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Abstract

Background

Faster nicotine metabolism associates with heavier smoking and challenges in smoking
cessation. Understanding which traits and diseases associate with the rate of nicotine
metabolism, defined as the 3-hydroxycotinine-to-cotinine-ratio, also known as the
nicotine metabolite ratio (NMR), is crucial for drug development and personalized
interventions for treating nicotine addiction.

Methods and Findings

We performed a hypothesis-free phenome-wide association study (PheWAS) of over
21,000 outcome variables from UK Biobank (UKB) to explore how the NMR associates
with the phenome. As the exposure variable, we used a genetic score for faster nicotine
metabolism based on 10 putatively causal genetic variants, explaining 33.8 % of the
variance in the NMR. We analyzed ever and never smokers separately to assess whether
the associations had a causal pathway through smoking. Additionally, we performed
complementary PheWASs in FinnGen and MRBase.

A total of 57 outcome variables reached phenome-wide significance at a false
discovery rate of 5 %. We observed expected associations with several phenotypes
related to both smoking and nicotine, but could not replicate prior findings on cessation.
Most importantly, we found some associations that did not appear to differ between
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ever and never smokers, suggesting the pathways of these associations may not involve
smoking: faster nicotine metabolism was associated with less favourable liver enzyme
and lipid values, as well as increased coffee and tea consumption.

The main limitation was the potential bias due to UKB’s enrichment with healthier
individuals. Additionally, as we restricted our analyses to individuals of European
ancestry to avoid bias due to population stratification, the generalizability of our results
to other ethnic groups is limited.

Conclusions

Our findings support a possibility that a future smoking cessation therapy converting
fast metabolizers of nicotine to slower ones could work without adverse side effects and
potentially even provide other health-related benefits.

Keywords: Nicotine metabolism, Nicotine Metabolite Ratio, Nicotine, PheWAS,
Phenome, Smoking, Smoking Cessation, CYP2A6 activity, FINEMAP, PHESANT,
GxE-MR-pheWAS, UK Biobank

Introduction 1

Smoking remains a leading cause of global morbidity and mortality [1]. While global 2

smoking prevalence has declined due to effective tobacco control policies, the prevalence 3

has risen or remained stagnant in many countries [2]. Furthermore, the emergence of 4

new nicotine products, such as e-cigarettes, which have aggressively been targeted at 5

the youth, has created a whole new generation of addicted individuals in some 6

countries [2, 3]. Nicotine, a toxic substance in itself [4, 5], is as addictive as cocaine and 7

heroine [6]. 8

The Nicotine Metabolite Ratio, NMR, measured as the 3-hydoxycotinine-to-cotinine 9

ratio (3HC/Cot), is an established biomarker for the rate of nicotine metabolism [7]. 10

Individuals with higher NMR values, reflecting faster nicotine metabolism, typically 11

smoke more [8, 9] and find quitting more challenging [10–12]. Personalizing cessation 12

treatments based on an individual’s NMR could improve cessation rates [13]. Another 13

approach would be to develop smoking cessation drugs tailored to modulate 14

metabolization rates. 15

The NMR is highly heritable [14], and understanding which genetic loci it associates 16

with, can illuminate potential drug targets. The largest genome-wide association study 17

(GWAS) on the NMR to date identified two independent association loci on 18

chromosomes 4 and 19, explaining 1.8 % and 36.4 % of the variation in the NMR, 19

respectively [15]. Notably, the chromosome 19 locus contains CYP2A6, which codes for 20

CYP2A6, the main metabolic enzyme for nicotine [16]. Nicotine is metabolized 21

primarily to cotinine (Cot) (up to 75 %), mainly by CYP2A6, and Cot is metabolized 22

primarily to 3-hydroxycotinine (3HC) (up to 40 %), exclusively by CYP2A6 [16]. Thus, 23

their ratio, 3HC/Cot, i.e. the NMR, also reflects CYP2A6 activity [7]. A smaller 24

fraction of nicotine and cotinine is metabolized through other enzymatic pathways [16]. 25

It is also essential to understand what traits or diseases the NMR is associated with. 26

This knowledge is critical for assessing possible side-effects and other opportunities for 27

drug development. A previous study by Chenowth et al. showed the NMR to be 28

associated with ethnicity, gender, hormonal replacement therapy, BMI, cigarettes 29

smoked per day (CPD), and number of alcohol drinks/week [17]. In that 30

hypothesis-driven study, the variables investigated had been carefully chosen based on 31

previous literature. Therefore, unknown and potentially important associations may 32

have been missed. 33
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Phenome-wide association studies (PheWASs) present a hypothesis-free approach to 34

discover novel associations [18]. PheWASs aim to identify associations with a genetic 35

instrument (e.g. a single nucleotide polymorphism (SNP) or genetic risk score), 36

proxying a given variable of interest, across an array of phenotypes (the phenome). Two 37

