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One sentence summary 

Computational linguistic analyses of naturalistic speech samples can classify the aphasic variant of patients 
similarly to expert clinicians and identify well-established and novel linguistic features crucial for classification. 
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ABSTRACT 
Neurodegenerative dementia syndromes, such as Primary Progressive Aphasias (PPA), have traditionally 

been diagnosed based in part on verbal and nonverbal cognitive profiles. Debate continues about whether PPA is 
best subdivided into three variants and also regarding the most distinctive linguistic features for classifying PPA 
variants. In this study, we harnessed the capabilities of artificial intelligence (AI) and natural language 
processing (NLP) to first perform unsupervised classification of concise, connected speech samples from 78 PPA 
patients. Large Language Models discerned three distinct PPA clusters, with 88.5% agreement with independent 
clinical diagnoses. Patterns of cortical atrophy of three data-driven clusters corresponded to the localization in 
the clinical diagnostic criteria. We then used NLP to identify linguistic features that best dissociate the three PPA 
variants. Seventeen features emerged as most valuable for this purpose, including the observation that separating 
verbs into high and low-frequency types significantly improves classification accuracy. Using these linguistic 
features derived from the analysis of brief connected speech samples, we developed a classifier that achieved 
97.9% accuracy in predicting PPA subtypes and healthy controls. Our findings provide pivotal insights for 
refining early-stage dementia diagnosis, deepening our understanding of the characteristics of these 
neurodegenerative phenotypes and the neurobiology of language processing, and enhancing diagnostic 
evaluation accuracy. 
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INTRODUCTION 

Language is a vital faculty through which we share our thoughts and feelings, build relationships, and pass 
on collective knowledge. When this faculty falters, challenges arise, as seen in those with Primary Progressive 
Aphasia (PPA). PPA is a neurological disorder characterized by the gradual erosion of language abilities while 
initially leaving other cognitive, affective, and sensorimotor functions largely spared (1). The specific 
characteristics of the condition vary among individuals but generally fall into one of three variants: nonfluent 
variant PPA (nfvPPA), characterized by agrammatism and effortful, halting speech; semantic variant PPA 
(svPPA), marked by difficulties in confrontational naming and single-word comprehension; and logopenic 
variant PPA (lvPPA), distinguished by core deficits in word retrieval and sentence repetition (2). Patients are 
typically classified after a comprehensive clinical assessment, including a battery of confrontational language 
tests. Despite the widespread use of these diagnostic constructs, debate continues about the specific features of 
each subtype and their distinctiveness (3). Some core features, such as agrammatism, are not well-defined or 
easily quantified (4), which is one reason a sizeable number of patients are classified as “mixed” PPA (5–9). 
Another criticism concerns the nature of the categories themselves and the extent to which they reflect the 
natural partitioning of language abnormalities of PPA. In addtion, there is an alternative hypothesis that patients 
with PPA, like those with post-stroke aphasia, exhibit a multidimensional spectrum of impairments, with only 
those at the extremes of certain dimensions being categorically distinct (10). Finally, we propose as an additional 
challenge that the classification of PPA patients into subtypes may depend, at least in part, on the specific types 
of confrontational tests included in the assessment battery and may not fully reflect linguistic impairments in 
naturalistic communication. 

We performed this study with two major goals. First, we sought to test the hypothesis that the three major 
PPA variants are natural categories of aphasic subtypes detectable in patients’ naturalistic speech. We pursued an 
entirely data-driven approach to discovering natural categories of aphasic subtypes using generative artificial 
intelligence (AI) Large Language Models (LLMs). Rather than determining whether a neural network can be 
trained to predict the existing categories of PPA—a process that reinforces prespecified diagnostic constructs—
we investigate whether the classic PPA variants emerge from natural correlations in the features of people’s 
speech. Since LLMs can process language at multiple levels of abstraction, from the syntactic to the conceptual, 
they do not need the linguistic features to be prespecified or otherwise coded. LLMs’ strengths can be adapted to 
discover similarities and differences in the speech of a sample of patients. Thus, using this form of generative AI, 
clusters of patients with similar language characteristics can be discovered from naturalistic speech samples 
without the biases inherent in the selection of tests in an assessment battery, the frequent performance anxiety 
experienced by patients undergoing confrontational testing, or the lenses through which clinicians interpret 
results. Once the clusters of similar patients were discovered, we sought to biologically validate them by 
analyzing each cluster’s regional atrophy pattern measured with MRI scans.  

Our second goal was to identify the linguistic features associated with each category of similar PPA 
patients. Complementing the capabilities of LLMs, we used an automated parser to identify linguistic features 
that are used less frequently by each of the PPA variants relative to cognitively unimpaired controls. The value of 
these linguistic features can be tested by determining the degree to which their impairment predicts the different 
variants of PPA. Beyond revealing linguistic features used to classify patients with PPA, such an analysis might 
also provide new insights into the nature of the language system and its breakdown in aphasia. Feature-based 
classification of PPA has been used in prior research. For example, Fraser et al. (2014) used three different 
classifiers on a large set of lexicosemantic features (11). They found that such features could be employed by a 
naïve Bayes classifier to classify patients as either svPPA or nfvPPA with 79% accuracy. Similarly, 
Themistocleous et al. (2021) used a deep neural network on linguistic features derived from picture descriptions 
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to distinguish all three PPA subtypes with 80% accuracy (12). These models highlight how features from a 
syntactic parser can be effective in determining different kinds of PPA, but also their limitations. Improving the 
performance of PPA classifiers might require moving beyond the types of features provided in a syntactic parser.   

