 (21-196) 195 (53-491) 

805 
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Figure 1. Weekly counts of death certificates listing COVID-19 as either the underlying or a multiple cause. When included on 806 

a death certificate, COVID-19 was most often listed as the underlying cause of death rather than a contributing cause. National-level 807 

data reveal three distinct waves: Wave 1 (spring, March 1 - June 27, 2020), Wave 2 (summer, June 28 - October 3, 2020), and Wave 808 

3 (winter, October 4 - December 6, 2020, incomplete). Vertical dashed lines represent the peak of each wave, dotted lines represent 809 

the number of reported cases (y-axis on the right). New York experienced its first large COVID-19 wave in Wave 1, while Texas had 810 

its first large wave in Wave 2 and California did not experience a large wave until Wave 3 which had not yet peaked at the end of 811 

2020.  812 

 813 
 814 
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Figure 2. National-level weekly observed and estimated baseline mortality for each diagnosis group as both the underlying cause or 815 

anywhere on the death certificate (multiple cause) from 2014 to 2020. Baselines during the pandemic are projected based on the 816 

previous years of data.  817 

 818 

 819 
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Figure 3. The same as figure 1, but for New York. New York experienced its first large wave of COVID-19 in spring 2020 (Wave 1).  820 

 821 

 822 

 823 
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Figure 4. The same as figure 1, but for Texas. Texas experienced its first large wave of COVID-19 in the summer of 2020 (Wave 2).  824 

 825 

 826 

 827 
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Figure 5. The same as figure 1, but for California. California did not experience a large wave of COVID-19 until the winter of 2020-828 

2021 (Wave 3), only the first half of which is captured here. 829 

  830 
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Figure 6. Illustration of competing risks. Based on our demographic model, we expect a small increase in cancer mortality relative 831 
to diabetes and Alzheimer’s due to the higher competing risk of death from cancer compared to COVID-19. Panel a) shows the log of 832 
the baseline mortality rate (based on observed mortality in 2019) from each condition on the x-axis and the log of the expected 833 
excess mortality (elevation over baseline) on the y-axis. Chronic conditions are shown in colors while states are shown in different 834 
shapes. Pancreatic cancer, the deadliest cancer considered, is on the bottom right (highest baseline mortality, lowest expected 835 
excess) while diabetes and Alzheimer’s are on the top left (lowest baseline mortality, highest expected excess). Panel b) shows the 836 
baseline number of deaths per 100 persons at risk for each condition expected from March - December 2020 (based on deaths over 837 
this same period in 2019, purple dots) compared to the expected number of deaths due to COVID-19 under the null hypothesis 838 
(green dots). The null hypothesis stipulates that there is no biological association between any of these chronic diseases and 839 
COVID-19. For diabetes and Alzheimer’s, the risks of baseline death and COVID-19 death are similar, while risk of death from 840 
cancer out competes risk of COVID-19 death for all types of cancer.  841 

842 
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APPENDIX 1 843 

Supplemental Methods 844 

 845 

Model selection and cross validation 846 

Time series models included harmonic terms for seasonality, time trends, and an offset for 847 

population size. For each condition and location, we used Akaike Information Criterion (AIC) to 848 

select between three models with different time trends. The starting model (Model 1) included 849 

only a linear time trend. We then tested this against a model with linear and quadratic time 850 

trends (Model 2). If the AIC of Model 2 was not 2 less than Model 1, Model 1 was used as the 851 

final model. If the AIC of Model 2 was 2 less than Model 1, then Model 2 was tested against a 852 

model with linear, quadratic, and cubic time trends (Model 3). If the AIC of Model 3 was not 2 853 

less than Model 2, then Model 2 was taken as the final model. If the AIC of Model 3 was 2 less 854 

than Model 2, Model 3 was taken as the final model. The final model for each condition and 855 

location was then applied to the data from 2014-2018 only and used to predict the 2019 data. 856 

The coverage probability was calculated as the proportion of weeks of observed data in 2019 857 

that fell within the 95% prediction interval of the time series model. The final model selected for 858 

each condition and location is provided in the appendix (Appendix 1- Figure 11).  859 

Characteristics of cancer, diabetes, and Alzheimer’s deaths in the pre-pandemic period.  860 

For each chronic condition studied (cancer, diabetes, Alzheimer’s), we assessed potential 861 

changes in the characteristics of deaths during the pandemic period that are unrelated to timing 862 

but may signal an association with COVID-19. For instance, age is known to be a major risk 863 

factor for COVID-19 mortality. For each chronic condition, we computed the average age-at-864 

death in the pre-pandemic year 2019, and compared this to the average age-at-death in 2020. 865 

