Title:

Patient and family engagement interventions on patients' safety in primary care: a systematic review and meta-analysis

Yan Pang¹ & Anna Szücs², Ignacio Ricci Cabello³, Jaheeda Gangannagaripalli³, Lay Hoon Goh², Foon Leng Leong¹, Li Fan Zhou⁵, Jose M. Valderas¹,²

¹Department of Family Medicine, National University Health System, Singapore
²Department of Family Medicine, Yong Loo Lin School of Medicine, National University of Singapore
³Balearic Islands Health Research Institute (IdISBa) & CIBER de Epidemiología y Salud Pública (CIBERESP), Spain
⁴NIHR ARC GM /Healthy Ageing research group, School of Health Sciences, The University of Manchester, Manchester, UK
⁵Department of Statistics & Data Science, National University of Singapore, Singapore

Background

Engaging patients and their families in patient safety has been proposed and promoted as key strategy in recent decades. However, little is known about the translation of such an approach in Primary Care. We aimed to estimate the effectiveness of interventions focussing on patient and family engagement for patient safety in primary care based on the published randomized controlled evidence.

Methods

Following a published protocol, electronic databases (MEDLINE, CINAHL, Embase, Web of Science, and CENTRAL) were searched for eligible studies from inception to February 2023 using tailored searches structured in three blocks (patient and family engagement, patient safety, and primary care). Following piloting of the eligibility criteria, duplicate independent title/abstract screening was undertaken in Rayyan. R was used to conduct mixed-effects multi-level meta-analyses and explore heterogeneity. Cochrane Risk of Bias 2 was used for assessing risk of bias and the Grading of Recommendations, Assessment, Development and Evaluations (GRADE) framework was used to appraise the level of certainty. Reporting followed PRISMA standards.

Results

Twelve interventions were identified in the 16 records included in this review. Of these, six completed randomized-controlled trials (RCTs) were included in the meta-analyses. The interventions spanned the "Inform about Engagement" and "Empower" levels of patient and family engagement, without reaching the highest level of "Partner/Integrate." Except for one, all reported outcomes centred on various aspects of medication safety. None of the three meta-analyses aggregating evidence on adverse drug events (Log OR=-0.32, 95%CI [-0.78, 0.14]), medication appropriateness assessed categorically (Log OR=-0.08, 95%CI [-0.32, 0.16]), and continuously (Log OR=0.56, 95%CI [-0.61, 1.72]) did not reveal significant effects. The overall risk of bias was low, and the certainty of evidence ranged from moderate to high for most completed studies, with the exception of on adverse drug events, where the certainty was rated as low.

Conclusion

RCTs investigating interventions related to patient and family engagement in primary care patient safety are limited and yield inconclusive results. Patient engagement strategies should delve into more comprehensive levels of patient and family engagement and address diverse patient safety outcomes.

PROSPERO registration number: CRD42023397495

Key words: Patient involvement; patient engagement; family involvement; family engagement; patient safety; primary care; family medicine; randomized controlled trial.

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
• **What is already known on this topic**
 Involving patients and their families in patient safety has been advocated and emphasized as a crucial strategy. However, current reviews have yet to incorporate evidence evaluating the effectiveness of various intervention types and their impact on safety outcomes in the primary care setting.

• **What this study adds**
 This review provides a synthesis of available RCTs examining the effects of interventions on patient and family engagement and their impact on patient safety within the primary care context.

• **How this study might affect research, practice or policy**
 The findings from the review indicate that interventions targeting patient and family engagement did not exhibit a discernible impact on patient safety outcomes in the primary care setting. This underscores the imperative for more rigorous evaluations within this domain.
1 Introduction

Patient safety has gained momentum in the last decades, with patient safety strategies being integrated into the agendas of healthcare organizations worldwide (1). Nevertheless, the development of strategies and interventions to improve patient safety in healthcare delivery has by and large been confined to hospital care (2, 3). The delivery of care within the community settings relies substantially on patients and their families in the management of their health (4). Consequently, patient and family engagement holds particular relevance for patient safety outcomes in primary and community care, as it involves the help of precisely those stakeholders who are best positioned to identify errors or potential risks of harm at all stages (5, 6). Patient and family engagement goes beyond augmenting the awareness of patients and families regarding the factors influencing their care, encompassing the empowerment of these individuals to engage in discussion and, in more extensive cases – team up with healthcare professionals in order to prevent or mitigate adverse events (1).

Patient and family engagement strategies have already been considered a pillar of patient safety since the landmark report of the Institute of Medicine in 1999, To Err is Human (7), which recognized the potential of this approach to transform patient safety. Yet, only more recently has the need to focus on patient engagement been reaffirmed in the World Health Organisation’s Declaration of Astana (8) and with WHO designating "Engaging patients for patient safety" as the theme for the 2023 World Patient Safety Day (9).

Although the prevalence of preventable patient harm in primary care was reported to be lower and less severe than in hospital settings (10), 90% of essential interventions for universal health coverage were delivered in primary care (11). The sheer number of patient-provider interactions together with the specificities of primary care (e.g., patients spending most time outside of care facilities) justify patient safety interventions to be tailored to primary care. The Organisation for Economic Co-operation and Development recently estimated that effective patient involvement could potentially diminish harm by up to 15% in ambulatory care and lead to significant cost savings for the healthcare system (12). Further, primary care appears a favourable environment to implement such strategies because of the sustained relationship between providers, patients, and families that is traditionally at its root (13). Despite
all this, there remains a notable scarcity of knowledge regarding patient and family engagement strategies to enhance safety in primary care settings (14, 15).

