Patient and family engagement interventions on patients' safety in primary care: a systematic review and meta-analysis

Yan Pang*1,2 & Anna Szücs*3,7, Ignacio Ricci Cabello4, Jaheeda Gangannagaripalli5, Lay Hoon Goh3, Foon Leng Leong1, Li Fan Zhou6, Jose M. Valderas1,3,8

1Department of Family Medicine, National University Health System, Singapore
2Alice Lee Center for Nursing Study, Yong Loo Lin School of Medicine, National University of Singapore
3Department of Family Medicine, Yong Loo Lin School of Medicine, National University of Singapore
4Balearic Islands Health Research Institute (IdISBa) & CIBER de Epidemiología y Salud Pública (CIBERESP), Spain
5NIHR ARC GM /Healthy Ageing research group, School of Health Sciences, The University of Manchester, Manchester, UK
6Department of Statistics & Data Science, National University of Singapore, Singapore
7Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Netherlands
8Centre for Research in Health Systems Performance, National University of Singapore, Singapore, Singapore

* These authors contributed to the work equally

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract

Background

Engaging patients and their families has been proposed and promoted as key strategy in patient safety. However, little is known about the translation of such an approach in primary care. This systematic review and meta-analysis sought to assess the effectiveness of interventions promoting patient and family engagement for patient safety in primary care based on randomised controlled trials (RCTs).

Methods

Five electronic databases (MEDLINE, CINAHL, Embase, Web of Science, and CENTRAL) were searched from inception to February 2023 with key words structured in four blocks (patient and family engagement; patient safety; primary care; randomised controlled trial). Two independent study team members screened each record. For studies reporting on similar safety outcomes, results were combined into meta-analyses. Risk of bias and level of certainty were accessed. Reporting followed PRISMA standards.

Results

Sixteen records were identified, among which eight completed RCTs. Interventions covered "Inform about Engagement" and "Empower" levels regarding patient/family engagement but did not reach the highest level of "Partner/Integrate." The interventions primarily targeted medication safety outcomes, with meta-analyses on adverse drug events and medication appropriateness (assessed categorically and continuously) showing no significant effects (Log OR=-0.32, 95%CI [-0.78, 0.14], OR=0.72, 95%CI [-0.32,0.16]; Log OR=-0.08, 95%CI [-0.32, 0.16], OR=0.92, 95%CI [0.73,1.17]; MD=0.56, 95%CI [-0.61, 1.72]). Overall risk of bias was low and the certainty of evidence ranged from moderate to high for most completed studies, except for adverse drug events, where certainty was rated low.

Conclusion

RCTs investigating interventions related to patient and family engagement in primary care patient safety are limited and yield inconclusive results. Patient engagement strategies should delve into more comprehensive levels of patient and family engagement and address diverse patient safety outcomes.

Key words: Patient involvement; patient engagement; family involvement; family engagement; patient safety; primary care; family medicine; randomized controlled trial.
• **What is already known on this topic**
 Involving patients and their families in patient safety has been advocated and emphasized as a crucial strategy. However, current reviews have yet to incorporate evidence evaluating the effectiveness of various intervention types and their impact on safety outcomes in the primary care setting.

• **What this study adds**
 This review provides a synthesis of available RCTs examining the effects of interventions on patient and family engagement and their impact on patient safety within the primary care context.

• **How this study might affect research, practice or policy**
 The findings from the review indicate that interventions targeting patient and family engagement did not exhibit a discernible impact on patient safety outcomes in the primary care setting. This underscores the imperative for more rigorous evaluations within this domain.
1 Introduction

Patient safety has gained momentum in the last decades, with patient safety strategies being integrated into the agendas of healthcare organizations worldwide (1). Nevertheless, the development of strategies and interventions to improve patient safety in healthcare delivery has by and large been confined to hospital care (2, 3). The delivery of care within the community settings relies substantially on patients and their families in the management of their health (4). Consequently, patient and family engagement hold particular relevance for patient safety outcomes in primary and community care, as it involves the help of precisely those stakeholders who are best positioned to identify errors or potential risks of harm at all stages (5, 6). Patient and family engagement goes beyond augmenting the awareness of patients and families regarding the factors influencing their care, encompassing the empowerment of these individuals to engage in discussion and, in more extensive cases – team up with healthcare professionals in order to prevent or mitigate adverse events (1).

Patient and family engagement strategies have already been considered a pillar of patient safety since the landmark report of the Institute of Medicine in 1999, *To Err is Human* (7), which recognized the potential of this approach to transform patient safety. Yet, only more recently has the need to focus on patient engagement been reaffirmed in the World Health Organisation’s Declaration of Astana (8) and with WHO designating "Engaging patients for patient safety" as the theme for the 2023 World Patient Safety Day (9).