The second potential confounder is living arrangement, as individuals living in nursing homes 866 

may be at increased risk of exposure (and death) to COVID-19 due to mixing, even if their 867 

underlying condition is not per se a risk factor. To test this hypothesis, we also compared the 868 

proportion of individuals in each disease group who died in nursing homes in 2019 and 2020.  869 

And finally, to illustrate the impact of coding practices we compared ICD-10 letter categories 870 

between 2020 and 2019 for the underlying cause of death when cancer or diabetes are included 871 

on the death certificate but are not listed as the underlying cause of death (Appendix 1 - Figure 872 

9). For 2020, we further compared death certificates listing both COVID-19 and cancer to those 873 

listing both COVID-19 and diabetes. For all comparisons between 2019 and 2020 data are 874 

limited to March to December to isolate the pandemic period.  875 

 876 

Supplemental tables and figures 877 
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Appendix 1 -  Table 1. Diagnosis groups and corresponding ICD-10 codes, number of underlying and multiple cause deaths, mean 878 

age in years at time of death, the percentage of deaths occurring at home, and the percentage of deaths occurring in nursing homes 879 

for 2019 and 2020.  880 

   Underlying Cause Multiple Cause 

Year Diagnosis 
group 

ICD-10 
codes 

No. 
Deaths 

Mean age, 
years 
(IQR) 

%Home/E
R 

%Nursing 
Home 

No. 
Deaths 

Mean age, 
years 
(IQR) 

%Home/E
R 

%Nursing 
Home 

2019 Cancer  C00-C99 493,397 72 (64-81) 45 12 546,453 72 (64-82) 44 13 

 
Pancreatic 
Cancer 

C25 37,864 72 (64-80) 51 9 39,798 72 (64-80) 50 9 

 Lung Cancer C34 114,552 72 (65-80) 45 12 123,622 72 (65-80) 44 12 

 
Colorectal 
Cancer 

C18-C20 42,484 71 (61-82) 46 13 49,053 72 (62-83) 45 14 

 Breast Cancer C50 35,115 69 (59-81) 44 13 43,519 71 (61-83) 43 15 

 
Hematological 
Cancer 

C81-C96 47,174 74 (67-84) 35 11 57,892 74 (67-84) 35 12 

 Diabetes E10-E14 70,763 72 (63-82) 53 17 229,326 74 (65-84) 46 19 

 Alzheimer’s 
G30 
 

98,675 87 (82-92) 29 50 118,993 87 (82-92) 29 48 

 
Ischemic Heart 
Disease 

I20-I25 292,659 77 (67-88) 50 18 440,225 77 (68-87) 47 18 
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Kidney 
Disease 

N00-07, 17-
19,25-28 

46,120 76 (68-87) 25 18 189,938 76 (67-87) 20 15 

2020 Cancer  C00-C99 513,275 72 (64-81) 55 8 586,503 72 (64-82) 52 9 

 
Pancreatic 
Cancer 

C25 39,893 72 (65-80) 61 6 42,383 72 (65-80) 60 6 

 Lung Cancer C34 115,554 72 (65-80) 54 8 127,671 72 (65-80) 53 8 

 
Colorectal 
Cancer 

C18-C20 43,990 71 (61-82) 56 9 52,319 72 (62-83) 53 10 

 Breast Cancer C50 36,296 70 (60-81) 54 10 47,094 72 (62-83) 51 12 

 
Hematological 
Cancer 

C81-C96 49,161 74 (67-84) 46 8 64,840 74 (68-84) 43 9 

 Diabetes E10-E14 88,124 71 (62-82) 58 15 343,061 73 (65-83) 45 16 

 Alzheimer’s 
G30 
 

115,256 86 (82-92) 33 46 151,206 86 (82-92) 31 47 

 
Ischemic Heart 
Disease 

I20-I25 327,854 76 (67-88) 54 16 533,204 77 (68-87) 49 16 

 
Kidney 
Disease 

N00-07, 17-
19,25-28 

49,796 76 (68-87) 30 15 255,708 75 (67-86) 21 12 

881 
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Appendix 1 -  Table 2. Supplemental Table 2. Estimated number of excess deaths and the percentage over baseline for each 882 

diagnosis group (National). Estimates are aggregated over all of 2020 and for each COVID-19 wave during 2020.  883 