Specific interventions, such as face-to-face coaching sessions in older adults (16), family carer support in dementia (17), or the utilization of eHealth tools for reporting adverse drug effects (18) have demonstrated efficacy in engaging patients and families in primary care patient safety. The implementation of patient and family engagement strategies in patient safety has nonetheless been viewed by some authors as challenging (2) and has mainly been studied in the context of medication safety so far (18-20). Many patient safety strategies involving patient/family engagement have been systematically reviewed but remain insufficiently examined in intervention studies in primary care. These include patient-provider partnerships (21, 22), patient involvement in decision-making (23) or decision coaching (24), patient access to medical records (25), and patient-mediated interventions (26). All in all, it remains unclear which patient and family engagement interventions have reliably proven effective in primary care and for which patient safety outcomes (27).

To offer such an overview, the present systematic review and meta-analysis seeks to synthesize the intervention characteristics and effects of patient and family engagement interventions tested in randomized controlled trials (RCTs) and aimed at improving patient safety outcomes in primary care.

2 Methods
We conducted a systematic review of published randomised clinical trials. We pre-registered our search protocol on PROSPERO (registration number: CRD42023397495). We followed the recommendations of the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) reporting guidelines.

2.1 Criteria for considering studies for this review
2.1.1 Definitions of key concepts
We used Coulter's definition of patient engagement (28) : “a set of reciprocal tasks between patients, healthcare professionals, and healthcare organizations working together to promote and support active patient and public involvement in health and healthcare and to strengthen their influence on healthcare decisions, at both the individual and the collective level” (29), and extended to include patients’ families.
Patient safety was defined as “a health care discipline that aims to prevent and reduce risks, errors and harm that occur to patients during provision of health care” (30).

2.1.2 Eligibility criteria

We defined eligibility (inclusion and exclusion) criteria based on the study design, participants, type of intervention and outcomes, as detailed below.

2.1.2.1 Types of studies
To be included, primary studies had to be randomised controlled trials (RCTs) (including cluster-randomised trials). To maximize the sensitivity of our approach, we included trial registrations, published study protocols, pilot studies, and full-scale RCTs. We excluded non-randomised design, such as pre-post studies.

2.1.2.2 Types of participants
We included trials which recruited participants in primary care settings, such as private practices, family medicine clinics, community care settings, and other ambulatory care environments associated with general practice. Excluded were studies carried out in secondary or tertiary healthcare settings such as hospices or hospitals.

2.1.2.3 Types of interventions

We included interventions which (i) prompted patients and/or families to take actions in the context of their care; or (ii) focused on patient education which focused on engagement (e.g., informing patients or families about symptoms or red flags that should be reported to healthcare providers or about communication channels they can use); or (iii) for complex multifaceted interventions, only those interventions in which patient engagement was a significant component of the whole intervention, as evidenced by being reported separately (development and results) and being devoted substantial resources, such as time, manpower, and finance as compared to other components.

We excluded studies where interventions exclusively involved healthcare providers or policymakers, and studies where patient safety outcomes were not reported. We also excluded non-English language studies, review papers, and conference abstracts.
2.2.4 Types of outcome measures
We included studies that reported eligible outcomes, including harm outcomes such as adverse events leading to increased patients’ morbidity/mortality or heightened risk of harm. Additionally, we considered studies where authors explicitly stated non-recommended medical practices. Quality of care outcomes were excluded, as they were outside the scope of clinical safety.

2.2 Information sources
Five electronic databases were searched for potentially eligible studies, including MEDLINE Ovid, CINAHL EBSCO, Embase Ovid, Web of Science Core Collection, and Cochrane Central Register of Controlled Trials (CENTRAL) in the Cochrane Library.

2.3 Search strategy
Drawing information on key words from published Cochrane reviews and in consultation with the National University of Singapore’s libraries, we developed a tailored search strategy focusing on three blocks: patient and family engagement, patient safety, and primary care. The key words and syntax of the search formula were adapted to fit with each database without changing the breadth of the terms themselves. No date restrictions or additional filters were applied to the search process to guarantee a comprehensive exploration. A detailed description of the search strategy is presented in the supplement or can be found in the project’s Open Science Framework (OSF) repository: https://osf.io/sbacp/.

We additionally performed reference tracking to check for additional eligible records.

2.4 Selection process
2.4.1 Record retrieval and deduplication
All retrieved records were downloaded into EndNote 20, where they were deduplicated following the method outlined by Bramer (31). Next, the articles were transferred to the online software Rayyan (32), where a second deduplication was performed.

2.4.2 Screening process
Throughout each stage, two independent team members conducted the screening of records. In total, six team members (YP, FLL, AS, IRC, JG, LHG) participated in the screening process, working in pairs to review one-third of the records each. Any discrepancies or disagreements between the screeners were resolved during consensus meetings, which involved the senior author (JMV).
Prior to each screening step, the screening team performed a pilot screening, which involved the assessment of 50 randomly selected records for the title/abstract screening and 5 records for the full-text screening. These records were screened by all implicated team members with discrepancies discussed at pilot meetings. These meetings were aimed to enhance the team’s shared understanding of definitions and eligibility criteria. The findings and outcomes of the pilot meetings can be accessed in the study’s OSF repository at: https://osf.io/sbacp/.

2.5 Data collection process

Two study team members (YP and FLL) independently performed extraction of information with respect to the intervention based on the Template for Intervention Description and Replication checklist (33) in combination with the CONSORT 2010 Statement (34). The information extracted encompassed the following: name of the intervention, rationale, materials and procedures, providers, modes of delivery, setting, timeframe, tailoring to specific groups of participants, modifications, quality checks about planning and adherence/fidelity. Any discrepancies that arose during this process were resolved through consensus meetings involving a third member of the study team (AS). The data extraction sheet was adapted from the Cochrane data collection guidelines (35) and is available in the study’s OSF repository at: https://osf.io/sbacp/.