The prevalence of preventable patient harm in primary care appears to be lower and less severe than in hospital settings (10). However, 90% of health care contacts are contained within primary care (11) and the sheer number of patient-provider interactions together with the distinct nature of care in the community justify patient safety interventions to be tailored to primary care. The Organisation for Economic Co-operation and Development recently estimated that effective patient involvement could potentially diminish harm by up to 15% in ambulatory care and lead to significant cost savings for the healthcare system (12). Further, primary care appears a favourable environment to implement such strategies because of the sustained relationship between providers, patients, and families that is traditionally at its root (13). Despite
all this, there remains a notable scarcity of knowledge regarding patient and family engagement strategies to enhance safety in primary care settings (14, 15).

Specific interventions, such as face-to-face coaching sessions in older adults (16), family carer support in dementia (17), or the utilization of eHealth tools for reporting adverse drug effects (18) have demonstrated efficacy in engaging patients and families in primary care patient safety. The implementation of patient and family engagement strategies in patient safety has nonetheless been viewed by some authors as challenging (2) and has mainly been studied in the context of medication safety so far (18-20). Many patient safety strategies involving patient/family engagement have been systematically reviewed but remain insufficiently examined in intervention studies in primary care. These include patient-provider partnerships (21, 22), patient involvement in decision-making (23) or decision coaching (24), patient access to medical records (25), and patient-mediated interventions (26). All in all, it remains unclear which patient and family engagement interventions have reliably proven effective in primary care and for which patient safety outcomes (27).

The present systematic review and meta-analysis sought to synthesize the intervention characteristics and effects of patient and family engagement interventions tested in randomized controlled trials (RCTs) and aimed at improving patient safety outcomes in primary care.

2 Methods

We conducted a systematic review of published randomised clinical trials. The search protocol was preregistered on PROSPERO (registration number: CRD42023397495). Methods and reporting followed the recommendations of the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines.

2.1 Criteria for considering studies for this review

2.1.1 Definitions of key concepts

We used Coulter’s definition of patient engagement (28): “a set of reciprocal tasks between patients, healthcare professionals, and healthcare organizations working together to promote and support active patient and public involvement in health and
healthcare and to strengthen their influence on healthcare decisions, at both the individual and the collective level" (29) and extended it to include patients' families.

Patient safety was defined as “a health care discipline that aims to prevent and reduce risks, errors and harm that occur to patients during provision of health care” (30).

2.1.2 Eligibility criteria

2.1.2.1 Types of studies

To be eligible, primary studies had to be randomised controlled trials (RCTs), including cluster-randomised trials. To maximize the sensitivity of our approach, we included trial registrations, published study protocols, pilot studies, and full-scale RCTs. We excluded non-randomised design, such as pre-post studies.

2.1.2.2 Types of participants

We included trials which recruited participants in primary care settings, such as private practices, family medicine clinics, community care settings, and other ambulatory care environments associated with general practice. Excluded were studies carried out in secondary or tertiary healthcare settings such as hospices or hospitals.

2.1.2.3 Types of interventions

We included interventions which (i) prompted patients and/or families to take actions in the context of their care; or (ii) focused on patient education which focused on engagement (e.g., informing patients or families about symptoms or red flags that should be reported to healthcare providers or about communication channels they can use); or (iii) for complex multifaceted interventions, only those interventions in which patient engagement was a significant component of the whole intervention, as evidenced by being reported separately (development and results) and being devoted substantial resources, such as time, manpower, and finance as compared to other components.

We excluded studies where interventions exclusively involved healthcare providers or policymakers, and studies where patient safety outcomes were not reported. We also excluded non-English language studies, review papers, and conference abstracts.
2.1.2.4 Types of outcome measures

We included studies that reported safety-related outcomes, such as adverse events leading to increased patients’ morbidity/mortality or heightened risk of harm. Additionally, we considered studies where authors explicitly stated non-recommended medical practices. Variable related to quality of care but not to safety were excluded, as they were outside the scope of this study.

2.2 Information sources

Five electronic databases were searched for potentially eligible studies, including MEDLINE Ovid, CINAHL EBSCO, Embase Ovid, Web of Science Core Collection, and Cochrane Central Register of Controlled Trials (CENTRAL) in the Cochrane Library. We also performed reference tracking to check for additional eligible records.

2.3 Search strategy

The search strategy was based on key words used in published systematic reviews and refined with the National University of Singapore’s libraries. It encompassed three blocks: patient and family engagement, patient safety, primary care, and randomised controlled trials (see the complete search strategy in the Supplement and the project’s Open Science Framework repository: https://osf.io/sbacp/?view_only=6d6755e753b1411ab02dcb37f99a05aa).

2.4 Selection process

2.4.1 Record retrieval and deduplication

All retrieved records were downloaded into EndNote 20, where they were deduplicated following the method outlined by Bramer (31). The articles were transferred to the online software Rayyan for screening (32), where a second deduplication was performed.
2.4.2 Screening process

At each stage, each record was screened by two independent team members, working in pairs (YP, FLL, AS, IRC, JG, LHG). Discrepancies were resolved during consensus meetings involving the senior author (JMV).