Therefore, we further sought to investigate one specific linguistic feature that has received minimal 
attention in PPA research, which is the category of verbs. Prior research has shown that verb comprehension 
predominantly engages prefrontal cortical areas (13–18), congruent with findings of both verb comprehension 
and production deficits in nfvPPA patients (19–21). However, verb meanings also activate the left 
temporoparietal junction, encompassing the posterior lateral temporal cortex and inferior parietal lobule (IPL) 
(22–28). While patients with lvPPA exhibit cortical degeneration in the left temporoparietal junction, verb 
processing deficits have not been reported in this variant (19). Studies of patients with post-stroke aphasia 
demonstrate that individuals with left temporoparietal lesions tend to employ high-frequency (mainly “light”) 
verbs. In contrast, those with prefrontal lesions produce more low-frequency (mostly “heavy”) verbs (29–34). 
We have reported a similar finding in nfvPPA patients (35). With this background, we also tested whether 
separating high- and low-frequency verbs would improve the model’s performance in classifying PPA variants, 
hypothesizing that patients with nfvPPA would use more low-frequency verbs than those with lvPPA and 
svPPA. 

 
RESULTS 

Data-driven analysis using LLMs detects the canonical variants of PPA from connected speech 

Using data from 78 PPA patients from the Massachusetts General Hospital (MGH) Frontotemporal Disorders 
Unit Primary Progressive Aphasia Program, we first evaluated whether the three PPA variant classification 
system has external validity by employing LLMs to uncover implicit divisions in the ways patients speak when 
describing the Western Aphasia Battery Picnic Scene (WAB-PS) (36). These individuals had been independently 
classified as having one of the three PPA variant diagnoses after undergoing a comprehensive clinical assessment 
by a multidisciplinary team of subspecialists, including a structured history obtained from the patient and an 
informant, comprehensive medical, neuropsychiatric examinations, and neuropsychological and speech-language 
pathology assessments (see Materials and Methods). 

To measure language similarities across PPA patients, we developed a novel computational method. Our 
approach hinges on assessing language similarities among patients by measuring the degree to which a large text 
segment facilitates the prediction of sentences in another text segment. This approach is based on the hypothesis 
that patients with similar neurological conditions would yield more accurate predictions. We used a two-step 
algorithm to implement this strategy. First, an LLM named T0 (T-Zero) (37) predicted each sentence in a 
patient’s language sample. This prediction was based on the sentence immediately preceding it, combined with 
all sentences produced by the other patient. This procedure was repeated ten times. For each sentence, the 
highest similarity score generated by a second LLM, T5 (T-five) (38), determined the patients’ sentence 
similarity. We selected T5 for its pre-training in generating semantic similarity scores on a 1-to-5 scale. We 
calculated the overall similarity between two patients by averaging these scores across all sentences. This 
process resulted in a 78 x 78 matrix, representing the similarities among the 78 patients studied. 

We next analyzed this matrix for similar clusters of patients using AGNES hierarchical clustering. The 
AGNES algorithm constructs a hierarchy of clusters in a bottom-up manner (39). A dissimilarity matrix was 
generated using Pearson correlations. Fig 1 shows the solution that resulted from applying hierarchical clustering 
to the dissimilarity matrix. The label for each participant represents the individual’s PPA variant as 
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independently diagnosed by expert clinicians using the comprehensive assessment (see Materials and Methods). 
An inspection of the labels indicates that most patients in each cluster belong to the same clinically-diagnosed 
PPA variant. The clusters generated from this purely data-driven analysis of connected speech samples agreed 
with the experts’ clinical diagnoses regarding the variant of PPA in 88.5% of cases.  

Participants were partitioned into 1 through 7 clusters from this hierarchical clustering solution. The total 
within-cluster sum-of-squares error (SSE) for each partition was calculated from the dissimilarity matrix used to 
generate the hierarchical clusters. The total SSEs for the different cluster numbers are plotted in the inset of Fig 
1. The SSEs declined rapidly as the number of clusters increased from 1 to 3, then leveled off, implying a three-
cluster solution according to the elbow criterion (40). 

 

 
Fig 1. Hierarchical clustering solution of PPA participants’ language samples based on text similarity scores. Participant 
labels indicate the PPA variant as determined by comprehensive clinical assessments. The first division separates a group 
largely composed of nfvPPA patients from the remaining patients, while the second division separates a group of mostly 
svPPA patients from a group of mostly lvPPA patients. The inset shows the total within-cluster sum-of-squares error as a 
function of the number of clusters, which demonstrates that clusters beyond 3 offer minimal reduction in error, implying that 
the optimal number of clusters is 3. The total within-cluster sum of squares was based on the dissimilarity matrix used to 
generate the hierarchical clustering solution. Cortical surface maps indicate areas where each of the three clusters of PPA 
patients had significantly greater atrophy than age-matched controls, largely recapitulating the atrophy patterns typically 
seen in each variant. All between-group comparisons are significant at p < 0.01.  
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We examined the biological validity of the data-driven clusters of PPA patients identified above using an 

analysis of regional cortical atrophy of each of the three clusters of patients compared with an age-matched 
group of control participants (Fig 1; see Materials and Methods for details of the analytic approach). Patients in 
the first cluster, mostly made up of svPPA cases, exhibited prominent bilateral (left more than right) atrophy in 
the temporal pole, inferior, middle, and superior temporal regions, insula, and orbitofrontal cortex. Patients in the 
second cluster, largely composed of lvPPA cases, exhibited asymmetrical atrophy in the left anterior temporal 
cortex, inferior parietal lobule, superior and middle temporal gyri, with weaker effects in dorsolateral prefrontal 
cortex and inferior frontal gyrus. Patients in the third cluster, largely composed of nfvPPA cases, exhibited 
atrophy in dorsolateral prefrontal cortex (left more than right), bilateral dorsomedial and mid-cingulate cortex, 
left inferior frontal gylrus, and left inferior temporal gyrus. These atrophy patterns of clusters of patients 
segregated by the purely data-driven LLM analysis closely recapitulate the localization of cortical atrophy that is 
well established for each of these variants using comprehensive clinical evaluations. 

