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Abstract  

Purpose: Multiple Sclerosis (MS) is a neuro-inflammatory disease of the Central Nervous System 

(CNS) in which the body’s immune system attacks and destroys myelin sheath that protects nerve 

fibers and causes disruption in axonal signal transmission. Demyelinating Optic Neuritis (ON) is 

often a manifestation of MS and involves inflammation of the optic nerve. ON can cause vision 

loss, pain and discomfort in the eyes, and difficulties in color perception.  

In this study, we developed NeuroVEP, a portable, wireless diagnostic system that delivers visual 

stimuli through a smartphone in a headset and measures evoked potentials at the visual cortex 

from near the O1, Oz, O2, O9 and O10 locations on the scalp (extended 10-20 system) using 

custom electroencephalography (EEG) electrodes. 

Methods: Each test session is constituted by a short 2.5-minute full-field visual evoked potentials 

(ffVEP) test, followed by a 12.5-minute multifocal VEP (mfVEP) test. The ffVEP test evaluates the 

integrity of the visual pathway by analyzing the P1 (also known as P100) component of responses 

from each eye, while the mfVEP test evaluates 36 individual regions of the visual field for 

abnormalities. Extensive signal processing, feature extraction methods, and machine learning 

algorithms were explored for analyzing the mfVEP responses. The results of the ffVEP test for 

patients were evaluated against normative data collected from a group of subjects with normal 

vision. Custom visual stimuli with simulated defects were used to validate the mfVEP results 

which yielded 91% accuracy of classification. 

Results: 20 subjects, 10 controls and 10 with MS and/or ON were tested with the NeuroVEP 

device and a standard-of-care (SOC) VEP testing device which delivers only ffVEP stimuli. In 91% 

of the cases, the ffVEP results agreed between NeuroVEP and SOC device. Where available, the 

NeuroVEP mfVEP results were in good agreement with Humphrey Automated Perimetry visual 
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field analysis. The lesion locations deduced from the mfVEP data were consistent with Magnetic 

Resonance Imaging (MRI) and Optical Coherence Tomography (OCT) findings. 

Conclusion: This pilot study indicates that NeuroVEP has the potential to be a reliable, portable, 

and objective diagnostic device for electrophysiology and visual field analysis for neuro-visual 

disorders. 

Keywords: Multi-Focal Visual Evoked Potential (mfVEP), Full-Field Visual Evoked Potential 

(ffVEP), Multiple Sclerosis (MS), Optic Neuritis, Machine Learning, Signal Processing, Portable 

Diagnostics, Support Vector Machine (SVM) 

 

Introduction 

Multiple Sclerosis (MS) is a neuroinflammatory disease that damages the myelin sheath, nerve 

cell bodies, and axons. The resulting lesions may be found throughout the spinal cord and the 

brain. Optic Neuritis (ON) is often a manifestation of MS and involves inflammation of the optic 

nerve, causing partial or complete loss of vision usually in one eye. About 1 in 5 MS patients 

experience ON as their initial symptom, and 50 percent of people with MS experience ON during 

the course of their disease [1]. More than 2.3 million people are thought to have MS worldwide, 

and the disease has impacted more than 400,000 people in the USA [2]. 

Visual evoked potentials (VEPs) are electrophysiological signals in response to visual stimuli that 

are retrieved from the electroencephalographic activity in the visual cortex and are recorded 

using scalp electrodes. Responses from a full-field VEP (ffVEP) test,  which appear significantly 

delayed compared to normal, have long been known to be a biomarker diagnosing MS [3]. The 

latency of the P1 component of ffVEP responses provides reliable and objective information 

about the integrity of the visual system and proof of demyelination in MS patients, but is limited 

in terms of providing spatially localized information about the visual field. The multi-focal visual 

evoked potentials (mfVEP) technique enables the simultaneous recording of VEP responses from 

a large number of visual field regions in a time much shorter than sequential methods, allowing 

for the identification of spatially localized retinal damage as well as the lateralization of optic 
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nerve and cortical dysfunction with the use of multi-channel recording montages [4]. This 

technique has proven applications in the assessment of visual field disorders and the diagnosis 

of diseases like optic neuritis/multiple sclerosis and glaucoma [5-7].  ffVEP response quality can 

provide a useful guide to interpreting the more complex mfVEP signals; therefore, we 

hypothesized that combining these two methods would yield a more powerful diagnostic tool 

than either alone. 

Utilizing a custom mobile virtual reality (VR) headset and in-house developed neuroelectric 

sensing hardware, we have developed a portable wireless system, called NeuroVEP, that enables 

the combined ffVEP and mfVEP tests. Using a mobile phone display, stimuli are presented to each 

eye separately while the other is held in darkness.  An array of eight proprietary hydrogel 

electrodes senses the brain’s responses in the vicinity of O1, Oz, O2, O9 and O10 scalp locations 

(extended 10-20 system). Recording from multiple locations allows for the lateralization of ffVEP 

responses coming from the left and right hemispheres and helps with improving the signal-to-

noise ratio (SNR) for mfVEP results. Using the Scientific Python and Scikit Learn platform [8, 9], 

we developed an automated signal processing, statistical analysis, and machine-learning 

framework, which handles our recorded EEG signals and stimulus timing events for the combined 

ffVEP and mfVEP testing paradigms.  

The device was tested on a group of subjects with MS and/or ON and a control group of normally 

sighted subjects. The ffVEP results were compared to a standard of care (SOC) device for ffVEP 

testing, Natus Nicolet, used by our clinical partners. Unlike the NeuroVEP which is portable, the 

Natus system is cart-based; furthermore, the SOC’s electrodes are slightly invasive, requiring 

needles to be inserted into the subject’s scalp. 

 

Materials and Methods 

Subject Pool 

This study was approved by the Northeastern University and Tufts Medical Center Institutional 

Review Boards (IRB Study # 13395, Protocol title: Objective Portable Diagnostics of Neurological 
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Disorders using Visual Evoked Potentials) and was performed in accordance with the Declaration 

of Helsinki. All subjects were either referred by their clinical neurologist at the Department of 

Neurology at Tufts Medical Center or were self-enrolled after seeing an advertisement posted 

around Tufts Medical Center. Subjects were required to be between 18 and 80 years of age and 

signed a written informed consent document after the study was explained and all of their 

questions were answered. Gender was not used as a condition for selection. 10 healthy subjects 

along with 10 subjects with MS, ON or both conditions were tested.  

Because of the virtual reality (VR) capabilities of our display system, we required subjects to fill 

out a simulator sickness questionnaire; however, the static nature of our stimuli was not 

expected to induce motion sickness symptoms, and this was borne out in the results (no 

discomfort was reported in the subject feedback). Three of the authors served as control subjects 

(SMAB, CV, and SS), who have extensive experience participating in EEG and/or psychophysical 

vision testing paradigms. 