Prior to each stage, the screening team performed a pilot screening, which involved the assessment by all team members of 50 randomly selected records for the title/abstract screening and 5 records for the full-text screening (for meeting conclusions, see: https://osf.io/sbacp/?view_only=6d6755e753b1411ab02dcb37f99a05aa).

2.5 Data collection process

Two study team members (YP and FLL) extracted all study information independently following the Template for Intervention Description and Replication checklist (33) in combination with the CONSORT 2010 Statement (34). The data extraction sheet was adapted from the Cochrane data collection guidelines (35) and is available at: https://osf.io/sbacp/?view_only=6d6755e753b1411ab02dcb37f99a05aa.

Discrepancies that arose during were resolved through consensus meetings involving a third team member (AS).

Raw outcome data was not reported for one study (36), which had to be excluded from the meta-analysis after two unsuccessful attempts to contact the authors by email.

2.6 Risk of bias assessment

Two team members, YP and FLL, conducted independent methodological quality assessments for each record using the Cochrane Risk of Bias tool version 2 (37). Discrepancies were resolved during a consensus meeting involving a third study team member (AS).
2.7 Synthesis methods

Records reporting on pilot and full-scale RCTs were grouped by outcomes (continuous versus discrete outcomes) and conceptual similarity (inappropriate prescriptions, side effects, others). For groups containing two or more studies, results were combined in meta-analyses using R’s \textit{metafor} package (38). In alignment with Cochrane guidelines (39), the longest follow-up times were selected to ensure a comprehensive analysis and accurate long-term effect estimates. When significant heterogeneity was present ($70\% > I^2 > 30\%$), the analysis defaulted to a multi-level random effects model to obtain a more accurate overall effect size. When heterogeneity was low ($I^2 < 30\%$), a fixed-effect model was employed using the Mantel-Haenszel method (40). Records unsuitable to be combined by meta-analysis were summarised through narrative synthesis.

In order to appraise the degree of patient and family engagement of each intervention, we adapted Kim and colleagues’ (41) engagement framework by combining and extending some of the original categories (Table 1).

[TABLE 1 ABOUT HERE]
2.8 Certainty assessment

Following the GRADE approach (42), we rated the certainty of evidence as high, moderate, low, or very low, taking into consideration risk of bias, imprecision, inconsistency, indirectness, and publication bias. This was done by one researcher (IRC) and cross-checked by the rest of co-authors.

3 Results

3.1 Study selection

The systematic search yielded a total of 4,773 reports (Figure 1), of which 1,636 duplicates were removed prior to the screening process. Subsequently, 2,950 records were excluded after title and abstract screening, and an additional 14 during full text retrieval. Of the 173 reports retrieved for full text screening, a final set of 16 records were retained (Table 2).

3.2 Study characteristics

3.2.1 General characteristics

All of the selected studies were published between 2001 and 2021 (Table 2). Five studies were cluster Randomized Controlled Trials (RCTs), three were standard RCTs, six were RCT protocols, and two were trial registration records.

Geographically, the selected records were distributed across regions, with seven from the United States, two from Germany, two from France, two from Spain (both reporting on the same project), one each from, respectively, Canada the United Kingdom, and Australia. The authors’ country of affiliation matched where projects were carried out for all RCTs.

The follow-up duration across the selected studies ranged from two weeks to two years, and the number of randomized participants varied, with the sample sizes spanning from 100 to 1,601 participants.
3.2.2 Intervention characteristics

The included 16 records described 12 types of interventions (Table 2). In terms of levels of patient and family engagement, most interventions remained at the Inform about engagement level (n=8), a few were at the Empower level (n=4), and none reached the Partner or Integrate level (Figure 2). There were proportionally more patient engagement interventions reaching Level 2 among study protocols and registrations (2/6, 33.3%) than among completed RCTs (2/8, 25%), although publication dates did not indicate growing levels of patient and family engagement with time.

At the Inform about engagement level, the majority of interventions (n=5) involved the provision of information to patients or their families to increase their understanding of health management. For instance, polypharmacy patients partook in discussions with pharmacists about medication appropriateness and management (43), completed medication risk assessment forms during consultations with their general practitioners (44), were asked for feedback during consultations regarding safety outcomes (45), or regarding issues related to medication intake, with or without the aid of a computer assistant (46, 47), or were provided information through video or brochures that served as basis for discussion with their GPs (48-50). At the Empower level, interventions included educational initiatives on safety deprescribing (51), online platforms fostering communication between patients and GPs regarding drug safety (52), motivational/cognitive-behavioural therapy aimed at reducing reliance on opioids (53), and psychoeducational support promoting polypharmacy patients’ understanding of their medication (54).