PheWASs of CYP2A6 activity have been published to date. The first, assessed 358 38

traits for nine CYP2A6 SNPs, and identified an association between one of the SNPs 39

and hearing loss among the nicotine-exposed subgroup but not among the 40

nicotine-unexposed subgroup [19]. The second, was a PheWAS of a genetic score for 41

CYP2A6 activity in UKB [20]. However, they limited their analyses to a total of 1,029 42

disease endpoints, based on ICD-9 and ICD-10 diagnostic rubrics. They found 43

associations with lung cancer and other known smoking related diseases; no associations 44

were seen among their subsets of former or never smokers. 45

Our aim was to use the UKB data (N = 343,662), without limiting ourselves to any 46

specific category of phenotypes, to assess how the NMR is associated with the phenome. 47

This is the largest PheWAS on the NMR to date, encompassing over 21,000 outcome 48

variables. Our study is also the first to explicitly focus on the NMR, rather than solely 49

on CYP2A6 activity. 50

We created a genetic score for the NMR from ten putatively causal SNPs, explaining 51

33.8 % of the variance in the NMR. We used the sofware package PHESANT [21] which 52

enabled us to incorporate all variable types (continuous, binary, categorical, ordinal) in 53

the PheWAS, and thus uncover novel associations. Importantly, we used the GxE 54

MR-pheWAS approach [22], meaning that we ran the PheWAS also separately for ever 55

and never smokers. The approach permitted us to distinguish whether the associations 56

reflected a causal pathway through smoking (effect only seen in ever smokers), or some 57

other pathways (effect also/only seen in never smokers). Our findings contribute 58

valuable information for drug development and personalized interventions for treating 59

nicotine addiction, as well as, for example, cancer, given CYP2A6’s role in metabolizing 60

various drugs, including the chemotherapeutic agents letrozole and tegafur [23,24]. 61

Materials and methods 62

Study samples 63

UK Biobank 64

UK Biobank (UKB) is a population-based prospective study on genetic and non-genetic 65

determinants of diseases of middle and old age. The cohort consists of over 500,000 66

participants from the UK, aged between 37–73 at recruitment (2006–2010) [25]. The 67

resource comprises imputed genome-wide genotype data from all participants [26], along 68

with a comprehensive range of phenotypic data. This includes data from clinical 69

assessments, questionnaires, sample assays, and health record linkage—many of which 70

are available from all of the participants (see Sudlow et al. [27]). Of note, the NMR is 71

not available in the UKB data. 72

We had access to genetic data from 487,235 individuals after excluding withdrawals. 73

We restricted our sample to individuals of self-reported White British ancestry, and 74

performed further quality control measures, resulting in a final sample size of 343,662 75

individuals. During the quality control process, we ensured the genetic sex corresponded 76

to the reported sex, and that there were no instances of sex aneuploidy. We also verified 77

that our subset did not include any samples that were outliers with respect to genotype 78

heterozygosity or missingness. Furthemore, we only retained one randomly chosen 79

individual from each pair of third-degree or closer relatives. 80
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FINRISK 81

The National FINRISK Study consists of cross-sectional population-based data on 82

chronic non-communicable diseases in Finland [28]. Data collection was conducted every 83

five years between 1972–2012. Our previous GWAS of the NMR (n = 5,185 current 84

smokers from 5 cohorts) included 1,405 current smokers (Cot ≥ 10ng/ml) from the 2007 85

and 2012 FINRISK data collections [15]. These two cross-sectional studies included 86

independent samples from 25–74 year old Finns. Cot and 3HC concentrations were 87

acquired from blood plasma samples using gas chromatography-mass spectrometry. 88

Self-reported variables on smoking behaviour, including the number of factory and 89

self-rolled cigarettes smoked per day (CPD), were obtained from surveys. Genome-wide 90

genotype data were imputed using a Finnish reference panel (see Buchwald et al. [15], 91

Table S2). 92

Young Finns Study 93

The Young Finns Study (YFS) is a prospective population-based study of cardiovascular 94

risk factors from childhood to adulthood. The initial cross-sectional sample from 1980 95

was selected so as to be representative of Finnish children aged 3, 6, 9, 12, 15 and 18. 96