Despite our attempts to obtain the relevant outcome raw data from the author of one of the studies (36), we encountered unresponsiveness even after sending a reminder email. Consequently, we deemed this data as non-reported, leading to the exclusion of the corresponding record from the meta-analysis part of the study.

2.6 Risk of bias assessment

Two team members, YP and FLL, conducted independent assessments of the methodological quality of the included studies using the Cochrane Risk of Bias tool version 2 (37), which encompasses the following domains: the randomization process; the timing of identification or recruitment of participants in a cluster-randomized trial; deviations from the intended interventions; missing outcome data; measurement of the outcome and selection of the reported results. Discrepancies were resolved during a consensus meeting with a third study team member (AS).
2.7 Synthesis methods
Records reporting on pilot and full-scale RCTs were grouped by outcomes, with respect to the types of measures (continuous versus discrete outcomes) and conceptual similarity (inappropriate prescriptions, side effects, others). For groups containing two or more studies, results were included in meta-analyses. In alignment with Cochrane guidelines (38), the longest follow-up times were selected to ensure a comprehensive analysis and accurate long-term effect estimates. When significant heterogeneity was present (70%>I²>30%), the analysis defaulted to a multi-level random effects model to obtain a more accurate overall effect size. When heterogeneity was low (I² < 30%), a fixed-effect model was utilized, specifically using the Mantel-Haenszel method (39).

In order to appraise the degree of patient and family engagement of each intervention, we adapted Kim and colleagues’ (40) engagement framework by combining and extending some of the original categories. In the adapted framework (Table 1), there are three levels of engagement: (i) Inform about engagement (Level 1) applies to interventions wherein patients or their families receive information to learn about their health and increase communication with their care team; (ii) Empower (Level 2) applies to interventions which provide patients or families with new skills and/or tools to engage with the care team, and (iii) Partner or Integrate (Level 3) applies to interventions that involve patients or families in decision-making as collaborators, consultants, or team members. While patients or families’ involvement impacts individual care at Levels 1 and 2, their involvement at level 3 will have a greater impact on patients’ overall care.

Statistical analyses were conducted in R with the 'metafor' package for meta-analyses, as it provides a robust framework accommodating both fixed and random effects models (41). In cases where the suitability of meta-analysis was limited, outcomes were conveyed through narrative synthesis to effectively communicate the findings.

2.8 Certainty assessment
Following the GRADE approach (42), we rated the certainty of evidence as high, moderate, low or very low, taking into consideration risk of bias, imprecision, inconsistency, indirectness, and publication bias. This was done by one researcher (IRC) and cross-checked by the rest of co-authors.
3 Results

3.1 Study selection
The systematic search yielded a total of 4,773 reports, of which 1,636 duplicates were removed prior to the screening process. Subsequently, 2,950 records were excluded after a thorough review of titles and abstracts (Figure 1). Following this initial screening, 173 reports were retrieved for a comprehensive evaluation (excluding 14 records, which were either duplicates or oral presentation abstracts). Detailed assessment of these 173 reports resulted in the exclusion of 157 records, with the specific reasons for exclusion listed. It's worth noting that some records met more than one criterion for exclusion. Ultimately, the review retained a final set of 16 records (43-58) for analysis.

3.2 Study characteristics
3.2.1 General characteristics
All of the selected studies were published between 2001 and 2021 (Table 2). Five studies were cluster Randomized Controlled Trials (RCTs) (45, 48, 50, 51, 54), three were standard RCTs (46, 49, 58), and six consisted of RCT protocols, (43, 44, 47, 55-57) and two were trial registration records (52, 53).

Geographically, the selected records were distributed across regions, with seven (43, 44, 46-49, 52) were sourced from the United States, the remaining ten originating from various countries, including Germany (50, 51), France (45, 55), Spain ((53, 57) both from the same project), Canada (56), the United Kingdom (58), and Australia (54). The authors’ country of affiliation matched where projects were carried out for all RCTs.

The follow-up duration across the selected studies ranged from two weeks to two years, and the number of randomized participants varied, with the sample sizes spanning from 100 to 1,601 participants.

3.2.2 Intervention characteristics
The included 16 records described 12 types of interventions. In terms of levels of patient and family engagement, most interventions remained at the Inform about engagement level (n = 8), a few were at the Empower level (n = 4), yet none reached the Partner or Integrate level (Figure 2). There were proportionally more patient engagement interventions reaching Level 2 among study protocols and registrations included in the review (2/6, 33.3%) than among completed RCTs (2/8, 25%), although publication dates did not indicate any trend of growing levels of patient and family engagement.
engagement with time, as the four records with Level 2 interventions had been published in respectively 2001, and 2015 to 2017 (43, 46, 49, 52).

At the Inform about Engagement, the majority of interventions (n = 5) involved the provision of information to patients or their families to enhance their understanding of health-related aspects through consultations or assessments. For instance, polypharmacy patients were involved in discussions with pharmacists about medication appropriateness and management (58), completed medication risk assessment forms during consultations with their General Practitioners (GPs) (54), or engaged in discussions about their own feedback regarding safety outcomes (57), or feedback concerning medication intake and associated issues, with or without the aid of a computer assistant (51, 56). Additionally, three studies focused on employing booklets or a combination of video and brochures (44, 45, 48).

At the Empower level, interventions included educational initiatives on safety deprescribing (46), online platforms fostering communication between patients and GPs regarding drug safety (43), as well as motivational and cognitive-behavioural therapy aimed at reducing reliance on opioids (52). Additionally, there was an intervention involving the assessment of polypharmacy patients’ understanding of medications, coupled with the provision of psychoeducational support (49).