Cause of death Wave 

Multiple Cause Underlying Cause 

Excess Deaths % Over Baseline Excess Deaths % Over Baseline 

Cancer Overall 13601* 3.0 11 0.0 

   1  79 0.0 -3917* -2.0 

 2  6519* 4.0 2662 2.0 

   3  7003* 6.0 1266 1.0 

Pancreatic Cancer Overall -25 -0.0 -282 -1.0 

 1  -213 -1.0 -281 -2.0 

 2  44 0.0 -30 -0.0 

 3 144 1.0 29 0.0 

Lung Cancer Overall 1102 1.0 -814 -1.0 

 1  -729 -1.0 -1221 -3.0 

 2  784 2.0 249 1.0 

 3 1047 4.0 158 1.0 

Breast Cancer Overall 838 2.0 -438 -1.0 

 1  -66 -0.0 -415 -3.0 

 2  437 3.0 81 1.0 

 3 467 5.0 -105 -1.0 

Colorectal Cancer Overall  988 2.0 -168 -0.0 

 1 -169 -1.0 -463 -3.0 

 2  454 3.0 112 1.0 

 3  703* 6.0 183 2.0 

Hematological Cancers Overall 3615* 7.0 111 0.0 

 1 546 2.0 -447 -2.0 

 2 1412* 8.0 412 3.0 

 3 1657* 12.0 146 1.0 

Diabetes Overall  82318* 37.0 10784* 16.0 

 1 25306* 25.0 2305* 7.0 

 2  27534* 38.0 4330* 20.0 
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 3  29477* 56.0 4148* 26.0 

Alzheimer’s  Overall  21712* 19.0 8528* 9.0 

 1 4763* 9.0 547 1.0 

 2 8054* 22.0 4257* 14.0 

 3 8894* 33.0 3724* 16.0 

Ischemic Heart Disease Overall 58793* 14.0 17194* 6.0 

 1 12042* 6.0 862 1.0 

 2 21783* 16.0 7912* 9.0 

 3 24967* 25.0 8419* 13.0 

Kidney Disease Overall 41907* 22.0 785 2.0 

 1  8182* 10.0 -1048 -5.0 

 2  14767* 25.0 777 5.0 

 3  18958* 44.0 1056* 10.0 

 *Confidence interval does not include zero884 
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Appendix 1 -  Table 3. Supplemental Table 2. Estimated number of excess deaths and the percentage over baseline for each 885 

diagnosis group (New York). Estimates are aggregated over all of 2020 and for each COVID-19 wave during 2020.   886 

 887 

Cause of death Wave 

Multiple Cause Underlying Cause 

Excess Deaths % Over Baseline Excess Deaths % Over Baseline 

Cancer Overall 1012 4.0 -557 -2.0 

   1  747 6.0 -474 -5.0 

 2  120 1.0 -6 -0.0 

   3  144 2.0 -77 -1.0 

Pancreatic Cancer Overall -29 -1.0 -58 -3.0 

 1  8 1.0 -16 -2.0 

 2  -1 -0.0 -9 -1.0 

 3 -37 -6.0 -33 -6.0 

Lung Cancer Overall 47 1.0 -163 -3.0 

 1  27 1.0 -143 -7.0 

 2  23 1.0 16 1.0 

 3 -3 -0.0 -36 -3.0 

Breast Cancer Overall 205 9.0 -46 -2.0 

 1  151 16.0 -34 -4.0 

 2  31 4.0 3 0.0 

 3 23 4.0 -15 -3.0 

Colorectal Cancer Overall  189 8.0 42 2.0 

 1 91 9.0 -16 -2.0 

 2  40 5.0 26 4.0 

 3  58 9.0 33 6.0 

Hematological Cancers Overall 156 5.0 -149 -6.0 

 1 121 10.0 -107 -11.0 

 2 1 0.0 -25 -3.0 

 3 35 5.0 -18 -3.0 

Diabetes Overall  7240* 66.0 866* 26.0 

 1 5945* 128.0 568* 40.0 

 2  631* 18.0 121 11.0 



38 

 3  664* 24.0 177 21.0 

Alzheimer’s  Overall  884* 26.0 233 9.0 

 1 734* 49.0 188 16.0 

 2 1 0.0 1 0.0 

 3 150 17.0 44 6.0 

Ischemic Heart Disease Overall 7118* 25.0 3756* 17.0 

 1 6607* 54.0 4092* 44.0 

 2 179 2.0 -184 -3.0 

 3 331 5.0 -152 -3.0 

Kidney Disease Overall 2438* 34.0 51 3.0 

 1  1946* 63.0 22 3.0 

 2  144 6.0 -13 -2.0 

 3  349* 19.0 42 8.0 

 *Confidence interval does not include zero888 
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.Appendix 1 -  Table 4. Supplemental Table 2. Estimated number of excess deaths and the percentage over baseline for each 889 

diagnosis group (Texas). Estimates are aggregated over all of 2020 and for each COVID-19 wave during 2020.    890 