Three studies included family members as participants: The intervention by Bayliss et al. (2020) involved education and activation strategies for patients and their families to promote deprescribing, Goggin and colleagues (2018 and 2022) utilized both video and brochures to promote communication between parents and general practitioners regarding antibiotic misuse in children.
3.2.3 Outcome characteristics

The patient safety outcomes examined were predominantly adverse drug events (n=8; 3 completed RCTs) and assessments of medication appropriateness (n=8; 6 were completed RCTs) (Table 2). One RCT protocol (48) listed both outcomes. Avoidable hospitalizations were reported by two records, of which no completed RCTs (45, 55).

3.3 Quality Assessment

Regarding risk of bias (Supplemental Figure 1), five RCTs demonstrated a relatively low overall risk of bias. Studies conducted by Pit (44) and Fried (51) raised some concern, whereas one RCT (54) was assessed as having a high overall risk of bias.

3.4 Results of individual studies

Whereas most trial registrations and study protocols were either published within the previous two years or have already been followed by a publication on a corresponding RCT, none were found for one trial registration (53) and one published protocol (52) despite having been published eight to six years ago.

Patient and family engagement interventions have yielded inconclusive results regarding their impact on patient safety. Of the eight completed RCTs, four reported an improvement in the safety indicators associated with the patient engagement interventions studied. Improvements were reported in all completed RCTs (all from level 1 engagement) focusing on adverse drug events (44, 50, 54), but in only one (level 2 engagement; 43) out of four among those focusing on medication appropriateness. Three others, of which two full scale RCTs (level 1 engagement) (46, 49), one pilot RCT (level 1 engagement) (56) found no discernible impact on medication appropriateness. Further, a study investigating medication discrepancy correction (level 1 engagement) (51) reported no significant changes following the intervention, which was however not directly aligned with the outcome: the intervention consisted in patient and family education and activation about the value of...
deprescribing whereas the patient safety outcome was the correction of medication discrepancies.

3.5 Impact on specific outcomes

We conducted three separate meta-analyses to analyse the outcomes related to adverse drug events and medication appropriateness, which combined evidence from six out of eight completed RCTs (Figure 3). For medication appropriateness, the analysis was separated in categorical outcomes for studies reporting presence vs absence of inappropriate prescriptions and continuous outcomes for studies using the Medication Appropriateness Index. One study by Muth 2016 reported both measures and was therefore included in both analyses.

The meta-analysis on adverse drug events (Figure 3, upper panel) did not include the cluster RCT by Buchet-Poyau (2021), given the difference in outcomes, namely promoting self-reporting of adverse drug events (with more reported adverse drug events considered more favourable) versus reducing adverse drug events in the other two studies (44, 54). In the combined analysis moderate heterogeneity was observed ($I^2 = 62.8\%$). The multilevel random-effects model, following the DerSimonian and Laird method, yielded a LogOR of -0.32 (95% CI, -0.78 to 0.14, $p = 0.178$) and an OR of 0.72 (95% CI, 0.46 to 1.15). The certainty of the evidence for this meta-analysis was assessed as very low. A three-point downgrade was applied, attributable to the risk of bias arising from study design, indirectness resulting from reported proxy events, and imprecision associated with wide confidence intervals.

The meta-analysis of the three studies reporting medication appropriateness using the Medication Appropriateness Index score (43, 46, 56; Figure 3, middle panel) found moderate heterogeneity ($I^2 = 39.5\%$) and a mean difference of Medication Appropriateness Index score of 0.56 (95% CI, -0.61 to 1.72, $p = 0.35$). The certainty of evidence for this meta-analysis was rated as moderate. The downgrading of evidence pertains to imprecision, attributed to the broad confidence intervals.

The meta-analysis of categorically measured medication appropriateness (count of inappropriate prescriptions; Figure 3, lower panel) included two studies (49, 56) with low heterogeneity ($I^2 = 0\%$) found a LogOR of -0.08 (95% CI, -0.32 to 0.16, $p = 0.514$)
and an OR of 0.92 (95% CI, 0.73 to 1.17). We rated the certainty of the evidence as high for this meta-analysis.

Ultimately, the combined effect of interventions did not yield significant results in any of the meta-analyses.

[FIGURE 3 ABOUT HERE]

3.6 Certainty level

Based on our certainty assessment, evidence of the effectiveness of patient and family engagement versus standard of care had a low level of certainty for adverse drug events (n=2), a high level for medication appropriateness measured categorically (n=2), and a moderate level when measured continuously, with the Medication Appropriateness Index (n=3). Medication discrepancy correction also had a moderate level of certainty based on a single study (Supplemental Table 1).

4 Discussion

4.1 Statement of principal findings

Patient and family engagement is promoted based on its potential for transforming patient safety in healthcare. In our systematic review, we identified a limited number of interventions aimed at promoting patient and family engagement in the context of patient safety within primary care settings, totalling 16 in number. The scope of patient and family engagement remained limited, with none of these interventions offering patients and families the opportunity to influence level of overall care. All but one focused on medication safety as an outcome. While approximately half of all cluster RCTs and RCTs individually reported modest to moderate positive effects resulting from the interventions they examined, the meta-analyses conducted did not yield statistically significant findings for any of their combined effects.