 

Linguistic features in connected speech distinguish the three PPA variants 

We demonstrated above that an unsupervised AI method employing LLMs could differentiate the three 
major PPA variants from a brief connected speech sample in a manner highly consistent with that of expert 
clinicians. The findings imply that much of the information needed for classifying variants is present in people’s 
connected speech. Although successful, this data-driven analysis does not specify the information used by the 
LLM to compute these similarities. To address this limitation, we used Natural Language Processing (NLP) 
methods to identify the linguistic features in the connected speech samples that best distinguish the PPA variants. 
We then performed a clustering analysis on the linguistic features to see whether they provide convergent 
support for the clusters that emerged from the LLM analysis.  

As one hypothesized language feature, we divided verbs into high and low-frequency groups. Since there is 
no single agreed-upon list of heavy and light verbs, we adopted a quantitative approach to detect a potential 
natural division in verb distribution using these corpora: The Switchboard Dialog Act Corpus (41), the Santa 
Barbara Corpus of Spoken American English (42), and the Corpus of Contemporary American English (COCA) 
(43). The frequencies from the top 966 most frequent verbs from the COCA, which contained the highest number 
of verbs than other corpora, were converted into a distance matrix by computing the absolute difference in 
frequency between each verb and every other verb. The resulting distance matrix was submitted to the scikit-
learn 1.3.0 k-means clustering (44). Cluster analyses were conducted by setting the number of clusters from 2 to 
50. The most frequently occurring cluster contained the first 13 verbs: be, have, do, go, say, know, get, think, see, 
come, want, make, and take. Interestingly, these 13 verbs were among the most frequent verbs in the other two 
corpora (see Supplemental Material 1). Despite being only a small group, these high-frequency verbs made up 
56% of the verbs produced by patients and 54% of the verbs produced by healthy subjects in this study. In this 
analysis, these top 13 verbs were classified as high-frequency, while all other verbs were categorized as low-
frequency verbs.  
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Fig 2. The frequency of the 50 most common verbs in spoken English, according to the Corpus of Contemporary American 
English, is divided into high-frequency (red) and low-frequency (green) verbs. The frequency of the verb be (7,025,941) is 
so high that it is cut off at the frequency of the second highest verb, have. 

 

Additional linguistic features were identified using the Stanza NLP toolkit (45). The Stanza parser 
identified 103 language features. Of these, we retained features with at least three observations for further 
analysis, resulting in a list of 84 features. These retained features consisted of part-of-speech (N=27, e.g., noun 
and preposition), syntactic relations expressed in universal dependencies (N=34, e.g., nominal case and clausal 
complement), and morphosyntactic features (N=23, e.g., past tense and possessive).  

To capture language deficits, we reduced the 84 features to those that appeared significantly less frequently 
than in the control group for at least one of the variants. This was achieved by combining the frequency counts 
across the patients in the three variants, resulting in a 3 x 84 (group x linguistic feature) matrix. A contingency 
matrix was constructed by subtracting the expected frequencies from the raw counts and dividing by the square 
root of the expected value to give standardized residuals with respect to healthy controls (see Materials and 
Methods). We applied the extended version of Fisher’s exact test to a 3 (groups) x 84 (features) table to 
determine the probability of the residuals (46). The method indicated that 52 of the original 84 features were 
associated with significantly negative residuals for at least one of the variants, with family-wise error correction 
managed by the Simes method (47). As a result, the original matrix was further reduced to a 78 (patient) x 52 
(feature) frequency matrix. The counts in the 78 x 52 matrix were compared against expected values based on the
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healthy controls to generate residuals. We retained only the negative residuals in the 78 x 52 matrix and set the 
positive residuals to 0. Transposing the matrix allowed us to assess all pairwise dissimilarities with respect to 
Pearson correlations across participants. The dissimilarity matrix was subsequently analyzed using 
agglomerative (AGNES) hierarchical clustering with the flexible weight average linking approach, with the 
par.method set to 0.6 and assuming 1 to 7 clusters. The total within-cluster SSE was calculated for each cluster 
number and plotted in the inset of Fig 3. The SSEs declined rapidly as the number of clusters increased from 1 to 
3, then leveled off, implying that the linguistic features fall into three main clusters. The phylogenetic tree of 
these features is shown in Fig 3. The linguistic features in the first cluster (yellow) are associated with nouns, 
either directly or indirectly, via the modification of nouns through determiners, adjectives, or prepositional 
phrases. Linguistic features in the second cluster are associated with verb phrases, including low-frequency 
verbs, tense, and possessives (gray). The third cluster (red) is dominated by linguistic features concerning clauses 
(e.g., mark, TO, xcomp, ccomp). The third cluster also contains linguistic features indicating highly abstract 
words with austere, template-like semantics, including pronouns (e.g., Acc, Prs, PRP, Nom) and light verbs (e.g., 
MD, VERB_HighFreq). Figure 3 highlights how the number of cluster-based similarities in the linguistic 
features matches the number of clusters derived from similarities between participants, providing converging 
support for a data-driven division of PPA patients into three clusters.  