 891 

Cause of death Wave 

Multiple Cause Underlying Cause 

Excess Deaths % Over Baseline Excess Deaths % Over Baseline 

Cancer Overall 602 2.0 -130 -0.0 

   1  -48 -0.0 -62 -0.0 

 2  467 4.0 39 0.0 

   3  183 2.0 -107 -1.0 

Pancreatic Cancer Overall 1 0.0 5 0.0 

 1  -36 -3.0 -36 -4.0 

 2  17 2.0 24 3.0 

 3 20 3.0 17 3.0 

Lung Cancer Overall 176 2.0 108 2.0 

 1  33 1.0 31 1.0 

 2  60 2.0 27 1.0 

 3 84 5.0 49 3.0 

Breast Cancer Overall -19 -1.0 -131 -5.0 

 1  -54 -4.0 -54 -6.0 

 2  29 3.0 -25 -3.0 

 3 6 1.0 -51 -8.0 

Colorectal Cancer Overall  -12 -0.0 -92 -3.0 

 1 -33 -2.0 -49 -4.0 

 2  4 0.0 -34 -3.0 

 3  17 2.0 -10 -1.0 

Hematological Cancers Overall 194 5.0 -12 -0.0 

 1 24 2.0 1 0.0 

 2 136 11.0 21 2.0 

 3 33 3.0 -34 -4.0 

Diabetes Overall  8902* 49.0 618 11.0 

 1 1411* 19.0 61 3.0 

 2  4612* 77.0 420* 23.0 
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 3  2879* 62.0 138 9.0 

Alzheimer’s  Overall  2242* 24.0 1184 15.0 

 1 309 8.0 197 6.0 

 2 1398* 45.0 805* 31.0 

 3 536* 21.0 181 8.0 

Ischemic Heart Disease Overall 6018* 20.0 1700 9.0 

 1 736 6.0 99 1.0 

 2 3376* 34.0 1228* 19.0 

 3 1905* 24.0 374 7.0 

Kidney Disease Overall 6724* 47.0 579 19.0 

 1  886* 15.0 115 9.0 

 2  3535* 76.0 285* 28.0 

 3  2303* 66.0 179 23.0 

 *Confidence interval does not include zero 892 
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Appendix 1 - Table 5. Supplemental Table 2. Estimated number of excess deaths and the percentage over baseline for each 893 

diagnosis group (California). Estimates are aggregated over all of 2020 and for each COVID-19 wave during 2020.   894 

Cause of death Wave 

Multiple Cause Underlying Cause 

Excess Deaths % Over Baseline Excess Deaths % Over Baseline 

Cancer Overall 991 2.0 -29 -0.0 

   1  -102 -1.0 -236 -1.0 

 2  564 3.0 125 1.0 

   3  529 4.0 82 1.0 

Pancreatic Cancer Overall -97 -3.0 -126 -4.0 

 1  -28 -2.0 -39 -3.0 

 2  -69 -5.0 -70 -6.0 

 3 0 0.0 -18 -2.0 

Lung Cancer Overall -10 -0.0 -132 -2.0 

 1  -82 -3.0 -96 -3.0 

 2  18 1.0 -48 -2.0 

 3 54 3.0 13 1.0 

Breast Cancer Overall 67 2.0 -22 -1.0 

 1  -44 -3.0 -34 -3.0 

 2  92 6.0 44 4.0 

 3 20 2.0 -33 -4.0 

Colorectal Cancer Overall  100 2.0 20 1.0 

 1 7 0.0 -4 -0.0 

 2  66 4.0 25 2.0 

 3  27 2.0 -1 -0.0 

Hematological Cancers Overall 279 5.0 52 1.0 

 1 0 0.0 -33 -2.0 

 2 164 9.0 64 4.0 

 3 114 8.0 20 2.0 

Diabetes Overall  9163* 39.0 1408* 20.0 

 1 1843* 18.0 213 7.0 
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 2  3846* 49.0 620* 27.0 