The ffVEP and mfVEP experiments were tested in 10 (×2 eyes) Normal subjects and 10 (×2) 

subjects with MS, ON or both. A detailed overview of subject characteristics is reported in the 

“Results and Discussion” section (see Table 5). 

Hardware 

We have developed a wireless headset based on mobile virtual reality technology, where a 

smartphone with an OLED screen displays stimuli while an array of eight neuroelectric sensors 

attached to the rear of the headset capture the subject’s responses from the visual cortex. We 

are using an updated prototype similar to the one that was developed in our lab for the diagnosis 

of age-related macular degeneration (AMD) [10, 11]; the modifications include: a more 

ergonomic fit, decreased weight, and better ventilation for the headset; the incorporation of a 

commercial eye-tracking device (Pupil Labs VR/AR add-on [12]); and a new generation of our 

custom hydrogel electrodes. 
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Headmount 

The headset is primarily made of parts that were 3D printed using a Formlabs Form 3 

stereolithographic system. The design mounts a smartphone to the front using a switchable 

adapter plate and positions sensors on the back with an adjustable tension mechanism to allow 

consistent electrode contacts at precise scalp areas.  A combination of rigid and flexible materials 

have been used to ensure a comfortable and light-tight fit on the head. The interior temperature 

and the headset's overall weight were two other crucial factors that received particular attention. 

The headset also features a phototransistor sensor for accurate timing of stimulus onset and 

reversal and eye-tracker cameras to ensure the subjects’ compliance to test protocols. 

 

Neuroelectric Sensing 

The NeuroVEP system makes use of custom reusable hydrogel electrodes that are both 

comfortable and convenient to set up. The tip of the soft yet mechanically robust hydrogel 

electrode (see Figure 1.B.) is textured in order to hold a small layer of liquid electrolyte, which 

penetrates through scalp hair, providing a stable and low impedance contact. The tip diameter is 

between 6-7mm, smaller than standard 10mm EEG cup electrodes. We have previously 

established [13] that contact impedances (at 30Hz) below 150 kOhms give adequate low noise 

levels, where values of 50-100 kOhm after touch-ups with additional electrolyte are typical. 

Figure 1. Portable wireless NeuroVEP system. A. NeuroVEP device prototype integrating 
NeuroVEP sensor with visual stimulus headset, B. Closeup of NeuroVEP EFEG sensor arrays, C. 
Location of electrodes on the scalp over the visual cortex, D. Dichoptic stimulus and typical 
neuroelectric response, Visual pathway. 

Image in part D: Derived from (https://commons.wikimedia.org/wiki/File:Human_visual_pathway.svg) 
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Visual Stimuli 

There are two sections to the test: a short 2.5-minute ffVEP test is followed by a longer 12.5-

minute mfVEP test. The two tests are separated by a 30-second break period, and this makes the 

total length of the test 15.5 minutes.  For the ffVEP test, a total of 90 trials are recorded for each 

eye, with intervals of 0.5 s plus a random 0 to 0.1 s between stimulations; the trials are broken 

into 6 segments of 30 repetitions, switching eyes every new segment where there is a discarded 

onset/offset period of 2 seconds.  The mfVEP test has a total of 16384 overlapping trials at a rate 

of 60 frames per second; the sequence is divided into 16 segments of 1024 trials, switching eyes 

every new segment with a similar onset/offset period at the start. 

The Google Pixel 2 XL smartphone's OLED screen combined with optics that resemble the Google 

VR Daydream View (first version, 2016) was used for displaying the stimulus. Given the light-

tightness of our headset and minimal reflected light in the viewer, the OLED screen on the phone 

offers an effectively infinite contrast ratio. The stimuli patterns were generated as high-

A. 

22.25 ◦ 

B. 

Figure 2. A. ffVEP dartboard pattern-reversal visual Stimulus, B. mfVEP 36 sectors visual 
stimulus. 
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resolution pixel maps (2048x2048) using custom Python programs, then were loaded into a 

custom app using the Google VR Android SDK with OpenGLES2 texture rendering.  

The mfVEP stimulus is similar to a dartboard that extends to 22.25° eccentricity and is broken 

into 36 visual field subregions [14] (Figure 2.B.).  The sector sizes are scaled based on cortical 

magnification factors to produce relatively similar cortical stimulation. Sectors are reversed (or 

not) simultaneously according to 36 pseudorandom uncorrelated sequences at 60 frames per 

second; individual responses are extracted using a correlation between each sector sequence’s 

time markers and the continuous EEG recording, known as the m-sequence technique [15].  The 

ffVEP stimulus is the same geometry dartboard, but the whole pattern reverses at the same time 

(Figure 2.A.). 

 

 

Data Analysis 

The EEG recording (at 1000 samples per second) and paradigm event data are streamed 

wirelessly to a computer as it is acquired and are cached into a file based on the Advanced 

Scientific Data Format (ASDF) [16], along with subject metadata and electrode impedance 

measurements. On the computer, an automated data analysis framework does the work of post-

processing, analysis, and classification separately on the ffVEP and mfVEP signals. 

Before subsequent data processing, each channel is prefiltered using a Stationary Wavelet 

Transform (SWT) baseline removal with an effective cutoff frequency of 0.5 Hz; this step reduces 

the effect of impulse response artifacts in subsequent filtering steps [10]. For this study, where 

the responses will be primarily analyzed using machine learning algorithms that may be sensitive 

to excess noise, we made the choice to reduce the frequency content to the band of 3-13Hz 

(which includes P1 deflections as well as intrinsic alpha wav’es), using a Bessel high-pass IIR and 

an SWT low-pass filter.  It is important to recognize that bandwidth reduction will inevitably 

create some distortion of time domain features, such as the latency of the P1 peaks; however, 

many other experimental aspects, such as the details of the stimuli presentation will also affect 
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the distributions of response parameters – this is precisely why each laboratory or device system 

must have its own set of normative data to compare against [17]. 

 

Full-Field Neuro-responses Signal Processing 
The steps involved in the processing of the full-field responses are shown in Figure 3. The raw 

data initially undergoes the bandwidth reduction filters described above. Then, an unsupervised 

machine learning outlier rejection algorithm (Scikit-Learn’s “Isolation Forest” model [18]) 

excludes trials with outlier variances which are mainly caused by movement artifacts. Next, an 

alpha wave sensitive outlier rejection algorithm does a Fast Fourier Transform (FFT) on individual 

trials and excludes those with power predominantly within the alpha frequency band (9~12 Hz). 