 

 
Fig 3. The phylogenetic clustering of the Natural Language Processing-derived linguistic features. The linearized 
matrix of residuals of features in deficit was submitted to the phylogenetic tree function. The inset shows the scree plot of 
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the total within the sum of squares error for different clusters of the linguistic features based on (dis)similarities used to 
generate the clusters, indicating three as the optimal number of clusters. Yellow features are associated with nouns, gray 
features are associated with verb phrases, including heavy verbs, and red features concern clauses and highly abstract words, 
including pronouns and light verbs. See Supplementary Material 2 for the definition of abbreviated features. 

 

The linguistic feature cluster analysis used features that were in deficit in PPA. However, PPA can also 
indirectly affect the use of certain language features, leading to increased use of other language features. Fig 4 
shows both the positive and negative residuals for the 52 features analyzed in the cluster analysis, providing 
further insight into the nature of the three clusters. Moving left to right, the first group of linguistic features 
(nouns) are in greatest deficit for svPPA patients (yellow). The middle group of linguistic features (heavy verbs 
and verb phrases) are those that are in greatest deficit for lvPPA patients (gray), and the third group of linguistic 
features (clauses, pronouns, and light verbs) are those in greatest deficit nfvPPA patients (red). In general, the 
linguistic features associated with the first group center on nouns, as would be expected in svPPA; the linguistic 
features associated with the second group center on heavy verbs and verb phrases, a novel finding for lvPPA; and 
the features in the third group center on clauses, pronouns, and light verbs, which are major constituents of 
syntax as would be expected in nfvPPA.   

 

 
Fig 4. Line chart showing the Natural Language Processing-derived residuals of language features of each PPA 
variant compared to healthy individuals. Each line shows the residual value of language features for each PPA variant 
relative to healthy controls. The shaded areas show the features clustered together based on the phylogenetic clustering 
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solution in Fig 2. Features in the shaded yellow region are in most deficit for svPPA patients, the gray shaded region for 
lvPPA and the red shaded region for nfvPPA. See Supplementary Material 2 for the definition of abbreviated features. 

 

In addition to revealing deficits in the use of linguistic features, the results also show patterns of relative 
preservation or possibly compensation. Residuals above the 0-line indicate frequency counts that were greater 
than would be expected from healthy controls. The trade-off between high and low-frequency verbs is shown in 
Fig 5A,  r(76)=-0.549, p < 0.001. This pattern helps explain why previous work has not found verbs to be a 
predictor of PPA variants. Individuals with PPA do not stop using verbs but rather use different types of verbs. 
Interestingly, if the distinction between high- and low-frequency verbs is disregarded, there was no evidence of a 
verb deficit across any variant. Standardized (adjusted) Pearson residuals indicated no evidence that verbs as a 
whole were used more often in nfvPPA individuals than in healthy individuals, r=1.012 p=0.32. In lvPPA, there 
was evidence that verb usage increased relative to healthy controls, r=2.54, p=0.012, directly opposite to the 
deficit of low-frequency specific verbs that we found. Rather, evidence for verb loss only appeared when the 
verbs were divided into high or low-frequency types. For example, when lvPPA patients have difficulty 
retrieving the verb donate, they may be able to produce give. Conversely, patients with nfvPPA produce more 
low-frequency verbs. A Chi-square test of independence applied to the raw counts indicated that high/low verb 
frequency was not independent of patient type (nfvPPA, lvPPA), X2(2)=5.98 p < 0.001. Supporting this 
conclusion, Shan and Gerstenberger’s (2017) extended version of Fisher’s exact test indicated that for nfvPPA 
individuals, the rate of high-frequency verbs was less than in healthy controls, r=-2.79, p=0.006, and the rate of 
using low-frequency verbs was greater than healthy controls, r=4.47, p < 0.001 (46). Further, for lvPPA 
individuals, the rate of using high-frequency verbs was greater than for healthy controls, r=5.82, p < 0.011, and 
that of low-frequency verbs was marginally less than for healthy controls, r=-2.108, p=0.038. This pattern 
indicates a double dissociation between PPA variant and verb type. 

Figure 5B shows a scatter plot indicating a strong negative correlation between pronoun usage (PRP) and 
noun (NN) usage, r(76)=-0.827, p < 0.001. Individuals with lvPPA used high-frequency verbs more often than 
healthy controls, whereas individuals with nfvPPA used low-frequency verbs more often than healthy controls. 
An analogous pattern of results was observed between different kinds of nouns (common and pronouns) and 
PPA variant. A Chi-square test of independence applied to the raw counts indicated that noun and pronoun 
counts were not independent of PPA variant (nfvPPA, svPPA), r=177.9, p < 0.001. Fisher’s exact test indicated 
that for nfvPPA individuals, the rate of using common nouns was higher than in healthy controls,  r=6.284, p < 
0.001, and lower in svPPA individuals, r=-12.51,  p < 0.001 individuals. Conversely, for nfvPPA individuals, the 
rate of using pronouns was less than in healthy controls, r=-6.57, p < 0.001, while for svPPA individuals, the rate 
of using pronouns was higher than in healthy controls, r=11.717, p < 0.001. The pattern of noun type (common 
nouns, pronouns) offers yet another example of a double dissociation between PPA variant and language feature.  
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Fig 5. Scatterplots showing trade-offs between low- and high-frequency verbs (A) and nouns and prepositions (B). In panel 
A, nfvPPA patients tend to occupy the upper left corner, indicating relatively few high-frequency verbs, while lvPPA 
patients tend to occupy the lower right corner, indicating relatively few low-frequency verbs. 