The individuals have been followed up at regular intervals (see Raitakari et al. [29]). Our 97

previous GWAS of the NMR included 714 current smokers from the YFS [15]. For each 98

individual we had chosen the time point for which the NMR, sex, age and BMI were 99

available, Cot was ≥ 10ng/ml, and for which we had the least amount of missing values 100

concerning the other GWAS variables (CPD, Pack years, alcohol use). Whenever there 101

were ties, the most recent time point had been chosen. Cot and 3HC concentrations 102

were acquired from blood plasma samples using liquid chromatography-tandem mass 103

spectrometry, and self-reported smoking behaviour variables including CPD were 104

obtained from surveys. Genome-wide genotype data was imputed using the Haplotype 105

Reference Consortium reference panel (see Buchwald et al. [15], Table S2). 106

Measures 107

The genetic score for the nicotine metabolite ratio 108

Using the UKB data we created a genetic score (GS) for the NMR. We created it so 109

that higher values reflect faster nicotine metabolism, and thus, also refer to it in this 110

paper as the genetic score for faster nicotine metabolism. The GS served as the 111

independent variable (exposure) in our PheWAS. We constructed the GS as the 112

weighted sum of the 10 putatively causal SNPs highlighted by our FINEMAP analyses 113

(see below). These SNPs together explained 33.8 % of the variance in the NMR. Prior 114

to running the PheWAS, we standardized the GS (zGS) by subtracting the mean and 115

dividing by the standard deviation for a simpler interpretation of the results. 116

Outcome variables 117

We used the PheWAS software package PHESANT [21] to preprocess the phenotype 118

data. Of the 5,559 UKB phenotype fields available to us, we included 4,546 in our 119

PheWAS. The excluded phenotype fields were either not listed in the variable 120

information file of PHESANT (252 dropped), were categorized as auxiliary variables in 121

the UKB data (STRATA=Auxiliary) (further 398 dropped) or based on the grouping 122

done by Gibson et al. in their insomnia PheWAS [30] (further 141 dropped), or were 123

marked for exclusion in the PHESANT variable information file (further 60 dropped). 124

PHESANT uses a rule-based system for preprocessing and deciding which association 125

test to use for each variable. For full details, see [21]. For example, when a phenotype 126
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has been measured at multiple time points, PHESANT automatically considers only the 127

first occurrence. For phenotypes measured multiple times at the first occurrence to 128

improve accuracy, PHESANT uses the mean value of those measurements. For multiple 129

choice questions where individuals have ticked all relevant options, PHESANT forms 130

multiple binary variables. For continuous variables, PHESANT inverse rank transforms 131

them to normality (unless, for example, there is a notable portion of some particular 132

value, in which case an ordered categorical variable is created). Out of the 4,546 133

phenotype fields, PHESANT created 21,094 outcome variables in total, meaning that 134

our initial PheWAS consisted of 21,094 regression analyses. Each outcome variable 135

served as the dependent variable in its respective regression model. 136

Covariates 137

We adjusted our PheWAS for sex and age to increase statistical power and to adjust for 138

potential confounding. We also adjusted for the first ten principal components of 139

genetic structure (1–10 PCs) to control for confounding due to population stratification. 140

We did not include any additional covariates to avoid inducing collider bias. 141

Ever-Never status 142

We wanted to perform the PheWAS separately for ever and never smokers to distinguish 143

whether the associations were independent of smoking or indicative of a possible causal 144

pathway through smoking, an approach described by Millard et al. [22]. To reduce noise, 145

we excluded experimenters and occasional smokers from our Ever and Never subsets. 146

We created a new Ever-Never variable based on two existing variables: 147

1. Current tobacco smoking (”Do you smoke tobacco now?”, UKB field 1239) 148

2. Past tobacco smoking (”In the past, how often have you smoked tobacco?”, UKB 149

field 1249) 150

The second question had been asked from all except for those who indicated they 151

currently smoke on ”most or all days” in response to the first question. We classified all 152

who answered “most or all days” to either of the two questions as ever smokers. Those 153

who answered “no” to the first question and “never” to the second question, were 154

classified as never smokers. All others were assigned a missing value in our Ever–Never 155

variable, and excluded from the Ever and Never subsets. This included individuals who 156

answered “Occasionally” or ”Prefer not to answer” to either question, as well as those 157

who responded with “Tried once or twice” to the second question. 158

Out of our full sample (n = 343,662), we classified 135,890 as never smokers and 159