Interventions eliciting patient and family engagement at the global care level were found in none of the included records. This aligns with findings from broader healthcare settings, where no study has achieved the integration of patients as full
care team members (41). The observed lack of effectiveness in certain interventions might be attributed to factors such as inadequate statistical power, which could be associated with insufficient follow-up durations or small sample sizes. This limitation might have been particularly pronounced in studies investigating relatively infrequent patient safety outcomes, such as falls. Additionally, the intervention had a considerable overlap with standard of care. Many of them offered additional consultation time or written information, which, while potentially assisted in identifying certain existing safety issues, might have been insufficient or too short-term to provide more important shifts in the mindsets or behaviours of patients or their families.

Apart from medication reconciliation, the evidence-based strategies of patient and family engagement recommended by the Agency for Healthcare Research and Quality (57) were not investigated. These strategies encompass elements such as being prepared to being engaged (patients and families encouraged to prepare for their appointments), teach-back (asking the patient/family to explain the instructions in their own words), and warm handoff (in-person handoff conducted in front of the patient).

Family involvement in the reported interventions was notably underexplored. In fact, only three records allowed for the inclusion of family members, with two such instances occurring within a paediatric setting (49, 58). Although the incorporation of family members can introduce complexities in terms of study design, trials can be adapted to accommodate the needs of both patients and families, e.g., by providing separate study information materials or using modified surveys for family members. Meanwhile, patient and family engagement remain a valuable resource in routine clinical practice, as research has demonstrated its potential to enhance communication between patients and healthcare providers during everyday primary care visits, evidenced by longer consultation times and patients taking a more active role during consultations (59).

Our review underscores the dearth of research into safety outcomes in primary care that extend beyond the scope of medication safety. This absence of investigation into outcomes such as errors occurring in other facets of healthcare processes, including communication errors or errors associated with care management, is noteworthy (7). These underexplored aspects are of particular significance, considering their potential frequency (60), with estimates indicating errors in approximately 4 out of every 1000 primary care encounters (61).
4.2 Strengths and limitations

The current review provides an in-depth and comprehensive overview of studies characterized by diverse objectives and scopes. It benefited from a comprehensive approach, including not only completed RCTs but also trial registrations and protocols, and a rigorous methodology, adhering to the Cochrane Collaboration guidelines at each step.

However, certain limitations emerge concerning the search strategy and the nature of the records. While the strategy was constructed based on published systematic reviews pertaining to patient safety and finalised after input from an information specialist (librarian), additional, unknown keywords might have generated more results related to domains other than medication safety. Similarly, the lack of a universally accepted definition for ‘patient engagement’ in the literature led to a broad spectrum of terms used to describe it in the context of patient safety. This variation in terminology may have resulted in the inadvertent omission of relevant records from our analysis. Our search strategy, which was limited to five electronic databases and focused solely on studies published in English in peer-reviewed journals, may have omitted pertinent records available in other languages or formats. Furthermore, a risk of bias was identified in three of the included records, thereby constraining the reliability of their findings.

4.3 Recommendations for policy, practice, and future research

We have not found compelling evidence for any of the specific approaches studied in the trials. The lack of such structured approaches should not deter primary care practitioners to consider how they can incorporate patient and family engagement in their practices. Future research should prioritize interventions promoting higher levels of patient and family engagement in the context of patient safety within primary care settings. There is also a compelling need to consider the inclusion of family members into the patient safety framework to obtain a more comprehensive and nuanced comprehension of patient safety.
5 Conclusions

Although patient and family engagement in patient safety in primary care is an appealing and promising area, there is a paucity of pertinent studies, and the existing evidence remains inconclusive. To address these gaps, future Randomized Controlled Trials take a broader approach by investigating a more comprehensive spectrum of primary care safety outcomes, transcending the limited scope of medication safety. These future investigations should encompass interventions that extend beyond health promotion, incorporating safety checks during additional consultations with healthcare professionals to elevate the level of patient and family engagement. Furthermore, the potential role of family members in augmenting the effectiveness of these interventions should be explored and harnessed by upcoming studies.

6 Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

7 Funding

This study was funded by the Technology and Compassion: improving patient outcomes through data analytics and patients’ voice in Primary Care.

8 Role of the funder/sponsor

The funding entity played no part in shaping or executing the study, gathering, overseeing, analyzing, or interpreting the data, preparing, reviewing, or endorsing the manuscript, nor in the decision to submit the manuscript for publication. The funds from the National Medical Research Council (NMRC) Clinical Research Coordinator Funding were allocated to sustain the remuneration of both YP and FLL.
References

20. O’Sullivan JW, Harvey RT, Glasziou PP, McCullough A. Written information for patients (or parents of child patients) to reduce the use of antibiotics for acute upper respiratory tract infections in primary care. Cochrane Database of Systematic Reviews. 2016(11).