While three studies included both patients and family members as participants (44, 47), all other records singularly concentrated on patients. The study conducted by Bayliss et al. in 2020 involved education and activation strategies targeting both patients and their families, with a specific focus on the potential benefits of deprescribing. Goggin and colleagues utilized both video and brochures aimed at parents to address antibiotic misuse in children and foster communication between parents and General Practitioners.

3.2.3 Outcome characteristics
The patient safety outcomes examined were predominantly adverse drug events (n = 8, with 3 completed RCTs) and assessments of medication appropriateness (n = 8, of which 6 were completed RCTs) (Table 2). One RCT protocol (44) listed both outcomes.

In contrast, avoidable hospitalizations were reported by a limited number of records (n = 2), of which no completed RCTs (53, 57).
3.3 Quality Assessment

3.3.1 Risk of bias in studies
Regarding the methodological quality, five RCTs (45, 48, 50, 51, 58) demonstrated a relatively low overall risk of bias, while two RCTs raised some concerns, as evidenced by the studies conducted by Pit (54) and Fried (46). One RCT (49) was assessed as having a high overall risk of bias. Figure 3 offers a comprehensive summary of the risk of bias for each study by evaluated domains. As referenced in Figure 3, concerns regarding risk of bias primarily arose due to either significant deviations from the intended interventions or the presence of missing outcome data.

3.4 Results of individual studies
Whereas most trial registrations and study protocols were either published within the previous two years or have already been followed by a publication on a corresponding RCT, none were found for one trial registration (52) and one published protocol (43) despite having been published eight to six years ago.

Patient and family engagement interventions have yielded inconclusive results regarding their impact on patient safety. Of the eight completed RCTs, four reported an improvement in the safety indicators associated with the patient engagement interventions studied. Improvements were reported in all completed RCTs (all from level 1 engagement) focusing on adverse drug events (45, 49, 54), but in only one (engagement level 2) (58) out of four among those focusing on medication appropriateness. Three others, of which two full scale RCTs (engagement level 1) (48, 51), one pilot RCT (engagement level 1) (50) found no discernible impact on medication appropriateness outcome. Further, a study investigating medication discrepancy correction (engagement level 1) (46) reported no significant changes following the intervention, which was however not directly aligned with the outcome: the intervention consisted in patient and family education and activation about the value of deprescribing whereas the patient safety outcome was the correction of medication discrepancies.

3.5 Impact on specific outcomes
We conducted three separate meta-analyses to analyse the outcomes related to adverse drug events and medication appropriateness, which combined evidence from six out of eight completed RCTs (Figure 4). For medication appropriateness, the
analysis was separated in categorical outcomes for studies reporting presence vs absence of inappropriate prescriptions and continuous outcomes for studies using the Medication Appropriateness Index. One study by Muth 2016 reported both measures and was therefore included in both analyses.

The meta-analysis on adverse drug events did not include the cluster RCT by Buchet-Poyau 2021. Whereas the other two studies (49, 54) expected the intervention to reduce adverse drug events, hence considering fewer reported adverse drug events as more positive. Buchet-Poyau 2021 focused on promoting self-reporting of adverse drug events, with a higher number of adverse drug events indicating a more positive outcome. In the combined analysis moderate heterogeneity was observed (I² = 62.8%). The multilevel random-effects model, following the DerSimonian and Laird method, yielded a LogOR of -0.32 (95% CI, -0.78 to 0.14, p = 0.178). The certainty of the evidence for this meta-analysis was assessed as very low. A three-point downgrade was applied, attributable to the risk of bias arising from study design, indirectness resulting from reported proxy events, and imprecision associated with wide confidence intervals.

The meta-analysis of the three studies reporting medication appropriateness using the Medication Appropriateness Index score (50, 51, 58) found moderate heterogeneity (I² = 39.5%) and a mean difference of Medication Appropriateness Index score of 0.56 (95%CI, -0.61-1.72, p = 0.35; Figure 4, middle panel). The certainty of evidence for this meta-analysis was rated as moderate. The downgrading of evidence pertains to imprecision, attributed to the broad confidence intervals.

The meta-analysis of categorically measured medication appropriateness (count of inappropriate prescriptions) included two studies (48, 50) with low heterogeneity (I² = 0%) found a LogOR of -0.08 (95%CI, -0.32 to 0.16, p = 0.514; Figure 4, lower panel). We rated the certainty of the evidence as high for this meta-analysis.

Ultimately, the combined effect of interventions did not yield significant results in any of the meta-analyses.

3.6 Certainty level
Based on our certainty assessment, evidence of the effectiveness of patient and family engagement vs standard of care had a low level of certainty for adverse drug events (n = 2), a high level for medication appropriateness measured categorically (n = 2),
and a moderate level when measured continuously, with the Medication Appropriateness Index (n = 3). Medication discrepancy correction also had a moderate level of certainty based on a single study (Table 3).

4 Discussion

4.1 Statement of principal findings

Patient and family engagement is promoted based on its potential for transforming patient safety in healthcare. In our systematic review, we identified a limited number of interventions aimed at promoting patient and family engagement in the context of patient safety within primary care settings, totalling 16 in number. The scope of patient and family engagement primarily remained limited, with none of these interventions offering patients and families the opportunity to influence level of overall care. All but one focused on medication safety as an outcome. While approximately half of all cluster RCTs and RCTs individually reported modest to moderate positive effects resulting from the interventions they examined, the meta-analyses conducted did not yield statistically significant findings for any of their combined effects.