 3  3474* 59.0 575* 33.0 

Alzheimer’s  Overall  2143* 14.0 594 5.0 

 1 375 6.0 -76 -1.0 

 2 1041* 20.0 410 9.0 

 3 726* 18.0 259 8.0 

Ischemic Heart Disease Overall 5905* 16.0 2888* 11.0 

 1 650 4.0 104 1.0 

 2 2966* 24.0 1581* 19.0 

 3 2289* 25.0 1204* 19.0 

Kidney Disease Overall 3858* 21.0 8 0.0 

 1  301 4.0 -114 -8.0 

 2  1967* 33.0 63 6.0 

 3  1590* 36.0 59 7.0 

 *Confidence interval does not include zero895 
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Appendix 1 -  Figure 1. National-level weekly observed and estimated baseline mortality for each diagnosis group as both the 896 

underlying cause or anywhere on the death certificate (multiple cause) from 2017 to 2020. Baselines during the pandemic are 897 

projected based on the previous years of data.  898 

 899 

 900 
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Appendix 1 -  Figure 2. Correlation between weekly number of COVID-19 coded deaths and excess underlying deaths for each 901 

diagnosis group (National). 902 

  903 
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Appendix 1  -  Figure 3. Correlation between weekly number of COVID-19 coded deaths and excess multiple cause deaths for each 904 

diagnosis group (National). 905 

  906 
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Appendix 1 -  Figure 4. Correlation between weekly number of COVID-19 coded deaths and excess underlying deaths for each 907 

diagnosis group (New York). 908 

  909 
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Appendix 1 -  Figure 5. Correlation between weekly number of COVID-19 coded deaths and excess underlying deaths for each 910 

diagnosis group (New York). 911 

 912 
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Appendix 1 -  Figure 6. Weekly observed and estimated baseline mortality for each diagnosis group as both the underlying cause or 913 

anywhere on the death certificate (multiple cause) from 2017 to 2020 in New York. Baselines during the pandemic are projected 914 

based on the previous years of data.  915 

  916 
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Appendix 1 -  Figure 7. Weekly observed and estimated baseline mortality for each diagnosis group as both the underlying cause or 917 

anywhere on the death certificate (multiple cause) from 2017 to 2020 in Texas. Baselines during the pandemic are projected based 918 

on the previous years of data.  919 

  920 
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Appendix 1 -  Figure 8. Weekly observed and estimated baseline mortality for each diagnosis group as both the underlying cause or 921 

anywhere on the death certificate (multiple cause) from 2017 to 2020 in New York. Baselines during the pandemic are projected 922 

based on the previous years of data.  923 

  924 
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Appendix 1 -  Figure 9. Comparison of ICD-10 letter categories between 2020 and 2019 for the underlying cause of death when 925 

cancer or diabetes are included on the death certificate, but are not listed as the underlying cause of death. For both cancer and 926 

diabetes, I codes (diseases of the circulatory system) make up the majority of underlying deaths. The most notable difference 927 

between 2019 and 2020 is the increase in U codes, which includes COVID-19 (U071). In total there were 13,434 deaths ascribed to 928 

COVID-19 (UC deaths) among cancer MC deaths. COVID-19 was included in <3% of all cancer deaths and 17% of diabetes deaths. 929 

In both cases it was listed as the UC on the majority of death certificates where it was included (81% and 97% for cancer and 930 

diabetes, respectively).  931 
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Appendix 1 - Figure 10. Post-2020 trends in cancer, diabetes, and Alzheimer’s mortality. Aggregated weekly data was downloaded from CDC 933 

Wonder. Trends in cancer mortality rate appear stable in the national data and in Texas and California, but decreasing in New York. The diabetes 934 

mortality rate is higher post-2020 compared to earlier years across all states. Alzheimer’s appears stable and slowly decreasing. 935 
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Appendix 1 - Figure 11. For each condition three time series models with different time trends were considered (see Methods). The final model 937 

for each condition and location is indicated in blue. The final model was fit to 2014-2018 data only and used to predict the 2019 data. A coverage 938 

proportion (shown in white) was calculated as the proportion of observed 2019 data that fell within the projection intervals of the model. For all 939 

causes of death and states (except MC Kidney disease in California) the coverage proportion was 1, indicating that all data points fell within the 940 

prediction intervals. 941 

 942 