It has been shown that alpha waves are amplified during resting, sleeping, eye closures and in 

our experience, when the subject is unable to see the stimulus; conversely, alpha waves are 

attenuated by visual attention [19-21]. Then, the selected trials recorded from each electrode 

are averaged across time to form 8 individual response channels. Using these 8 signals we then 

calculate responses from the three scalp locations: the left hemisphere is the average of 

electrodes 1 and 2 (O1), the right hemisphere is the average of electrodes 7 and 8 (O2) and the 

central signal is calculated by averaging electrodes 3, 4, 5 and 6 (Oz) (Figure 4). 

The first major positive component of the full-field VEP response, P1, has been shown to be 

delayed or absent in patients with MS or ON [3, 22, 23]. We measure the latency and amplitude 

of P1 components of individual eyes at three different scalp locations (O1, Oz, and O2). We also 

calculate the interocular and interhemispheric latency difference and amplitude ratios. 

Figure 3. Full-Field Stimulus Data Analysis Steps. 
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Waveform and amplitude abnormalities also have been considered biomarkers for MS and ON 

[24].  

 

Full-Field Classification and Visualization 
Figure 5 shows an example of a full field report. The data are presented separately for each eye 

and for three separate scalp locations. Data from the left hemisphere is the average of electrodes 

1 and 2 (O1), the central location is the average of electrodes 3, 4, 5, and 6 (Oz), and the data 

from the right hemisphere is the average of electrodes 7 and 8. 

6 distinct parameters have been investigated for the ffVEP signals: latency, amplitude, interocular 

latency difference, interocular amplitude ratio, interhemispheric latency difference, and 

interhemispheric amplitude ratio. Each of these parameters may indicate dysfunctions in the 

prechiasmatic, chiasmatic, or postchiasmatic regions of the visual field pathway. 

Latency-based biomarkers are less sensitive to retinal and ocular diseases and more reliable in 

examining visual pathways compared to amplitude-based ones. However, in the absence of other 

retinal diseases, latency abnormalities generally signify demyelination whereas amplitude 

abnormalities are a sign of axonal loss.  [19].  

Figure 4. Arrangement of the electrodes and calculation of left, center and right array 
responses. 
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A monocular delayed latency suggests a dysfunction in the optic nerve on one side. Conversely, 

if there is a bilateral abnormality in latency, it indicates a dysfunction in the visual pathway on 

both sides, but determining whether it is located in pre or post -chiasmatic regions would require 

additional evaluation of amplitude and topographic (visual field mapping) features. [25] 

Amplitude-based metrics of P1 are much more sensitive to ocular and retinal disease. Patient 

factors such as poor fixation, loss of focus, tearing, inattention, or drowsiness can all cause a 

decrease in mid-occipital amplitude. However, after ruling out these factors, a monocular 

amplitude abnormality suggests a dysfunction in the visual pathway of one eye before the optic 

chiasm. A bilateral abnormality indicates bilateral disease, but more detailed analysis of 

topographic features or responses to partial field stimulation is necessary to localize the specific 

site affected beyond the post-chiasmal region. Testing one or both eyes may reveal lateral 

Figure 5. Full-field test reports of a representative normal subject from NeuroVEP Device. 
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occipital amplitude asymmetries (interhemispheric amplitude ratio abnormalities). In the 

absence of P1 latency or interocular amplitude abnormalities, such asymmetries are not 

necessarily of clinical importance. However, in the presence of the mentioned abnormalities, 

they may be the sole indication of dysfunction in the chiasmal or post-chiasmal visual pathway. 

Typically, such abnormalities are present in both eyes. If the asymmetry is unilateral, it may 

suggest a partial dysfunction before the optic chiasm. 

To evaluate all parameters, each laboratory or device must establish its own unique normative 

values [17]. We tested a control group of 13 normal subjects (26 eyes) with a mean age of 33±7 

years to establish classification criteria for all parameters. Based on the following criteria, each 

parameter is classified as normal (green), borderline (yellow), or abnormal (red), where std refers 

to its standard deviation: for all latency-based metrics, including interocular and 

interhemispheric latency differences, a value below “mean + 2 std” was marked as normal, 

between 2 to 3 std from the mean was marked as borderline, and above 3 std away from the 

mean was marked as abnormal.  For all amplitude values, a natural logarithm of one plus the 

distribution (ln(ampi+1)) was first calculated to get a more normal distribution, then similarly, 

any nonexistent (or negative amplitude) P1 or values below “mean – 3 std” were marked as 

abnormal, between “mean – 3 std” and “mean – 2 std” were marked as borderline and above 

“mean –  2std” were marked as normal. This procedure has been recommended by American 

Clinical Neurophysiology Society Guidelines on Visual Evoked Potentials [25]. The main ffVEP 

statistics for the control subject pool are summarized in Table 1. 

For all amplitude ratios, based on the distributions, the values were classified based on 

thresholds. In all cases, the ratios were calculated as the larger value to the smaller value, and 

then ratios falling above 2.5 were marked as abnormal, between 2 to 2.5 were marked as 

borderline, and less than 2 were classified as normal. 

Table 1. Normative (Control group) statistics of main ffVEP parameters on 3 scalp locations. The 

logs of amplitudes are calculated as the natural logarithm of (1+variable). 
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Mean 110 5.08 1.36 105 3.31 1.61 107 4.77 1.36 
Std 10.34 5.44 0.44 7.43 2.72 0.42 10.91 3.94 0.44 

LA: Left Array, Lat: Latency, Diff: Difference, CA: Central Array, Amp: Amplitude, RA: Right Array 

 

Signal Processing of Multi-focal Neuro-visual responses 
Multifocal data analysis is more complicated. The steps involved in the data processing of mfVEP 

data are shown in Figure 6. Similarly to ffVEP, the mfVEP data is filtered for bandwidth reduction 

(3-13Hz) and the same outlier rejection algorithm mark trials for exclusion from response 

averages. Next, individual sector responses are extracted using the m-sequence technique [26]. 

We take advantage of recording from 8 individual sensors to increase the signal quality. Given 

the variations in the folding of the brain’s visual cortex among individuals, it has been shown that 

recording from multiple locations and then combining the responses can significantly improve 

the SNR [27-29]. Figure 7.A. shows how derived signals D1, D2, D3, and D4 are computed from 

the original 8 channels. Based on our experience and recommendations from previous studies, 

these four combinations provided the highest SNR signals [27, 30]. Figure 7.B. Shows the method 

of calculating the SNR values. Our selection of response window and noise window is similar to 

what was done in the previous studies [31]. However, our calculation of the SNR and noise 

window criteria is slightly different. The main difference is that instead of using the average of 

Figure 6. Multi-focal Stimulus Data Analysis Steps. 
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noise windows of all sectors for each subject as the noise, we use the noise region of each 

individual sector of each subject for the calculation of the SNR. 