 

NLP-derived linguistic features from connected speech samples robustly predict PPA variant 
classification 

Multinomial logistic regression analysis was conducted to identify which features best differentiated the three 
PPA variants. Variable selection was achieved by correlating the residuals from the previous analyses with 
dummy variables representing the participant groups. The resulting correlation coefficients were rank ordered. 
We used this ordered list of linguistic features to add variables to the model in a forward stepwise manner, with 
the exception of low-frequency verbs, which were included in the model for theoretical reasons discussed in this 
work.  In addition to low-frequency verbs, the variables included high-frequency verbs, determiners, nouns, 
pronouns, adverbs, verbs, adverbial modifiers, determiners, clause markers, articles, demonstratives, finites, 
neuter, nominative case, and personal/possessive pronouns.  

 The dependent variable of variant contained four categories: nfvPPA, lvPPA, svPPA, and healthy controls. 
Models were trained on the frequency counts, with healthy controls serving as a reference category. Table 1 
shows the logistic coefficient for each predictor, which is the expected amount of change in the logit for each 
unit change in the predictor. A likelihood ratio test indicated that such a model significantly outperformed a 
model based on only the constant, X2 (51)=270.25, p < 0.001.  The 17-variable model after 10-fold cross-
validation resulted in an accuracy of 97.88% (sensitivity/recall=0.98; specificity=0.99; precision=0.98). The few 
errors were evenly distributed across the classes, as shown in the normalized confusion matrix in Supplementary 
Material 3. When high and low-frequency verbs were combined, the model's accuracy after 10-fold cross-
validation dropped to 74.5% (sensitivity/recall=0.74; specificity=0.90; precision=0.74). A least likelihood test 
indicated that the model separating high- and low-frequency verbs accounted for more variance than a model that 
did not distinguish the two kinds of verbs, X2 (3)=65.39, p < 0.001. 

 



12

 

 

DISCUSSION 

In this study, we leveraged advances in AI and machine learning to classify variants of PPA based on short 
naturalistic samples of connected speech. Through a data-driven approach, we used LLMs to measure language 
similarity among pairs of language samples and subsequently applied hierarchical clustering analysis to the 
resulting similarity matrix. Our analysis revealed the emergence of three main clusters, demonstrating an 88.5% 
agreement with the independent classification of PPA variants using the international consensus diagnostic 
criteria. These findings suggest that the three-variant classification of PPA likely reflects natural categorical 
groups measurable from naturalistic connected speech. Furthermore, as expected based on the predominant 
clinical variants in each of the three data-driven groups, regional brain atrophy in these groups matched well 
with the atrophy patterns that are well-established for the three variants. Once we showed that the canonical PPA 
variants reflect natural kinds, we sought to identify the linguistic features that maximize the distinction between 
PPA variants. We used an automated syntactic parser to extract the linguistic features most robustly associated 
with each PPA variant, which sheds new light on dissociable aspects of impaired versus preserved elements of 
language in the three PPA variants. 

We found that patients with svPPA exhibit deficits in nouns as well as linguistic features related to noun 
modification. These linguistic features include determiners (e.g., DET, Art, WDT, Rel) and features that are used 
in conjunction with noun phrases, such as expletives (e.g., expl, EX) or other types of noun modifiers (e.g., acl, 
nmod, compound, JJ, acl:relcl ) (See Supplementary Material 2 for the definition of feature abbreviations). 
SvPPA is primarily associated with cortical atrophy in the anterior temporal lobe region, aligning with reports 
indicating disruptions in noun processing due to cortical atrophy in the left temporal lobe (13, 16, 48). Patients 
with lvPPA showed deficits in using low-frequency verbs as well as verb features (e.g., Pres, Part, VBZ, VBG). 
Patients with lvPPA are also impaired in using features associated with possessive relations (nmod:poss, 
PRP_poss, Masc in the current dataset). This category also includes particles (e.g., RP), which in this dataset 
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predominantly serve to form phrasal verbs. LvPPA is primarily associated with cortical atrophy in the left 
posterior lateral temporal and inferior parietal (IPL) regions. Our results align with studies showing that verb 
meanings recruit the left intraparietal sulcus and inferior parietal lobule (22–24, 49). Finally, patients with 
nfvPPA exhibit deficits in constructing clauses. This group comprises features related to subordinate clauses 
(e.g., xcomp, ccomp, mark), clausal modifiers (e.g., advcl), and features frequently involved in subordinate 
clauses (e.g., WP, VB, Inf, TO, VB). Furthermore, grammatical case relations, which encode the grammatical 
roles played by noun phrases in sentences, emerge only in the context of clauses (e.g., Nom, Acc). The clause-
related features are associated with high-frequency verbs (Verb_HighFreq), which as suggested in the Two-
Level Theory of verb meaning (see below), are reflective of basic clausal structures (50–52). Additionally, this 
third group of features includes pronouns (e.g., PRP, Prs, Nom, Acc, Neut), representing abstract versions of 
nouns, just as the high-frequency verbs represent abstract versions of low-frequency verbs. NfvPPA is associated 
with cortical atrophy in the left inferior frontal regions, consistent with studies showing verb impairment in the 
left prefrontal context (13, 14, 16–18, 53).  