Interventions eliciting patient and family engagement at the global care level were found in none of the included records. This aligns with findings from broader healthcare settings, where no study has achieved the integration of patients as full care team members (40). The observed lack of effectiveness in certain interventions might be attributed to factors such as inadequate statistical power, which could be associated with insufficient follow-up durations or small sample sizes. This limitation might have been particularly pronounced in studies investigating relatively infrequent patient safety outcomes, such as falls. Additionally, the intervention had a considerable overlap with standard of care. Many of them offered additional consultation time or written information, which, while potentially assisted in identifying certain existing safety issues, might have been insufficient or too short-term to provide more important shifts in the mindsets or behaviours of patients or their families.

Apart from medication reconciliation, the evidence-based strategies of patient and family engagement recommended by the Agency for Healthcare Research and Quality (59) were not investigated. These strategies encompass elements such as being prepared to being engaged (patients and families encouraged to prepare for their appointments), teach-back (asking the patient/family to explain the instructions in their own words), and warm handoff (in-person handoff conducted in front of the patient).
Family involvement in the reported interventions was notably underexplored. In fact, only three records allowed for the inclusion of family members, with two such instances occurring within a paediatric setting (47, 48). Although the incorporation of family members can introduce complexities in terms of study design, trials can be adapted to accommodate the needs of both patients and families, e.g., by providing separate study information materials or using modified surveys for family members. Meanwhile, patient and family engagement remains a valuable resource in routine clinical practice, as research has demonstrated its potential to enhance communication between patients and healthcare providers during everyday primary care visits, evidenced by longer consultation times and patients taking a more active role during consultations (60).

Furthermore, our review underscores the dearth of research into safety outcomes in primary care that extend beyond the scope of medication safety. This absence of investigation into outcomes such as errors occurring in other facets of healthcare processes, including communication errors or errors associated with care management, is noteworthy (7). These underexplored aspects are of particular significance, considering their potential frequency (61), with estimates indicating errors in approximately 4 out of every 1000 primary care encounters (62).

4.2 Strengths and limitations
The robustness of the current review is attributed to its comprehensive approach, including not only completed RCTs but also trial registrations and protocols. Our methodology adhered closely to the guidelines set forth by the Cochrane Collaboration, thereby bolstering the methodological rigor of the study. Moreover, this review provides an in-depth and comprehensive overview of studies characterized by diverse objectives and scopes.

However, certain limitations emerge concerning the search strategy and the nature of the records. While the strategy was constructed based on published systematic reviews pertaining to patient safety and finalised after input from an information specialist (librarian), the possibility cannot be entirely ruled out that additional, unknown keywords might have generated more results related to domains other than medication safety. Similarly, the lack of a universally accepted definition for 'patient engagement' in the literature led to a broad spectrum of terms used to describe it in the context of patient safety. Consequently, this variation in terminology may have
resulted in the inadvertent omission of relevant records from our analysis. Our search strategy, which was limited to five electronic databases and focused solely on studies published in English in peer-reviewed journals, may have led to the omission of pertinent records available in other languages or formats. Furthermore, a risk of bias was identified in three of the included records, thereby constraining the reliability of their findings.

4.3 Recommendations for policy, practice, and future research
We have not found compelling evidence for any of the specific approaches studied in the trials. The lack of such structured approaches should not deter primary care practitioners to consider how they can incorporate patient and family engagement in their practices. Future research should prioritize RCTs on the effectiveness of patient and family engagement interventions in the context of patient safety within primary care settings with higher levels of patient and family engagement. There is a compelling need to consider the role of family members into the patient safety framework. Such an extension will be instrumental in facilitating a more comprehensive and nuanced comprehension of patient safety, yielding insights that have the potential to enhance the quality and safety of healthcare delivery in these settings significantly.

5 Conclusions
Although patient and family engagement in patient safety in primary care is an appealing and promising area, there is a paucity of pertinent studies, and the existing evidence remains inconclusive. To address these gaps, future Randomized Controlled Trials take a broader approach by investigating a more comprehensive spectrum of primary care safety outcomes, transcending the limited scope of medication safety. These future investigations should encompass interventions that extend beyond health promotion, incorporating safety checks during additional consultations with healthcare professionals to elevate the level of patient and family engagement. Furthermore, the potential role of family members in augmenting the effectiveness of these interventions should be explored and harnessed by upcoming studies.

6 Declaration of Conflicting Interests
The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.
References

7. Donaldson MS. An overview of to err is human: re-emphasizing the message of patient safety. 2011
20. O'Sullivan JW, Harvey RT, Glasziou PP, McCullough A. Written information for patients (or parents of child patients) to reduce the use of antibiotics for acute upper respiratory tract infections in primary care. Cochrane Database of Systematic Reviews. 2016(11).

Table 1: Levels of patient and family engagement

<table>
<thead>
<tr>
<th>Levels</th>
<th>Definitions</th>
<th>Level of impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 1</td>
<td>Inform about engagement</td>
<td>Patient’s individual level of care</td>
</tr>
<tr>
<td></td>
<td>Patients receiving information (e.g., booklets) to learn about their health</td>
<td></td>
</tr>
<tr>
<td></td>
<td>and increase communication with their care team</td>
<td></td>
</tr>
<tr>
<td>Level 2</td>
<td>Empower</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Patients acquiring new skills and/or tools to engage with care team</td>
<td></td>
</tr>
<tr>
<td>Level 3</td>
<td>Partner/Integrate</td>
<td>Overall clinical care</td>
</tr>
<tr>
<td></td>
<td>Patients involved in decision-making as collaborators, consultants, or team</td>
<td></td>
</tr>
<tr>
<td></td>
<td>members</td>
<td></td>
</tr>
</tbody>
</table>