Finally, we compute the optimized response for each sector in the following manner: the derived 

signal responses are polarity matched to D2 and then are averaged together using their SNR as a 

weighting factor.  

 

Multi-Focal Data Classification 

We have developed a machine learning framework for classifying and quantifying the responses. 

We have also created unique color maps to visualize mfVEP results. 

 

Machine Learning Data Set Curation 

For training the supervised Machine Learning Algorithm (MLA), we started by manually selecting 

and labeling the most apparent sector responses from 7 different experiments (14 eyes) as 

“normal” and “abnormal” - a binary classification task. The selected experiments included 6 cases 

of healthy subjects with artificial defects introduced to the stimulus plus 1 case of MS subjects. 

Figure 7. A. Multi-focal test electrode arrangement and calculation of derived signals. B. 
Calculation of SNR for mfVEP responses: Signal window [45:150] ms and Noise window 
[325:430] ms. 

A. 

B. 
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The artificial defects were designed by partially or fully masking individual mfVEP sectors with 

black patches directly using the paradigm presentation software; we hypothesize that this 

masking would adequately simulate the effects of loss of vision in those regions. Responses from 

the masked regions or abnormal responses from the MS subject were labeled as “abnormal” and 

the healthy responses were labeled as the “normal” category. This initial dataset included 382 

samples; however, we established that we could increase the accuracy of the machine learning 

algorithm by using data augmentation techniques to greatly increase the number of training 

samples. The training data was augmented to 65,536 (216) samples using a randomized nearest-

neighbor mixing and rescaling approach, where a random signal is selected and linearly 

interpolated with its nearest neighbor using a Gaussian random variable mixing factor centered 

around 0.5 with a standard deviation of 0.25, clipped to range [0,1]. We employed the KDtree 

algorithm [32] from the SciPy’s package for Python [9] for efficient nearest-neighbor 

identification.  

Despite sophisticated signal processing methods that do very well in filtering artifacts and alpha 

waves in some individuals, it has been observed that algorithms fail to avoid false positive or false 

negative classifications.  This issue is not unique to mfVEP – the Humphrey Visual Field test can 

suffer a similar problem from subject participation errors. Other researchers have tried various 

methods to deal with these issues for monocular mfVEP test evaluation [33, 34]. Because of the 

risk of over-fitting, where MLA accuracy during training is much higher than when applied to new 

tests, the final evaluation of the system must not use data encountered during training.  To 

evaluate the performance of both the MLA and the mfVEP test conducted by the NeuroVEP 

device, we built a separate dataset based on custom mfVEP stimuli with artificial defects (shown 

in Figure 8) containing 576 samples from both eyes of 2 healthy volunteers (4 tests each, 16 tests 

total). In this case, the samples were not selected manually; instead, they were labeled based on 

whether the sector was masked or not. 
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Feature Extraction 

Feature extraction is a crucial step in developing a high-performance machine learning model. 

We started by extracting a large database of custom features which could be generally 

categorized into two types, Waveform-based and Frequency-based features. In the visual field 

regions where the subjects are unable to see (or just barely perceive) the stimulus, they usually 

produce responses within the frequency range of alpha waves (8~13 Hz); this effect can be seen 

in the waveforms – for "abnormal” responses (which are often indistinguishable from noise), the 

signal and noise windows that are used for SNR calculation look very similar to each other and 

contain higher amplitude alpha band content, than the same windows of “normal” responses. 

Figure 8. Schematic of the stimuli used for creating the “artificial defect” evaluation dataset. 
In each case, only sectors on one ring were unmasked (stimulating).  

Figure 9. Overlay of training data A. Normal class vs. B. Abnormal class. 
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Figure 9 shows 2D histograms of the two classes of responses, where the overlaid curves are 

binned to produce a color-scaled counts dimension. 

Based on these considerations we kept 12 custom features which could effectively discriminate 

between the two classes of our machine learning problem. Later, we found that we could further 

improve the accuracy and performance of our model by introducing 7 more features from the 

well-known Catch-22 feature set [35]. These features belong to the following categories: Linear 

autocorrelation (CO_f1ecac and CO_FirstMin_ac), successive differences 

(MD_hrv_classic_pnn40, SB_BinaryStats_diff_longstretch0, and SB_MotifThree_quantile_hh) 

and simple temporal statistics (DN_OutlierInclude_p_001_mdrmd and 

DN_OutlierInclude_n_001_mdrmd). Therefore, for our final machine learning model, we used 19 

features, listed in Table 2. 

Table 2. List of features extracted from the signals for the machine learning training. For the 
details of the Catch-22 features, please refer to its paper. 

Feature Name Definition 

Custom Features 

sig_snr 
Ratio of the std of Signal(LP 20Hz)[50, 200] to Signal(LP 20Hz)[250, 
500] ms. 

sig-hp_cor 
Correlation between Signal(BP)[0, 500] and Signal(HP 9Hz)[0, 500] ms. 
It shows how much the signal is correlated with noise. 

response_cor 
Correlation between Reference Normal Signal[0:200] and Other 
Signals(LP 20Hz)[0:200] ms. 

std_ratio 
Ratio of the std of the Signal(BP)[0:250] to Signal(HP 20Hz)[250, 500] 
ms. 

mid_abs_auc_ratio 
Ratio of AUC of ABS<Signal(LP 20 Hz)[0, 250]>/ABS<Signal(LP 20 
Hz)[250, 500]> ms. 

skewness Skewness of Signal(LP 9 Hz)[0, 500] ms. 

peak_amp_ratio_13 
The ratio of the amplitude of the highest peak (positive or negative) 
to 3rd highest peak (positive or negative) on Signal(BP)[0, 500] ms. 

peak_amp_ratio_14 
The ratio of the amplitude of the highest peak (positive or negative) 
to the 4th highest peak (positive or negative) on Signal(BP)[0, 500] ms. 

no_zero_x The number of zero-crossings of Signal(BP)[0, 500] ms. 

fft_resp_to_alpha_power 
The ratio of the power of the alpha frequency band of the signal [8~13 
Hz] peak to the [0~8Hz] frequency band peak, based on FFT analysis 
on the Signal(BP)[0, 500] ms. 

wv_apprx_std_0 
std(first half of level 1 DWT approx. coefficients of the Signal(BP)[0, 
500] ms.) 

wv_apprx_std_1 
std(first half of level 2 DWT approx. coefficients of the Signal(BP)[0, 
500] ms.) 
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Catch-22 Features 

CO_f1ecac 
On Signal(BP)[0:500] ms. First 1 / e crossing of the autocorrelation 
function. 