Our a priori approach to separating high vs. low-frequency verbs in the classification model significantly 
increased the accuracy from 70% to 98%. In addition to improving the classification model, the high/low-
frequency verb distinction could inform the neurolinguistic literature on how the category of verbs is processed 
across the language network. Inconsistent findings about the neurobiological underpinnings of verbs have been 
reported in the field. Similar inconsistencies exist in the PPA literature, with some studies reporting verb deficits 
in nfvPPA while others attributed the deficit to lvPPA, and yet other studies attributing no verb deficit to any 
PPA variant (see (54) for a review). In this work, we identified a double dissociation between verb frequency 
and PPA variants, a pattern that could be partially explained by the Two-Level Theory of verb meaning (55–59). 
This theory suggests that verbs consist of two separate layers of meaning. One layer is the “root” or unique 
meaning, which captures idiosyncratic semantic features that (a) distinguish each verb in a given class from all 
the others, (b) are often concrete and modality-specific, and (c) do not interface with grammar (55–59). Another 
layer is the event structure template, which is (a) common to all the verbs in a given class, (b) composed 
primarily of schematic predicates and variables for arguments, and (c) relevant to the grammatical properties of 
all the verbs in a given class. Event structure templates are represented by a limited set of event types such as 
state, result state, manner, and instrument, which are defined by primitive predicates. In this model, the basic 
event structure classifies verbs. For instance, the semantic frame [x ACT <INSTRUMENT>] is assigned to 
instrument verbs like brush, hammer, saw, and shovel; [x ACT <MANNER>] fits with manner verbs like jog, 
run, snore, and whistle. Similarly, other semantic frames can be attributed to state verbs, internally caused state 
verbs, and change of state verbs. The root of a verb authorizes the event structure based on the meanings it 
encodes. A root denoting means or manner permits a simple semantic frame, while a result root authorizes a 
complex frame structure with causing and result subevents, e.g., [x ACT] CAUSE [BECOME [y <SPLIT>]]]. 
The event structure of a verb influences the spectrum of clausal constructions it can appear in. Essentially, the 
event structure specifies the syntactic patterns tied to a particular verb meaning (50). Goldberg emphasized the 
close relation between light verbs and basic clausal structures (51, 52). Specific brain areas linked with light 
verbs could be those that specify event structure, whereas areas tied to heavy verbs could specify the root of the 
event structure. Hence, the light verbs used in our study (e.g., be, do, go) would likely be linked to certain clausal 
structures without any particular root connection. Also, heavy verbs might represent solely the root of a verb 
meaning, a possibility supported by construction grammar (51, 52). 

Our findings are consistent with a three-stage model of language production, which posits that language 
production results from the successive addition of increasingly complex linguistic elements, a concept we refer 
to as cumulative complexity. The model employs time-honored categories of three primary groups of linguistic 
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features: noun-related, verb-related, and clause-related features. This approach implies a sequential order in 
linguistic processing, commencing with the assembly of noun phrases, followed by the construction of verb 
phrases, and culminating in the synthesis of a complete sentence. No single brain region is dedicated to 
semantics or syntax in this model, as previously specified in the classic Wernicke–Lichtheim-Geschwind model. 
Grammar-related features are distributed throughout the language system. This interpretation is supported by 
meta-analyses showing that the ordering of cortical processing in the language networks starts in the temporal 
lobe before moving to the inferior parietal lobule and finally reaching the frontal lobe (60, 61).  

Another notable element of the model is that damage to a part of the language networks, e.g., frontoinsular 
cortex in nfvPPA or temporal pole in svPPA, does not lead simply to a deficit in the production of specific 
language features relative to healthy individuals, but also to a compensatory increase in other features to attempt 
to maintain the efficient communication of information. For example, nfvPPA patients who have difficulty using 
complex syntax (e.g., subordinating clauses) use a higher rate of nouns to all words compared to healthy 
controls. This finding aligns with our recent work showing that patients with nfvPPA who have difficulty using 
long and complex structures use more informative words, such as heavy verbs and more content words in their 
sentences to sustain sentence information (35, 62–64). Similarly, patients with lexicosemantic deficits who have 
difficulty using nouns relative to other words produce more clause subordination than healthy individuals, as we 
have recently shown (63). For example, patients with svPPA exhibit a higher rate of embedding and other 
complex syntactic structures than healthy speakers (48, 63).  

Directionality in the language circuit is further supported by the pattern of impairment and potential 
compensation shown in Fig 4. If the language network is directional, then compensation should be more likely to 
occur towards the end of the processing pipeline than at the beginning. Fig 4 shows precisely this pattern, with 
positive residuals emerging more prominently on the right of the pipeline than on the left. Interestingly, however, 
some compensation appears earlier in the pipeline. Such compensation could be explained by a recursive process 
by which outputs from the frontal lobe serve as inputs into the temporal lobe, potentially through the ventral 
stream via the extreme capsule fiber system/longitudinal inferior-frontal-occipital fasciculus or the uncinate 
fasciculus (27, 65). As proposed by Friederici et al. (2015), the uncinate fasciculus, which connects the frontal 
operculum and orbitofrontal cortex to the anterior superior temporal gyrus, may be involved in building local 
syntactic phrases (27).  

In summary, this study showcases the efficacy of contemporary generative LLMs in using data-driven 
analysis of a brief connected-speech sample to categorize patients with Primary Progressive Aphasia (PPA) into 
one of its three typical variants—a task traditionally accomplished by expert clinicians after exhaustive, 
specialized assessment typically taking several hours. Leveraging NLP for linguistic feature analysis, this 
approach identified linguistic features enabling robust classification, including those absent in the current 
diagnostic criteria, such as the pivotal role of verb categories when segmented into high or low-frequency verbs. 
Importantly, our methodology has the potential to refine existing diagnostic standards. For instance, the current 
criteria for subtyping semantic variant PPA (svPPA) and logopenic variant PPA (lvPPA) includes object naming 
and word retrieval deficiencies, respectively, a differentiation often blurred due to their resemblance, thus 
creating challenges in clinical practice. However, our findings indicate a more pronounced impairment in noun 
usage among svPPA patients, while lvPPA patients struggle more with retrieving proper nouns, such as people’s 
names. Besides offering a robust classification mechanism, our method also unravels insights into the 
neurobiological mechanisms of verb processing in the language network. The approach in this study can extend 
to other neurodegenerative conditions, fostering a more objective, theory-neutral categorization system that 
could provide further insights into the neurobiology of language and other aspects of cognition critical for 
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communication. Future work is needed to test the generalizability of our results on different PPA samples as well
as the effectiveness of this method on the classification of PPA patients that do not fit into established variant 
categories.  