Note. Framework adapted from Kim et al. 2017
<table>
<thead>
<tr>
<th>Author, year</th>
<th>Type of record</th>
<th>Country/setting</th>
<th>Interventions and their level of patient/family engagement</th>
<th>Study groups (n per group; control intervention)</th>
<th>Patient safety outcome</th>
<th>Follow-up timepoints/follow-up duration</th>
<th>Results pertaining to patient/family engagement in patient safety</th>
<th>Outcome statistics</th>
</tr>
</thead>
</table>
| Bailey, S. C., et al. (2016) | Cluster RCT protocol | USA/ambulatory care | Electronic medication communication tool to facilitate communication between patients and physicians about drug safety
Level 2: Empower | I: 480
C: 480 Standard care | ADE | Baseline, 4 weeks & 3 months / 3 months | NA | N=960 |
| Bayliss, E. A., et al. (2020)^d | Cluster RCT protocol | USA/primary care clinics | Short, automated information sheet to prompt discussion with GP about medication discrepancies
Level 1: Inform about engagement | I: 1814
C: 1857 Waitlist control | Specific ADE (falls, haemorrhagic events, and hypoglycaemic events); Potential inappropriate medicine | 6 months, 12 months / 2 years | NA | N=3671 |
| Mangin, D., et al. (2021) | RCT protocol | Canada/primary care clinics | Patients asked about medication intake and related problems
Level 1: Inform about engagement | I: 180
C:180 Waitlist control | Fall and other serious adverse events | Baseline, 6 months / 6 months | NA | N=360 |
| Keriel-Gascou, M., et al. (2013)^c | Cluster RCT protocol | France/general practitioner clinics | Interactive patient booklet as support for discussion with GP
Level 1: Inform about engagement | I: 546
C: 549 Standard care | Increase in patient reporting of ADE | 3 months / 3 months | Increase in reporting of adverse drug events | No. of patients reported ADEs: I:57/546; C:34/549. OR=3.9 95% CI [1.4-11.2], p<0.01. aOR=3.5, 95%CI [1.2-10.1], p=0.02 |
| Buchet-Poyau, K., et al. (2021)^e | Cluster RCT | | | | | | | |
Level 2: Empower | I: 179
C:161 Standard care | ADE: combination of 18 symptoms commonly attributed to ADEs | Baseline, 6 months / 6 months | Improvement of symptoms attributed to ADEs | No. of patients reported symptoms improvement: I:67/179, C:58/161, p=0.24 |
<table>
<thead>
<tr>
<th>Study (Year)</th>
<th>Design</th>
<th>Country/Practice Setting</th>
<th>Intervention Details</th>
<th>Outcomes</th>
<th>Effect Estimates</th>
<th>Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pit, S. W., et al. (2007)</td>
<td>Cluster RCT</td>
<td>Australia/general practices</td>
<td>Patients completing medication risk assessment with their doctor</td>
<td>Decrease in reported fall events in the intervention group.</td>
<td>No. of patients reported fall events at 12 months: I:70/397, C:94/352. COR (95%CI):0.57 (0.40–0.81) p=0.0036; AOR (95% CI):0.61 (0.41–0.91) p=0.02</td>
<td></td>
</tr>
<tr>
<td>Goggin, K., et al. (2018)</td>
<td>Cluster RCT protocol</td>
<td>USA/private practice outpatient clinics</td>
<td>Video & brochure for parents on antibiotic misuse in children & encouraged to discuss issues with GP</td>
<td>Intervention has no impact on inappropriate prescription</td>
<td>No. of patients received inappropriate prescription: I: 54/697, C: 85/904, adjusted OR 0.99; 95% CI 0.52 to 1.89, p=0.98</td>
<td></td>
</tr>
<tr>
<td>Muth, C., et al. (2016)</td>
<td>Cluster RCT</td>
<td>Germany/general practices</td>
<td>Computer-assisted discussion with patient on medication intake & polypharmacy evaluation/reduction</td>
<td>Intervention has no impact on inappropriate prescription nor medication appropriateness</td>
<td>MAI score at 9 months: I: M(SD) 4.8 (5.2) n=238; C: T2: M(SD) 3.9 (4.9) n=228; ICC/ICCadj: 0.000/0.00</td>
<td></td>
</tr>
<tr>
<td>Muth, C., et al. (2018)</td>
<td>Cluster RCT</td>
<td>Germany/general practices</td>
<td>Computer-assisted discussion with patient on medication intake & polypharmacy evaluation/reduction</td>
<td>Intervention has no impact on inappropriate prescription nor medication appropriateness</td>
<td>MAI score at 9 months: I: M(SD) 4.8 (5.2) n=238; C: T2: M(SD) 3.9 (4.9) n=228; ICC/ICCadj: 0.000/0.00</td>
<td></td>
</tr>
<tr>
<td>Syafhan, N. F., et al. (2021)</td>
<td>RCT</td>
<td>UK/general practices</td>
<td>Polypharmacy patients involved in discuss with pharmacist about medication appropriateness and management</td>
<td>Improvement of Medication Appropriateness Index scores.</td>
<td>Changes of Medication Appropriateness Index score at 6 months: I: M(SD) 2.4 (4.8) n=63; C: M(SD) 0.0(4.0) n=60; p=0.879</td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td>Design</td>
<td>Setting</td>
<td>Intervention Details</td>
<td>Patient Groups</td>
<td>Outcomes</td>
<td>Baseline</td>
</tr>
<tr>
<td>-------</td>
<td>---------</td>
<td>----------</td>
<td>----------------------</td>
<td>----------------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>Nct(2015)</td>
<td>RCT trial registration</td>
<td>USA/primary care clinic</td>
<td>Motivational & cognitive behavioural therapy on reducing reliance on opioids</td>
<td>I: 225 C: 225</td>
<td>Patients with non-fatal overdose experiences or level of oversedation as an opioid side effect</td>
<td>Baseline, 3, 6, 12 months / 12 months</td>
</tr>
<tr>
<td>Nct (2019)</td>
<td>Cluster RCT trial registration</td>
<td>Spain/primary care centres</td>
<td>Patients asked to give feedback about experiences and outcomes related to patient safety</td>
<td>I: 624 C: 624</td>
<td>Avoidable hospitalisation</td>
<td>Baseline, 12 months / 12 months</td>
</tr>
<tr>
<td>Serrano-Ripoll, M. J., et al. (2019)</td>
<td>Cluster RCT protocol</td>
<td>Spain/primary care centres</td>
<td>Education & activation of patients & families about value of deprescribing</td>
<td>I: 64 C: 64</td>
<td>Patients with medication discrepancy correction</td>
<td>Baseline, 3 months / 3 months</td>
</tr>
<tr>
<td>Fried, T. R., et al. (2017)</td>
<td>RCT</td>
<td>USA/primary care clinics</td>
<td>Education & activation of patients & families about value of deprescribing</td>
<td>I: 64 C: 64</td>
<td>Patients with medication discrepancy correction</td>
<td>Baseline, 3 months / 3 months</td>
</tr>
</tbody>
</table>