CO_FirstMin_ac 
On Signal(BP)[0:500] ms. First minimum of the autocorrelation 
function. 

MD_hrv_classic_pnn40 
On Signal(BP)[0:500] ms. The proportion of successive differences 
exceeding 0.04σ. 

DN_OutlierInclude_p_001_mdrmd 
On Signal(BP)[0:500] ms. Time intervals between successive extreme 
events above the mean. 

DN_OutlierInclude_n_001_mdrmd 
On Signal(BP)[0:500] ms. Time intervals between successive extreme 
events below the mean. 

SB_BinaryStats_diff_longstretch0 
On Signal(BP)[0:500] ms. The longest period of successive incremental 
decreases. 

SB_MotifThree_quantile_hh 
On Signal(BP)[50:200] ms. Shannon entropy of two successive letters 
in equiprobable 3-letter symbolization. 

Abbreviations: LP: Low Pass Filter, BP: Band Pass [3~50 Hz] Filter, HP: High Pass Filter, AUC: Area 
Under the Curve, ABS: Absolute value, FFT: Fast Fourier Transfer, DWT: Discrete Wavelet 
Transform 

 

Classification Method 

For the classification task, we compared several supervised ML algorithms: Support Vector 

Machine (SVM), Logistic Regression, K-Nearest Neighbors (KNN), Naïve Bayes, Random Forest, 

Decision Tree, and ensemble meta-estimators AdaBoost and Bootstrap Aggregating (Bagging) - 

both of which used Decision Tree as the base estimator. Additionally, we tried a deep learning 

Neural Networks (NN) algorithm that used an architecture consisting of several stages of one-

dimensional convolutional layers terminating with a densely connected classifier network – the 

highest accuracy that was attained by the NN approach was around 88%. In the end, we selected 

the SVM binary classifier as it produced the highest accuracy level and a balanced sensitivity vs. 

specificity. SVM uses hyperplanes to separate the classes with maximal margins. Our model uses 

the Radial Basis Function (RBF) kernel to conform to the nonlinearities of the classification task. 

Most models performed very well on the augmented training data set. For example, a 5-fold 

cross-validation for the SVM model returns accuracies of [0.9983, 0.9979, 0.9978, 0.9981, 

0.9975]. However, we selected our model based on its accuracy on the evaluation dataset. As 

discussed before, the accuracy of the evaluation set represents not only the accuracy of the 

model but also the NeuroVEP device, as it takes into account the abnormalities inherent to the 

mfVEP test and the device. Table 3 shows the accuracy, sensitivity, specificity, and Area Under 
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the Receiver Operating Characteristic (ROC) Curve (AUC) for the models built using the training 

set and tested with the evaluation set. 

Table 3. Performance comparison of different ML models on the evaluation dataset. 

Model Accuracy Sensitivity Specificity AUC 

SVM 0.91 0.82 0.94 0.88 

Logistic Regression 0.86 0.83 0.88 0.85 

KNN 0.83 0.86 0.82 0.84 

AdaBoost (Decision Tree) 0.79 0.9 0.76 0.83 

Naive Bayes 0.77 0.9 0.73 0.81 

Bagging (Decision Tree) 0.77 0.89 0.72 0.81 

Random Forest 0.76 0.92 0.71 0.82 

Decision Tree 0.71 0.92 0.65 0.78 

 

Table 4 shows the effect of data augmentation and the addition of Catch-22 features on the test 

performance. For all these iterations, the SVM model with RBF kernel is used. It can be seen how 

making the model more complex step by step increased the accuracy from 0.8 to 0.91. 

Table 4. The effect of data augmentation and Catch-22 features on the performance of the ML 

model. The symbol ‘✓’ denotes inclusion. 

Model 
Data 

Augmentation 

12 
Custom 
Features 

7 Catch-22 
Features 

Accuracy Sensitivity Specificity AUC 

SVM - ✓ - 0.8 0.91 0.76 0.84 

SVM - ✓ ✓ 0.83 0.85 0.83 0.84 

SVM ✓ ✓ - 0.84 0.9 0.82 0.86 

SVM ✓ ✓ ✓ 0.91 0.82 0.94 0.88 
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Results and Discussion 

Full-Field VEP Test 

Table 5 summarizes all calculated metrics for the study’s subject pool. As discussed, the latency 

of the P1 is the most robust biomarker for detecting visual pathway damage. Our analysis, 

primarily looks at the latency and latency differences of the Oz location for each eye, plus the 

waveform. The waveform is evaluated by amplitude abnormalities. If they were normal, the 

subject is labeled as normal. If the waveform and latencies of the Oz location were abnormal, we 

then use the information from the rest of the sensors at O1 and O2 locations to get a better 

understanding of the deficit. In some instances where waveforms were abnormal, the 

interhemispheric (IH) or interocular (IO) ratios were marked as NA; for interhemispheric 

comparisons, the troubling results were reported as being in the left hemisphere (L), right 

hemisphere (R), or on both sides (B). 

Table 5. Summary of the results for all subjects 

Subject Sex Age Condition 
L CA 
Lat 

R CA 
Lat 

IO Lat 
Diff 

L 
Amp 

R 
Amp 

IO 
Amp 
Ratio 

L IH 
Amp 
Ratio 

L IH 
Lat 
Diff 

R IH 
Amp 
Ratio 

R IH 
Lat 
Diff 

S 01 M 36~40 Normal 105 102 3 9.2 9.19 1 1.55 20 1.01 20 

S 02 M 31~35 Normal 107 101 6 7.1 7.49 1.05 1.14 10 1.01 1 

S 03 M 66~70 Normal 104 104 0 2.89 3.82 1.32 1.1 2 1.17 2 

S 04 M 66~70 MS/ON 108 113 5 -0.02 -0.6 
NA 
(B) 

NA (L) 10 NA (B) 1 

S 05 F 56~60 Normal 99 90 9 3.58 1.7 2.11 1.3 15 1.2 2 

S 06 F 61~65 Normal 107 102 5 2.1 2.13 1.01 1.32 4 1.32 0 

S 07 F 31~35 Normal 96 89 7 1.39 2.17 1.56 1.75 0 2.65 8 

S 08 M 31~35 Normal 112 111 1 5.06 4.42 1.14 1.13 7 1.01 11 

S 09 M 26~30 Normal 109 113 4 5.07 4.61 1.1 1 6 1 9 

S 10 F 46~50 ON 108 134 26 2.2 2.04 1.08 1.25 10 2.66 6 

S 11 F 26~30 MS 130 106 24 1.24 2.13 1.72 NA (L) 31 NA (L) 17 

S 12 F 41~45 Normal 116 118 2 2.98 1.11 2.68 1.41 5 1.04 7 

S 13 M 46~50 Normal 100 86 14 3.8 3.7 1.03 1.04 7 1.07 0 

S 14 F 31~35 MS 102 93 9 2.32 0.17 10.05 1.23 8 
2.5 

(BR) 
9 
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S 15 F 51~55 MS 107 129 22 3.01 1.37 2.2 1.11 23 1.35 15 