 

MATERIALS AND METHODS 

Participants. Seventy-eight patients with PPA were recruited from an ongoing longitudinal study at the Primary 
Progressive Aphasia Program in the Frontotemporal Disorders Unit of Massachusetts General Hospital (MGH). 
All patients underwent a standard clinical evaluation, comprising a structured history obtained from both patient 
and informant, comprehensive medical, neurological, and psychiatric history and exams, neuropsychological and 
speech-language assessments, and a clinical brain MRI scan (66). Ratings on our language scale, called the 
Progressive Aphasia Severity Scale (PASS), were also included (67). Modeled after the Clinical Dementia 
Rating Scale (CDR), PASS uses the clinician’s best judgment and integrates information from the patient’s test 
performance and a companion’s interview. The PASS includes “boxes” for fluency, syntax, word retrieval and 
expression, repetition, auditory comprehension, single-word comprehension, reading, writing, and functional 
communication. The PASS Sum-of-Boxes (SoB) is the sum of the box scores. The clinical and demographic 
information on the patients is shown in Table 2.  

In addition, we used data from twenty healthy cognitively unimpaired older adult controls from the 
Speech and Feeding Disorders Laboratory at the MGH Institute of Health Professions. These individuals had an 
average age of 65.2 and an average years of education of 15.8. Fifty percent of healthy controls were female, and 
75% were right-handed. All study participants provided informed consent in accordance with guidelines 
established by the Mass General Brigham Healthcare System Institutional Review Boards, which govern human 
subjects research at MGH and specifically approved this study.  

Language samples. The participants were asked to view a drawing of a family at a picnic from the Western 
Aphasia Battery– Revised (36) and describe it using as many full sentences as they could. Responses were audio-
recorded using an Olympus VN-702PC Voice Recorder in a quiet room and later transcribed into text using the 
Microsoft Dictate application. The transcriptions were then manually checked for accuracy by a research 
collaborator blind to patient characteristics.  

LLM data analysis and hierarchical clustering. The analyses used the 11-billion-parameter version of T5, 
which is available through the Huggingface transformer library (68). The T0 LLM available through the 
Huggingface transformer library was used to generate guesses about possible sentences (68). Processing was 
conducted on a Microway Compute Server with four NVIDIA Ampere A100 80GB GPUs. To measure language 
similarities across PPA patients, we used a two-step algorithm to implement this strategy. Initially, an LLM 
named T0 (T-Zero) (37) predicted each sentence in a patient’s language sample. This prediction was based on 
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the sentence immediately preceding it, combined with all sentences produced by the other patient. This 
procedure was repeated ten times. For each sentence, the highest similarity score generated by a second LLM, T5 
(T-five) (38), determined the patients’ sentence similarity. We selected T5 for its pre-training in generating 
semantic similarity scores on a 1-to-5 scale. We calculated the overall similarity between two patients by 
averaging these scores across all sentences. This process resulted in a 78 x 78 matrix, representing the 
similarities among the 78 patients studied. The process of discovering clusters was accomplished using 
hierarchical clustering. The matrix of similarities generated by T5 was converted into a pairwise dissimilarity 
matrix using the Kendall rank correlation coefficient. Hierarchical clustering was conducted in R using the 
AGNES agglomerative clustering (39), and the “flexible” weight average linkage approach, with the par.method 
set to 0.8. The dissimilarity matrix was generated using Pearson correlations, computed using the get_dist() 
function from the “factoextra” library. The rect.hclust function from R’s “cluster” package was used to cut the 
hierarchical clustering solution such that the participants were partitioned into 1 through 7 clusters. 

Neuroimaging data acquisition and analysis 

Neuroimaging data was available for 66 of the 78 PPA patients. A control sample was used as a reference 
for quantifying the magnitude of atrophy in our PPA patients. The sample included 24 cognitively normal older 
adults as control participants, also recruited at MGH (mean age 67.4 ± 4.9; 12 females; mean education 15.7 
years ± 2.3). These control participants underwent a neurological and cognitive assessment to confirm the 
absence of a medical history of neurologic or psychiatric conditions, a structured interview of the participant and 
an informant by a neurologist, neurological examination, and a neuropsychological test battery (UDS 3.0), and 
were determined to be clinically normal with the Clinical Dementia Rating scale (CDR=0). All controls had 
normal brain structure based on MRI and low cerebral amyloid based on quantitative analysis of 11C-PiB PET 
data (FLR DVR < 1.2). MRI data were collected from participants on a Siemens 3-Tesla MAGNETOM Tim 
Trio scanner using a 12-channel phased-array head coil. Structural MRI data were acquired using a T1-weighted 
MPRAGE sequence with the following parameters: TR=2530 ms, TE=3.48 ms, flip angle=7 degrees, number of 
interleaved sagittal slices=176, field of view=256 mm, voxel size=1 mm isotropic. Each participant’s MPRAGE 
data underwent intensity normalization, skull stripping, and automated segmentation of cerebral white matter to 
locate the gray-white boundary via FreeSurfer v6.0, which is documented and freely available for download 
online (http://surfer.nmr.mgh.harvard.edu). Defects in the surface topology were corrected (69), and the 
gray/white boundary was deformed outward using an algorithm designed to obtain an explicit representation of 
the pial surface. All cortical surface derivatives were visually inspected for technical accuracy and were 
manually edited when necessary. Cortical thickness was calculated as the closest distance from the gray/white 
boundary to the gray/CSF boundary at each vertex on the tessellated surface. For each cluster of patients, we 
performed a whole-cortex, vertex-wise analysis of cortical thickness compared to controls to identify the spatial 
topography of atrophy in each patient cluster. For this analysis, we registered all participants’ thickness data to 
fsaverage space and smoothed them geodesically with full-width-half-maximum (FWHM) of 10 mm. The results 
of these analyses were inspected via maps of statistical significance at each vertex point overlaid on the average 
cortical surface template. For these exploratory analyses, a statistical threshold of p < 0.01 was used.  