Table 1: Levels of patient and family engagement

<table>
<thead>
<tr>
<th>Levels</th>
<th>Definitions</th>
<th>Level of impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 1</td>
<td>Inform about engagement</td>
<td>Patient’s individual level of care</td>
</tr>
<tr>
<td></td>
<td>Patients receiving information (e.g., booklets) to learn about their health and increase communication with their care team</td>
<td></td>
</tr>
<tr>
<td>Level 2</td>
<td>Empower</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Patients acquiring new skills and/or tools to engage with their care team</td>
<td></td>
</tr>
<tr>
<td>Level 3</td>
<td>Partner/Integrate</td>
<td>Overall clinical care</td>
</tr>
<tr>
<td></td>
<td>Patients involved in decision-making as collaborators, consultants, or team members</td>
<td></td>
</tr>
</tbody>
</table>

Note. Framework adapted from Kim et al. 2017 and encompassing three levels of engagement ordered with respect to increasing patient and family involvement. While patients or families’ involvement impacts individual care at Levels 1 and 2, their involvement at level 3 aims to influence patients’ overall care.

Table 2: Study characteristics
<table>
<thead>
<tr>
<th>Author, year</th>
<th>Type of record</th>
<th>Country/setting</th>
<th>Interventionsa and their level of patient/family engagement</th>
<th>Study groups (n per group; control intervention)</th>
<th>Patient safety outcomeb</th>
<th>Follow-up timepoints/follow-up duration</th>
<th>Results pertaining to patient/family engagement in patient safety</th>
<th>Outcome statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bailey, S. C., et al. (2016)</td>
<td>Cluster RCT protocol</td>
<td>USA/ambulatory care</td>
<td>Electronic medication communication tool to facilitate communication between patients and physicians about drug safety</td>
<td>I: 480; C: 480 Standard care</td>
<td>ADE</td>
<td>Baseline, 4 weeks & 3 months / 3 months</td>
<td>NA</td>
<td>N=960</td>
</tr>
<tr>
<td>Bayliss, E. A., et al. (2020)</td>
<td>Cluster RCT protocol</td>
<td>USA/primary care clinics</td>
<td>Short, automated information sheet to prompt discussion with GP about medication discrepancies</td>
<td>I: 1814; C: 1857 Waitlist control</td>
<td>Specific ADE (falls, haemorrhagic events, and hypoglycaemic events); Potential inappropiate medicine</td>
<td>6 months, 12 months / 2 years</td>
<td>NA</td>
<td>N=3671</td>
</tr>
<tr>
<td>Mangin, D., et al. (2021)</td>
<td>RCT protocol</td>
<td>Canada/primary care clinics</td>
<td>Patients asked about medication intake and related problems</td>
<td>I: 180; C:180 Waitlist control</td>
<td>Fall and other serious adverse events</td>
<td>Baseline, 6 months / 6 months</td>
<td>NA</td>
<td>N=360</td>
</tr>
<tr>
<td>Keriel-Gascou M., et al. (2013)</td>
<td>Cluster RCT protocol</td>
<td>France/general practitioner clinics</td>
<td>Interactive patient booklet as support for discussion with GP</td>
<td>I: 546; C: 549 Standard care</td>
<td>Increase in patient reporting of ADE</td>
<td>3 months / 3 months</td>
<td>Increase in reporting of adverse drug events</td>
<td>No. of patients reported ADEs: I:57/546; C:34/549. OR=3.9 95% CI [1.4-11.2], p=0.01, aOR=3.5, 95%CI [1.2-10.1], p=0.02</td>
</tr>
<tr>
<td>Buchet-Poyau K., et al. (2021)</td>
<td>Cluster RCT</td>
<td>France/general practitioner clinics</td>
<td></td>
<td></td>
<td>Increase in patient reporting of ADE</td>
<td>3 months / 3 months</td>
<td>Improvement of symptoms attributed to ADEs</td>
<td>No. of patients reported symptoms improvement: I:67/179, C:58/161, p=0.24</td>
</tr>
<tr>
<td>Jameson, J. P and G. R. VanNoord (2001)</td>
<td>RCT</td>
<td>USA/physician practice clinics</td>
<td>Assessment of polypharmacy patients' understanding of medications & psychoeducation</td>
<td>I: 179; C:161 Standard care</td>
<td>ADE: combination of 18 symptoms commonly attributed to ADEs</td>
<td>Baseline, 6 months / 6 months</td>
<td>Improvement of symptoms attributed to ADEs</td>
<td>No. of patients reported symptoms improvement: I:67/179, C:58/161, p=0.24</td>
</tr>
<tr>
<td>Pit, S. W., et al. (2007)</td>
<td>Cluster RCT</td>
<td>Australia/general practices</td>
<td>Patients completing medication risk</td>
<td>I: 452; C: 397</td>
<td>Specific ADEs: slipped, tripped or stumbled OR falls</td>