S 16 F 56~60 ON 136 136 0 5.82 6.46 1.11 1.08 1 1.45 1 

S 17 F 36~40 MS/ON 103 95 8 -0.68 1.11 NA NA (L) NA (L) NA (B) NA (B) 

S 18 M 61~65 MS 108 118 10 2.42 1.65 1.47 1.12 5 1.09 5 

S 19 M 61~65 MS 98 99 1 1.37 1.98 1.45 9.24 6 1.71 3 

S 20 F 36~40 MS/ON 123 164 41 1.27 1 1.27 2.62 7 NA (L) 25 

L: Left, R: Right, CA: Center Array, Lat: Latency, Diff: Difference, Amp: Amplitude, IO: Inter-
Ocular, IH: Inter-Hemisphere 

Color Guide: Normal   Borderline   Abnormal 

 

We compared our device’s ffVEP latency measurements and diagnosis to those of the SOC ffVEP 

test, being used in practice by our clinical partners at Tufts Medical Center, Boston, 

Massachusetts. The SOC test was performed using a concentric needle electrode at the Oz 

location; the technician determines the number of trials, adding more for weaker signals, and 

then hand-picks the P1 peaks for which the amplitude and latency are reported – the waveforms 

are also included in the report. Finally, mainly based on the P1 latencies and to some extent the 

waveforms, a neurologist provides interpretation of the results. In Table 6, NeuroVEP’s diagnosis 

for all subjects is summarized along with the diagnosis using the SOC device. 

Table 6. NeuroVEP vs. Tufts Diagnosis Results 

Subject Sex Age Condition L Tufts Diagnosis R Tufts Diagnosis L NV Diagnosis R NV Diagnosis 

S 04 M 66~70 MS / ON 
Normal Latency 

Normal Waveform 

Abnormal Latency 
Abnormal 
Waveform 

Normal Latency 
Abnormal 
Waveform 

Normal Latency 
Abnormal 
Waveform 

S 05 F 56~60 Normal 
Normal Latency 

Normal Waveform 

Normal Latency 
Normal Waveform 

Normal Latency 
Normal 

Waveform 

Normal Latency 
Normal 

Waveform 

S 06 F 61~65 Normal 
Normal Latency 

Normal Waveform 

Normal Latency 
Normal Waveform 

Normal Latency 
Normal 

Waveform 

Normal Latency 
Normal 

Waveform 

S 07 F 31~35 Normal 
Normal Latency 

Normal Waveform 

Normal Latency 
Normal Waveform 

Normal Latency 
Normal 

Waveform 

Normal Latency 
Normal 

Waveform 

S 08 M 31~35 Normal 
Normal Latency 

Normal Waveform 

Normal Latency 
Normal Waveform 

Normal Latency 
Normal 

Waveform 

Normal Latency 
Normal 

Waveform 

S 09 M 26~30 Normal 
Normal Latency 

Normal Waveform 

Normal Latency 
Normal Waveform 

Normal Latency 
Normal 

Waveform 

Normal Latency 
Normal 

Waveform 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 26, 2023. ; https://doi.org/10.1101/2023.12.26.23300405doi: medRxiv preprint 

https://doi.org/10.1101/2023.12.26.23300405
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

22 
 

S 10 F 46~50 MS / ON 
Normal Latency 

Normal Waveform 

Abnormal Latency 
Abnormal 
Waveform 

Normal Latency 
Normal 

Waveform 

Abnormal Latency 
Normal 

Waveform 

S 11 F 26~30 MS 
Abnormal Latency 
Normal Waveform 

Abnormal Latency 
Normal Waveform 

Abnormal 
Latency Normal 

Waveform 

Normal Latency 
Normal 

Waveform 

S 12 F 41~45 Normal 
Normal Latency 

Normal Waveform 

Normal Latency 
Normal Waveform 

Normal Latency 
Normal 

Waveform 

Normal Latency 
Normal 

Waveform 

S 13 M 46~50 Normal 
Normal Latency 

Normal Waveform 

Normal Latency 
Normal Waveform 

Normal Latency 
Normal 

Waveform 

Normal Latency 
Normal 

Waveform 

S 14 F 31~35 MS 
Normal Latency 

Normal Waveform 

Normal Latency 
Normal Waveform 

Normal Latency 
Normal 

Waveform 

Normal Latency 
Abnormal 
Waveform 

S 15 F 51~55 MS 
Abnormal Latency 

Abnormal 
Waveform 

Normal Latency 
Abnormal 
Waveform 

Normal Latency 
Normal 

Waveform 

Abnormal Latency 
Normal 

Waveform 

S 16 F 56~60 ON 
Abnormal Latency 
Normal Waveform 

Abnormal Latency 
Normal Waveform 

Abnormal 
Latency Normal 

Waveform 

Abnormal Latency 
Normal 

Waveform 

S 17 F 36~40 MS / ON 
Normal Latency 

Normal Waveform 

Normal Latency 
Abnormal 
Waveform 

Abnormal 
Latency Normal 

Waveform 

Abnormal Latency 
Normal 

Waveform 

S 18 M 61~65 MS 
Normal Latency 

Normal Waveform 

Normal Latency 
Normal Waveform 

Normal Latency 
Normal 

Waveform 

Normal Latency 
Normal 

Waveform 

S 19 M 61~65 MS 
Normal Latency 

Normal Waveform 

Normal Latency 
Normal Waveform 

Normal Latency 
Normal 

Waveform 

Normal Latency 
Normal 

Waveform 

S 20 F 36~40 MS / ON 
Normal Latency 

Normal Waveform 

Normal Latency 
Abnormal 
Waveform 

Borderline 
Latency Normal 

Waveform 

Abnormal Latency 
Normal 

Waveform 

L: Left Eye, R: Right Eye, NV: NeuroVEP 

Color Guide: Normal   Borderline   Abnormal 

 

In 31 of 34 eyes (91%), similar predictions were given by NeuroVEP and Tufts Diagnosis. However, 

the NeuroVEP device provides additional information owing to recording from eight individual 

sensors. Also, based on the recorded subject’s feedback during the test, we believe NeuroVEP 

device provides more accurate and reliable measurements. For example, see Figure 10.A. 