 

Linguistic Feature Discovery 

Extracting language features. The transcribed speech of the patients and healthy controls was analyzed for 
linguistic features using the Stanza natural language processing toolkit (45).  

Including high- and low-frequency verbs. In addition to the features automatically extracted from the parser, 
we separated high- and low-frequency verbs based on the logic discussed in the introduction. We used three 
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different corpora of spoken language, COCA, Switchboard and Santa Barbara. The distribution of verbs 
produced in these corpora showed a similar discontinuity that distinguished a subset of verbs as highly frequent 
ones versus other verbs as shown in Supplementary Material 1.   

Obtaining the residual for each language feature. Counting the number of occurrences for each language 
feature requires normalization. Such analyses need to control for the overall size of the language sample, as well 
as basic differences in the relative frequency of certain linguistic features. For example, nouns are produced far 
more frequently than adjectives or number words in ordinary speech in healthy individuals. Hence, determining 
whether a particular linguistic feature occurs less often than expected in an individual with PPA requires that the 
frequency of the linguistic feature be assessed relative to benchmarks established in controls. This allows us to 
directly assess the degree to which the frequencies differ from normal controls, not just from the other variants.  

The number of occurrences of each linguistic feature is reported relative to the frequencies observed in 
healthy controls. The process of controlling for both language sample size and the base rates of each linguistic 
feature was achieved by comparing the observed counts against expected counts. A standardized residual is 
defined as the difference between the observed value and the expected value divided by the square root of the 

expected value,   . The expected value of the ij-th cell in a contingency table, eij, is given by 

multiplying the sum of the counts in the ith row (the row marginal total), , by the sum of the counts in the jth

column (the column marginal total), , and dividing by the total sample size, N,  . It has been 
noted that residuals tend to increase with increases in the number of observations (46). The problem of inflated 

residuals can be addressed by dividing the raw residuals, , by the standard error of the raw residuals, 

  (70), producing an adjusted residual. If the variables associated with i and j are 
independent, then the counts across columns will be proportionally the same across the rows. Under these 
conditions, expected values will closely approximate observed values. However, if the variables are not 
independent, the proportion of counts across columns will differ across rows. Non-independence will be 
observed when, for example, the proportion of counts across different linguistic features differs across 
individuals. The above procedure can be modified to produce residuals showing deviations from healthy 
controls. This can be accomplished by replacing the column counts across patients with column counts across 
healthy controls, with the column counts weighted so that the total of the column counts for patients and healthy 
controls are the same. The column counts would thus indicate the expected proportion of counts across linguistic 
features based on healthy controls, while the row counts would control for the relative size of the language 
sample of each patient. The resulting residuals would hence reflect the degree to which a linguistic feature differs 
from what would be observed from healthy controls. Calculating the residuals for each patient across all of the 
linguistic features results in a matrix that also specifies residuals for each linguistic feature across all of the 
patients. The residuals across patients for each linguistic feature can be used to determine which linguistic 
features are impaired in each PPA variant.  

 

Correcting for multiple comparisons. To assess whether linguistic features were in deficit for particular 
variants of PPA, three dummy variables were created for each variant. For the nfvPPA dummy variable, patients 
were coded with 1 if they belonged to the nfvPPA-cluster and 0 otherwise. The same approach was taken for 
lvPPA and svPPA. The classic approach to adjust the significance level for multiple statistical tests is the 
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Bonferroni method, which is �/C, where C is the number of comparisons. This method is widely used for 
problems with independent multiple comparisons. However, in situations in which the predictors are correlated, 
the Simes method can be used. In this method, all C p-values are sorted from smallest to largest. An adjusted 
significance level is calculated for each position of the list based on �k/C, where � is the alpha level (e.g., 0.05) 
and k is the position in the ordered list. Correcting for multiple comparisons using the Simes method indicated 
that correlations were significant for p < .01278. Table 1 contains all of the negative correlations that met the 
Simes correction cutoff. 

The phylogenetic tree was produced using the fviz_dend() function available in the factoextra library in R by 
setting the type argument to “phylogenic”, the k argument to 3, and the phylo_layout argument to “layout.gem”. 
The fviz_dend() function uses the GEM force-directed layout algorithm (71). In such graphs, the distance 
between the vertices is less important than how the vertices are connected (72). 

Predicting PPA variant using language features. The point-biserial correlations demonstrate that a wide range 
of linguistic features are associated with the different variants of PPA. Predictive modeling was conducted using 
multinomial logistic regression based on the multinom function from the nnet package in R. The regression 
included four categories: nfvPPA, lvPPA, svPPA, and healthy control. The input was the raw counts indicating 
the number of times a patient produced a particular linguistic feature. The healthy controls served as the baseline 
reference category in the model. 

Multinomial logistic regression. To protect against over-fitting, we used 10-fold cross-validation over 100 
repetitions. The model's performance is the average accuracy across the folds and repetitions. Cross-validation 
was conducted using the trainControl function in the caret package in R.  
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