<td>Baseline, 4 months, 12 months / 12 months</td>
<td>Decrease in reported fall events in the intervention group</td>
<td>No. of patients reported fall events at 12 months: I:70/397, C: 34/34</td>
</tr>
<tr>
<td>Study</td>
<td>Design</td>
<td>Intervention</td>
<td>Outcomes</td>
<td>Results</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>--------</td>
<td>--------------</td>
<td>----------</td>
<td>---------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Goggin, K., et al. (2018)<sup>1,9</sup></td>
<td>Cluster RCT protocol</td>
<td>USA/private practice outpatient clinics</td>
<td>Video & brochure for parents on antibiotic misuse in children & encouraged to discuss issues with GP</td>
<td>Patients receiving an inappropriate antibiotic prescription</td>
<td>No. of patients received inappropriate prescription: I: 54/697, C: 85/904, adjusted OR 0.99; 95% CI 0.52 to 1.89, p=0.98</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Goggin, K., et al. (2022)<sup>1,9</sup></td>
<td>Cluster RCT</td>
<td>Germany/general practices</td>
<td>Computer-assisted discussion with patient on medication intake & polypharmacy evaluation/reduction</td>
<td>Medication appropriateness Assessed continuously, with the Medication Appropriateness Index as well as categorically</td>
<td>Intervention has no impact on inappropriate prescription</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Muth, C., et al. (2016)<sup>h</sup></td>
<td>Cluster RCT</td>
<td>Germany/general practices</td>
<td>Computer-assisted discussion with patient on medication intake & polypharmacy evaluation/reduction</td>
<td>Medication appropriateness Assessed continuously, with the Medication Appropriateness Index as well as categorically</td>
<td>Baseline, 6 weeks, 3 months / 3 months</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Muth, C., et al. (2018)<sup>h</sup></td>
<td>Cluster RCT</td>
<td>Germany/general practices</td>
<td>Computer-assisted discussion with patient on medication intake & polypharmacy evaluation/reduction</td>
<td>Medication appropriateness Assessed continuously, with the Medication Appropriateness Index as well as categorically</td>
<td>Baseline, 6 months, 9 months / 9 months</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Syafchan, N. F., et al. (2021)</td>
<td>RCT</td>
<td>UK/general practices</td>
<td>Polypharmacy patients involved in discussion with pharmacist about medication appropriateness and management</td>
<td>Medication appropriateness Assessed continuously, with the Medication Appropriateness Index</td>
<td>Baseline, 6 months / 6 months</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Outcome: other outcomes
<table>
<thead>
<tr>
<th>Study</th>
<th>Type</th>
<th>Country</th>
<th>Setting</th>
<th>干预方法</th>
<th>人群</th>
<th>主要结局</th>
<th>基线</th>
<th>随访</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nct(2015)</td>
<td>RCT trial registration</td>
<td>USA/primary care clinic</td>
<td>Motivational & cognitive behavioural therapy on reducing reliance on opioids</td>
<td>I: 225 C: 225 Enhance usual care (provides educational content related to the biology of pain response and an overview of pain conditions usual care)</td>
<td>Patients with non-fatal overdose experiences or level of oversedation as an opioid side effect</td>
<td>Baseline, 3, 6, 12 months / 12 months</td>
<td>NA</td>
<td>N=450</td>
<td></td>
</tr>
<tr>
<td>Nct (2019)i</td>
<td>Cluster RCT trial registration</td>
<td>Spain/primary care centres</td>
<td>Patients asked to give feedback about experiences and outcomes related to patient safety</td>
<td>I: 624 C: 624 Control group will receive the feedback reports at the end of the study</td>
<td>Avoidable hospitalisation</td>
<td>Baseline, 12 months / 12 months</td>
<td>NA</td>
<td>N=1248</td>
<td></td>
</tr>
<tr>
<td>Serrano-Ripoll, M. J., et al. (2019)i</td>
<td>Cluster RCT protocol</td>
<td></td>
<td>Education & activation of patients & families about value of deprescribing</td>
<td>I: 64 C: 64 Standard care</td>
<td>Patients with medication discrepancy correction</td>
<td>Baseline, 3 months / 3 months</td>
<td>The intervention has no effect on medication discrepancy correction</td>
<td>No. of patients with medication discrepancies correction: I: 46/64; C: 7/32; p=0.42</td>
<td></td>
</tr>
</tbody>
</table>