(S11/MS), where we can see both responses from the left and right eye on the left hemisphere 

(O1 Location) have abnormal waveforms (and therefore abnormal interhemispheric amplitude 

ratios). Because of the additional information here, the issue can be better explained with more 
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detail as a lesion in the chiasmal or post-chiasmal regions of the visual field pathway. In Figure 

10.B., the results of the same subject from the SOC device are shown. Here, the technician ran 

Figure 10. Full-field test reports of a MS/ON subject from A. NeuroVEP Device (note, positive 
peaks point upward) and B. Tufts SOC device (note, positive peaks point downward). 

B. Full Field Results Standard of Care 

Subject: S11  Condition: Multiple Sclerosis  Age/Sex: 26~30/F     

A. Full Field Results NeuroVEP 
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P1 Characteristics: 
  

OS 
Amplitude: -1.51 µV 

Latency: 155 ms 
  

OD 
Amplitude: -0.46 µV 

Latency: 96 ms 
  

Interocular 
Amplitude Ratio: N/A (Negative Amps) 

Latency Difference: 59 ms 

P1 Characteristics: 
  

OS 
Amplitude: 1.24 µV 

Latency: 130 ms 
  

OD 
Amplitude: 2.13 µV 

Latency: 106 ms 
  

Interocular 
Amplitude Ratio: 1.72 

Latency Difference: 24 ms 

P1 Characteristics: 
  

OS 
Amplitude: 2.5 µV 

Latency: 124 ms 
  

OD 
Amplitude: 3.52 µV 

Latency: 113 ms 
  

Interocular 
Amplitude Ratio: 1.41 

Latency Difference: 11 ms 

Interhemisphere P1 Comparisons: 
  

OS 
Amplitude Ratio: N/A (Negative Amps) 

Latency Difference: 31 ms 
  

OD 
Amplitude Ratio: N/A (Negative Amps) 

Latency Difference: -17 ms 
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the test 3 times the left eye; all three tests turned out to be successful. For the right eye, the 

technician ran the test 4 times, but only 3 tests were successful. The latencies are generally 

variable, and these results are then presented to a neurologist for comments. There are a couple 

of areas where the NeuroVEP device shines in comparison with the SOC device. The first benefit 

is convenience, both for the patient and the technician who sets up the device. The NeuroVEP 

device is a wireless headset that only needs a laptop computer to store the data. The technician 

just sets up the headset, starts the test, and the rest is done automatically. For the patient, the 

NeuroVEP device is comfortable and non-invasive. Our EEG electrodes are made of soft hydrogels 

that are held on the scalp with mild pressure, in contrast to the SOC, which uses needle electrodes 

inserted into the scalp. Also, comparing Figure 10.A. and 10.B., we can see other advantages of 

the NeuroVEP device starting with reliability: our results are based on many more trials which 

have been filtered with extensive denoising and signal processing methods to get a clear and 

reliable response. In contrast, the technician runs the SOC test several times with fewer trials and 

with varying results for the latencies and waveforms. The other key advantage of the NeuroVEP 

device is the fully automated analysis of the results immediately after the test. All parameters of 

the signals are validated against our normative dataset and color-coded based on the status of 

the responses. The NeuroVEP device also provides additional responses from 2 more locations 

on the scalp (O1 and O2), which can reveal additional insight into the defects on the visual 

pathway. Also, using multiple electrodes for each site increases the signal quality and reliability 

of the results.  

 

Multi-Focal VEP Test 
Interpretation of anomalous mfVEP results is a challenging problem, previously left up to human 

experts, because signals from poorly sensed (or artificially blocked) sectors often contain residual 

neural activity, especially intrinsic alpha waves (8-13Hz) and possibly other artifacts which can 

false-trigger simplistic signal quality metrics. Interocular comparison of the responses has also 

been proposed as a way to analyze the mfVEP results [36]: since the information about 

overlapping parts of the visual field from both eyes is analyzed by the same parts of the occipital 

cortex, the spatial/temporal properties of signals from those collocal cortical regions are often 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 26, 2023. ; https://doi.org/10.1101/2023.12.26.23300405doi: medRxiv preprint 

https://doi.org/10.1101/2023.12.26.23300405
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

25 
 

so similar in the case of healthy visual pathways that measured monocular responses often 

correlate to a high degree; thus, significant differences in responses between eyes can be valid 

criteria for identifying damage to the pathways [37]. However, an obvious shortcoming of the 

interocular method is in cases where deficits exist in both eyes. Incorporating several metrics 

derived from various unique features of responses while letting an automated ML model classify 

and score the responses can circumvent some of the shortcomings of simplistic signal metrics 

and especially improve the monocular analysis of the mfVEP results. 

Figure 11 shows a sample of results for an unaltered stimulus and two different stimuli where 

defects were simulated (OS: Left eye and OD: Right eye). For each sector, a score between 0 to 

Figure 11. mfVEP custom stimuli, responses, and per eye visual function classifications for A. 
full stimulus 0-22.25° ecc. B. Artificially masked mid-peripheral ring stimulus 2.72-8.58° ecc., 
and C. Artificially masked outermost peripheral ring stimulus 8.58-22.25° ecc. Scores between 
0 to 100 represent the quality of the response based on the classification probabilities and are 
linearly gray-scaled (White: Normal, Black: Abnormal); therefore, mid-gray sectors may be 
marked as “ambiguous”, requiring further analysis. 
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100 is calculated based on the machine learning classification probabilities. Scores below 50 are 

deemed abnormal responses, and above 50 are deemed normal; these scores are used to 

quantify the sector responses using a grayscale map: whiter sectors are more certainly good 
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responses, darker are more certainly poor responses (or the stimuli were artificially blocked), and 

Figure 12. NeuroVEP’s results for subject S10 with right eye (OD) optic neuritis. A. ffVEP results 
with delayed right eye (OD) and abnormal interhemispheric amplitude ratio, B. mfVEP results 
which show a scotoma in the right eye. 
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mid-gray responses are ambiguous (should be reassessed by a trained technician). 