RCT: randomized controlled trial; ADE: adverse drug event; GP: General Practitioner; MAI: medication appropriateness index; I: intervention; C: control

*a Only patients and/or family engagement were extracted from broader interventions, as most also involved general practitioners, pharmacists or other healthcare professionals.

*b Only patient safety results were extracted from all reported outcomes.

c* Studies used the same intervention.

d Falls were chosen as the outcome to include in the meta-analysis, as they were deemed the most severe ADE from all those reported.

e Studies interventions involved parent-child dyads and both patients and family members respectively.
Table 3: Patient and family engagement compared to standard of care for improve patient safety

<table>
<thead>
<tr>
<th>Study design</th>
<th>Risk of bias</th>
<th>Inconsistency</th>
<th>Indirectness</th>
<th>Imprecision</th>
<th>Other considerations</th>
<th>Patient involvement</th>
<th>Usual care</th>
<th>Relative (95% CI)</th>
<th>Absolute (95% CI)</th>
<th>Certainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>21,2</td>
<td>randomised trials</td>
<td>seriousa</td>
<td>not serious</td>
<td>seriousb</td>
<td>seriousc</td>
<td>none</td>
<td>194/1122 (17.3%)</td>
<td>186/1062 (17.5%)</td>
<td>OR 0.726 1 (0.458 to 1.150)</td>
<td>42 fewer per 1000 (from 86 fewer to 21 more)</td>
</tr>
<tr>
<td>Inappropriate prescription (number of patients receiving an inappropriate prescription) (follow-up: mean 8 weeks)</td>
<td></td>
</tr>
<tr>
<td>21,4</td>
<td>randomised trials</td>
<td>not serious</td>
<td>not serious</td>
<td>not serious</td>
<td>none</td>
<td>161/1090 (14.8%)</td>
<td>184/1275 (14.4%)</td>
<td>OR 0.923 1 (0.726 to 1.173)</td>
<td>10 fewer per 1000 (from 35 fewer to 21 more)</td>
<td>⬤⬤◯ Moderate</td>
</tr>
<tr>
<td>Medication appropriateness index (MAI score) (follow-up: median 6 months)</td>
<td></td>
</tr>
<tr>
<td>35,6</td>
<td>randomised trials</td>
<td>not serious</td>
<td>not serious</td>
<td>seriousd</td>
<td>none</td>
<td>347</td>
<td>335</td>
<td>MD 0.56 (0.61 lower to 1.72 higher)</td>
<td>⬤⬤◯ Moderate</td>
<td></td>
</tr>
<tr>
<td>Medication discrepancy correction (follow-up: mean 3 months)</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>randomised trials</td>
<td>seriouse</td>
<td>not serious</td>
<td>not serious</td>
<td>none</td>
<td>No differences between intervention and control patients in the number of medications prescribed at ninety days or in the number of TRIM-related recommendations implemented However, over three times as many patients who received the intervention had correction of medication reconciliation errors as those who did not (48.4% versus 14.3%, p < .001)</td>
<td>⬤⬤◯ Moderate</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Adverse drug events (follow-up: median 6 months)

\[\frac{194}{1122} = 17.3\% \]

\[\frac{186}{1062} = 17.5\% \]

\[OR\ 0.726\ 1\ (0.458\ to\ 1.150)\]

\[42\ fewer\ per\ 1000\ (from\ 86\ fewer\ to\ 21\ more)\]

\[MD\ 0.56\ (0.61\ lower\ to\ 1.72\ higher)\]

\[OR\ 0.923\ 1\ (0.726\ to\ 1.173)\]

\[10\ fewer\ per\ 1000\ (from\ 35\ fewer\ to\ 21\ more)\]

\[MAI\ 347\ vs\ 335\ (0.56\ higher)\]

\[Patient\ involvement\ vs\ usual\ care\ (0.726\ lower)\]

\[OR\ 0.726\ 1\ (0.458\ to\ 1.150)\]

\[42\ fewer\ per\ 1000\ (from\ 86\ fewer\ to\ 21\ more)\]

\[MD\ 0.56\ (0.61\ lower\ to\ 1.72\ higher)\]
Explanations

a. Pit 2007 presents some concerns due to deviations from the intended interventions and missing outcome data. Jameson 2001 presents a high risk of bias due to deviations from the intended intervention.