RCT: randomized controlled trial; ADE: adverse drug event; GP: General Practitioner; MAI: medication appropriateness index; I: intervention; C: control
a Only patients and/or family engagement were extracted from broader interventions, as most also involved general practitioners, pharmacists or other healthcare professionals.
b Only patient safety results were extracted from all reported outcomes.
c,d,f,h,i Studies used the same intervention.
e Falls were chosen as the outcome to include in the meta-analysis, as they were deemed the most severe ADE from all those reported.
g&c Studies interventions involved parent-child dyads and both patients and family members respectively.
Figure 1 PRISMA Chart summarising the screening process

Note. Under “Reasons for exclusion”, some records met more than one exclusion criteria and were therefore counted in several categories.
Figure 2: Interventions classified by level of patient and family engagement

Level 1: Inform about engagement
- Patients receiving information (e.g., booklets) to learn about their health and increase communication with their care team
 - \(n = 8 \)
- Short, automated information sheet to prompt discussion with GP about medication discrepancies
- Video & brochure for parents on antibiotic misuse in children & encouraged to discuss issues with GP
- Interactive patient booklet as support for discussion with GP
- Polypharmacy patients involved in discussions with pharmacists about medication appropriateness and management
- Patients completing medication risk assessment with their doctor
- Patients asked to give feedback about experiences and outcomes related to patient safety
- Patients asked about medication intake and related problems
- Computer-assisted discussion with patient on medication intake & polypharmacy evaluation/reduction

Level 2: Empower
- Patients acquiring new skills and/or tools to engage with care team
 - \(n = 4 \)
- Electronic medication communication tool to facilitate communication between patients and physicians about drug safety
- Assessment of polypharmacy patients’ understanding of medications & psychoeducation
- Motivational & cognitive behavioural therapy on reducing reliance on opioids
- Education & activation of patients & families about value of deprescribing

Level 3: Partner/Integrate
- Patients involved in decision making as collaborators, consultants, or team members
 - \(n = 0 \)
Figure 3: Meta-analyses of RCTs and cluster RCTs included in the review.

Outcome: adverse drug events assessed categorically

<table>
<thead>
<tr>
<th>Study</th>
<th>Log odds ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jameson et al. 2001</td>
<td>-0.06 [-0.50, 0.38]</td>
</tr>
<tr>
<td>Pit et al. 2007</td>
<td>-0.53 [-0.88, -0.18]</td>
</tr>
</tbody>
</table>

Outcome: Medication Appropriateness Index (MAI)

<table>
<thead>
<tr>
<th>Study</th>
<th>Difference in MAI index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muth et al. 2016</td>
<td>1.10 [-1.24, 3.44]</td>
</tr>
<tr>
<td>Muth et al. 2018</td>
<td>0.90 [-0.02, 1.82]</td>
</tr>
<tr>
<td>Syafhan et al. 2021</td>
<td>-1.90 [-4.84, 1.04]</td>
</tr>
</tbody>
</table>

Outcome: medication appropriateness assessed categorically

<table>
<thead>
<tr>
<th>Study</th>
<th>Log odds ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goggin 2022</td>
<td>-0.21 [-0.57, 0.14]</td>
</tr>
<tr>
<td>Muth et al. 2016</td>
<td>0.03 [-0.29, 0.35]</td>
</tr>
</tbody>
</table>

FE Model: -0.08 [-0.32, 0.16]
Supplemental Figure 1: Risk of bias assessment of included cluster RCTs and RCTs

Note. Concerns regarding risk of bias primarily arose due to either significant deviations from the intended interventions or the presence of missing outcome data.
Supplemental Table 1: Patient and family engagement compared to standard of care for improve patient safety

<table>
<thead>
<tr>
<th>Certainty assessment</th>
<th>№ of patients</th>
<th>Effect</th>
<th>Certain ty</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Adverse drug events (follow-up: median 6 months)

<table>
<thead>
<tr>
<th>2^1,2</th>
<th>randomised trials</th>
<th>seriou s^a</th>
<th>not seriou s</th>
<th>seriou s^b</th>
<th>seriou s^c</th>
<th>none</th>
<th>194/1122 (17.3%)</th>
<th>186/10 62 (17.5%)</th>
<th>OR 0.726 1 (0.458 4 to 1.1503)</th>
<th>42 fewer per 1000 (from 86 fewer to 21 more)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Medication appropriateness

<table>
<thead>
<tr>
<th>Inappropriate prescription (number of patients receiving an inappropriate prescription) (follow-up: mean 8 weeks)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2^1,4</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Medication appropriateness index (MAI score) (follow-up: median 6 months)

<table>
<thead>
<tr>
<th>Medication discrepancy correction (follow-up: mean 3 months)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2^1</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

All rights reserved. No reuse allowed without permission.
Cl: confidence interval; MD: mean difference; OR: odds ratio

Explanations

a. Pit 2007 presents some concerns due to deviations from the intended interventions and missing outcome data. Jameson 2001 presents a high risk of bias due to deviations from the intended intervention.

b. Falls reported as a proxy of adverse drug events in Pit 2007

c. Wide confidence intervals

d. Some concerns due to deviations from the intended intervention

References