Figure 12 shows the ffVEP and mfVEP results of subject S10 with ON. The NeuroVEP’s ffVEP 

results show abnormal latency for the right eye and an abnormal interhemispheric amplitude 

ratio. This suggests a dysfunction of the optic nerve on the right side which is probably 

prechiasmatic. The mfVEP test reveals either very poor vision or complete loss of vision in the 

dark areas of the right eye’s visual field. The pattern of visual field loss suggests a pre-chiasmatic 

dysfunction [38]. The NeuroVEP’s diagnosis matches with other clinical tests for this subject. The 

MRI shows an increased STIR (Short Tau Inversion Recovery) signal abnormality within the right 

optic nerve and associated enhancements. OCT (Optical Coherence Tomography) test for this 

subject reveals normal left eye but moderately severe thinning (except nasally) in the right eye. 
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Figure 13 shows the comparison of the NeuroVEP’s mfVEP test results and the HVF (Humphrey 

Visual Field) test of subject S17. The HVF test is conducted with 30-2 standard, but we have 

overlayed the location of the 36-sector mfVEP stimulus (which better matches with HVF 24-2 

standard test area) on the HVF results to be able to compare the two tests. Optic neuritis in the 

right eye (OD) of this subject was confirmed by MRI. The optometrist reports mention vision loss 

Figure 13. A. HVF Central 30-2 Threshold Test with mfVEP sectors’ locations overlayed on top, 
B. NeuroVEP mfVEP test for right eye (OD) of an ON subject. 
Brain MRI Results: Optic Neuritis 

Optometrist Notes: Vision loss in right eye (OD), can see some colors, not shapes. 

HVF: Cecocentral Scotoma. 

NeuroVEP ffVEP: Abnormal waveform for the right eye (OD). Probably a prechiasmatic 

dysfunction. 

NeuroVEP mfVEP: Very poor or loss of vision in the black area. 

A. OD HVF 30-2  

B. OD mfVEP  

OD Visual Field Signals Visual Stimulus 

Patient: S17  Condition: Optic Neuritis  Age/Sex: 36~40/F  
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in OD and HVF confirms a cecocentral scotoma. The subject can distinguish colors in the right eye 

but cannot see shapes. This subject expressed extreme discomfort with the HVF test, but was 

very satisfied with the easiness and objectivity of the NeuroVEP’s visual field test. 

Our method for classifying the mfVEP responses has its limitations too. One of the limitations is 

that the two outermost peripheral rings produce much higher SNR responses than the central 

sectors; this discrepancy was also observed by other researchers [6]; lumping all sectors together 

for classification, as we have done here, and also the small number of original samples may have 

introduced some bias that skews more accurate in the periphery. To sum up, by introducing more 

example responses per sector and tweaking our ML training approach, we believe that ambiguity 

and false negatives can be reduced even further. 

 

Conclusion 

Diseases of the afferent visual system are central to the practice of neuro-ophthalmology (N-O).  

Right now, clinicians must perform screening using automated perimetry (AP) and optical 

coherence tomography (OCT) on patients every 3-6 months typically for patients with such 

neuro-ophthalmic diseases. AP is subjective, susceptible to various artifacts, has poor accuracy 

and reliability, and does not provide crucial discriminatory information on the function of the 

neuro-optical pathways through the brain. OCT provides only structural information about the 

retina and optic disc (the proximal start of the optic nerve fibers).  Visual function often dictates 

the type of treatment, but screening exams are a burden on already stretched neuro-

ophthalmology clinics. Therefore, there is an unmet need for a practical, rapid, sensitive test that 

is objective and provides quantitative functional endpoints for early diagnosis and for monitoring 

patient response to newly developed treatments for neuro-ophthalmic diseases.  

We have developed a new neuro-ophthalmic testing system called NeuroVEP that combines high-

resolution sensors for scalp electric potentials and fields with precise visual stimuli in a portable, 

mobile computing enabled form-factor. NeuroVEP noninvasively measures VEP over the subject’s 

visual cortex, sensing its response to custom visual stimulus patterns presented on a head-
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mounted smartphone display. The neuroelectric recordings have been analyzed for full-field 

stimulus (ffVEP) and 36 visual field sectors (mfVEP).  The ff/mfVEP test is monocular, typically 

taking about 15 minutes to examine both eyes, and is completely objective, requiring no 

behavioral response from the subject – just fixation. Our study of ON / MS patients demonstrated 

the superiority of the NeuroVEP system over a conventional wired clinical VEP system in terms 

of portability and ease of use, superior VEP results, in addition to providing mfVEP visual field 

results. The mfVEP results were evaluated using artificial defects introduced to the visual stimulus 

and our machine learning algorithm achieved 91% classification accuracy for mfVEP sectors. 

We validated the NeuroVEP’s system in a study of 20 subjects (10 healthy, 10 MS and/ or ON 

patients). NeuroVEP’s ffVEP results were compared with the performance of the SOC VEP testing 

device at our clinical partners’ clinic and the diagnosis reported by both systems agreed in 91% 

of cases. Where available, the NeuroVEP mfVEP results were in good agreement with Humphrey 

Automated Perimetry visual field analysis and with MRI and OCT findings. This pilot study 

indicates that NeuroVEP has the potential to be a reliable, portable, and objective diagnostic 

device for electrophysiology and visual field analysis for neuro-visual disorders. 

Despite high accuracies achieved in both ffVEP and mfVEP tests, certain modifications can further 

improve the reliability, performance, and accuracy of the NeuroVEP device. For ffVEP and 

especially mfVEP tests, fixation is very important. Like any other visual field test, loss of fixation 

is detrimental to the test’s result. Therefore, an active eye tracker which tracks the gaze location 

during stimulation trials is a crucial add-on to the headset. Currently, we use only the live video 

feed from the Pupil Labs eye-tracking cameras inside the headset, but the test administrator is 

responsible for making sure the subject is compliant with the test’s protocols.  Unfortunately, we 

found that this 3rd party eye-tracking device was cumbersome to set up and the data was often 

too noisy to be used for our purposes. A well-integrated eye-tracking solution that tracks the 

pupil direction, not only can eliminate the need for constant attention of the test administrator 

but also can provide a reliability metric for the test. Developing a reliability metric for the test, 

either based on the noise level of signals, alpha wave contamination, pupil location, or a fusion 

of all these parameters, is an important step in improving the NeuroVEP headset as a diagnostic 

apparatus. Increasing the number of stimulating sectors to 60 or more can increase the test’s 
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resolution.  Another promising area of improvement is the machine learning classification 

training procedure; as discussed in the previous sections, we lumped together signals from 

various eccentricities. However, we do not get the same quality of signals from all eccentricities. 

Peripheral ring sectors tend to produce higher SNR responses, and the central sectors tend to 

produce lower ones. Classifying all sectors using the same criteria can create a bias towards 

better responses in the periphery. Since we eventually use the classification probabilities for 

scoring the sector responses, a threshold moving algorithm can improve the slightly imbalanced 

classification problem. However, we believe obtaining more samples by testing more subjects 

will enable us to break up the classification task into several sub-tasks using each set of sectors 

within the same eccentricity ring separately; this strategy may reduce biases and improve the 

overall accuracy. Furthermore, although interocular comparisons of the responses may have 

shortcomings if used as the singular criterion for the classification, being able to incorporate them 

in the ML framework should noticeably increase the accuracy of the classifications. 
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