b. Falls reported as a proxy of adverse drug events in Pit 2007

c. Wide confidence intervals

d. Some concerns due to deviations from the intended intervention

References

Figure 1 PRISMA Chart summarising the screening process

Identification of studies via databases and registers

- Records pulled on 7-9 Feb 2023:
 - Databases (total n = 4,773)
 - Medline (n = 1,347)
 - Embase (n = 1,021)
 - Web of Science (n = 596)
 - Cochrane (n = 1,135)
 - CINAHL (n = 674)
 - Duplicates removed (total n = 1,636)
 - with EndNote (n = 1,624)
 - with Rayyan (n = 12)

- Records screened by title/abstract (n = 3,137)
- Records removed
 - Met exclusion criteria (n = 2,950)

- Reports sought for retrieval (n = 187)
- Records not retrieved (n = 14)
 - Duplicates (n = 3)
 - Oral presentation abstracts (n = 11)

- Reports assessed for eligibility (n = 173)
- Reasons for exclusion (total n = 157)
 - Non-English (n = 1)
 - Duplication (n = 8)
 - Abstract or conference (n = 5)
 - Editorial or review (n = 3)
 - Not patients and or family engagement intervention (n = 37)
 - Not primary care setting (n = 17)
 - Non RCT (n = 16)
 - Not patient safety outcomes (n = 41)
 - Missing outcome (n = 1)

- Studies included in review (n = 16)

- Studies included in meta-analysis (n = 6)
Figure 2: Interventions classified by level of patient and family engagement

Level 1: Inform about engagement
- Patients receiving information (e.g., booklets) to learn about their health and increase communication with their care team
 - n = 8
 - Short, automated information sheet to prompt discussion with GP about medication discrepancies
 - Video & brochure for parents on antibiotic misuse in children & encouraged to discuss issues with GP
 - Interactive patient booklet as support for discussion with GP
 - Polypharmacy patients involved in discussions with pharmacists about medication appropriateness and management
 - Patients completing medication risk assessment with their doctor
 - Patients asked to give feedback about experiences and outcomes related to patient safety
 - Patients asked about medication intake and related problems
 - Computer-assisted discussion with patient on medication intake & polypharmacy evaluation/reduction

Level 2: Empower
- Patients acquiring new skills and/or tools to engage with care team
 - n = 4
 - Electronic medication communication tool to facilitate communication between patients and physicians about drug safety
 - Assessment of polypharmacy patients’ understanding of medications & psychoeducation
 - Motivational & cognitive behavioural therapy on reducing reliance on opioids
 - Education & activation of patients & families about value of de-prescribing

Level 3: Partner/Integrate
- Patients involved in decision-making as collaborators, consultants, or team members
 - n = 0

Framework adapted from Kim et al. 2017

Figure 3: Risk of bias assessment of included cluster RCTs and RCTs

<table>
<thead>
<tr>
<th>Study ID</th>
<th>Experimental Comparator</th>
<th>Outcome</th>
<th>Weight</th>
<th>D1a</th>
<th>D1b</th>
<th>D2</th>
<th>D3</th>
<th>D4</th>
<th>D5</th>
<th>Overall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buchet-Royau 2021</td>
<td>Experimental Comparator</td>
<td>Effectiveness</td>
<td>1</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>Low risk</td>
</tr>
<tr>
<td>Goggin 2022</td>
<td>Experimental Comparator</td>
<td>Effectiveness</td>
<td>1</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>Low risk</td>
</tr>
<tr>
<td>Muth 2016</td>
<td>Experimental Comparator</td>
<td>Effectiveness</td>
<td>1</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>Low risk</td>
</tr>
<tr>
<td>Muth 2018</td>
<td>Experimental Comparator</td>
<td>Effectiveness</td>
<td>1</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>Low risk</td>
</tr>
<tr>
<td>Pit 2007</td>
<td>Experimental Comparator</td>
<td>Effectiveness</td>
<td>1</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>Low risk</td>
</tr>
<tr>
<td>Fried 2017</td>
<td>Experimental Comparator</td>
<td>Effectiveness</td>
<td>1</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>Low risk</td>
</tr>
<tr>
<td>Jameson 2001</td>
<td>Experimental Comparator</td>
<td>Effectiveness</td>
<td>1</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>Low risk</td>
</tr>
<tr>
<td>Syafnah 2021</td>
<td>Experimental Comparator</td>
<td>Effectiveness</td>
<td>1</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>Low risk</td>
</tr>
</tbody>
</table>

Legend: + = Low risk, - = High risk, NA = Not applicable
Figure 4: Meta-analyses of RCTs and cluster RCTs included in the review.

Outcome: adverse drug events assessed categorically

<table>
<thead>
<tr>
<th>Study</th>
<th>Effect Size (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jameson et al. 2001</td>
<td>-0.06 [-0.50, 0.38]</td>
</tr>
<tr>
<td>Pit et al. 2007</td>
<td>-0.53 [-0.88, -0.18]</td>
</tr>
</tbody>
</table>

Outcome: Medication Appropriateness Index (MAI)

<table>
<thead>
<tr>
<th>Study</th>
<th>Effect Size (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muth et al. 2016</td>
<td>1.10 [-1.24, 3.44]</td>
</tr>
<tr>
<td>Muth et al. 2018</td>
<td>0.90 [-0.02, 1.82]</td>
</tr>
<tr>
<td>Syafhan et al. 2021</td>
<td>-1.90 [-4.84, 1.04]</td>
</tr>
</tbody>
</table>

Outcome: medication appropriateness assessed categorically

<table>
<thead>
<tr>
<th>Study</th>
<th>Effect Size (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goggin 2022</td>
<td>-0.21 [-0.57, 0.14]</td>
</tr>
<tr>
<td>Muth et al. 2016</td>
<td>0.03 [-0.29, 0.35]</td>
</tr>
</tbody>
</table>

FE Model

<table>
<thead>
<tr>
<th>Effect Size (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.08 [-0.32, 0.16]</td>
</tr>
</tbody>
</table>