110,348 as ever smokers. Of those who dropped out, 99 % had answered ”Occasionally” 160

or ”Tried once or twice”. This group had marginally higher GS values as compared to 161

the Never group (Table S1 & Fig. S1). The GS distribution of the Ever group did not 162

differ from the Never group (Table S1 & Fig. S1). 163

Statistical analyses 164

Forming the GS 165

We previously performed a GWAS meta-analysis of the NMR in European ancestry 166

current smokers (n = 5,185) [15]. Our main GWAS model included sex, age, BMI, 167

alcohol use (g/week) and birthyear as covariates. We identified two NMR loci, one on 168

chromosome 4 and one on chromosome 19. We then fine-mapped these loci using 169

FINEMAP [31] and the datasets YFS and FINRISK (n = 2,119) to identify the 170

putatively causal SNPs. Our analyses suggested that there is one causal SNP on 171
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chromosome 4, explaining 1.7 % of the variance in the NMR, and 13 putatively causal 172

SNPs on chromosome 19 explaining 36.7 % of the variance in the NMR. 173

In the current study, we wanted to use the SNPs and weights obtained by the earlier 174

FINEMAP analyses to construct the GS for the NMR in the UKB data set. 175

Unfortunately, two of the 13 SNPs from chromosome 19 did not pass our quality control 176

in the UKB dataset (both had a Hardy-Weinberg Equilibrium p < 10−6). Excluding 177

these two SNPs would have dropped the variance explained in the NMR by the 178

chromosome 19 SNPs from 36.7 % to 23.7 %. Therefore, to gain maximal power, we 179

reran the FINEMAP (version 1.4) analyses for the chromosome 19 locus as described 180

previously (see Buchwald et al. [15]) using only SNPs that were available and passed 181

quality control in UKB. 182

In short, we used a subset of the GWAS summary statistics and SNP correlation 183

data from our previous FINEMAP analyses which included SNPs within the ±2.5Mb 184

flanking region of the top associating SNP (rs56113850). We included SNPs passing the 185

following quality control criteria in both the Finnish and the UKB data: imputation 186

info score > 0.7, call rate > 0.9, and Hardy-Weinberg Equilibrium p > 10−6. 187

Additionally, only SNPs with minor allele frequency (MAF) > 1 % in the Finnish data 188

were included and multiallelic SNPs were excluded. Altogether, 10,133 SNPs were 189

included in the FINEMAP analysis as opposed to the 12,060 SNPs included previously. 190

The new FINEMAP analysis of the chromosome 19 locus resulted in nine SNPs in the 191

top configuration of putatively causal SNPs, explaining 32.1 % of the variance in the 192

NMR (Table S2). All the aforementioned estimates of the variance of the NMR 193

explained, are the configuration-specific heritability estimates obtained by FINEMAP. 194

We then calculated the GS as a weighted sum of these nine chromosome 19 SNPs 195

and a single chromosome 4 SNP, resulting in a GS explaining 33.8 % of the variance in 196

the NMR (Table 1). We used the joint effect size estimates from FINEMAP as the 197

weights for the chromosome 19 SNPs. FINEMAP was not able to distinguish which of 198

the three top SNPs in the chromosome 4 locus was most likely to be the causal one [15]. 199

All three SNPs had the same p-value and were perfectly correlated. For the GS of the 200

NMR, we chose to use the SNP located in the middle based on base pair position, and 201

used the effect size from our earlier GWAS meta-analysis as its weight. 202

To assess the performance and reliability of our GS, we plotted it against the NMR 203

top SNP (rs56113850) in the UKB data. In our previous study, the top SNP alone 204

explained 23 % of the variance in the NMR (see Buchwald et al [15], Table S5). Among 205

current smokers, we also plotted cigarettes smoked per day (CPD) against our GS as 206

CPD has been shown to associate positively with the NMR [8,9]. Additionally, we 207

tested the association of the GS with CPD with a linear model. We did this by first 208

regressing out sex, age and the first ten principal components of genetic structure, and 209

then inverse normalizing CPD. We used the whole data but also split the data into two: 210

lower and higher ends of the GS. We used 0 as the cut-off point based on the bend 211

apparent in the loess curve of the scatter plot (Fig 1) and to obtain roughly the same 212

sized groups as the mean was close to the median (Table 2). In order to have a reference 213

point, we used our Finnish data to create plots of CPD against the NMR, as well as 214

Cot+3HC, a biomarker for nicotine intake, against the NMR. 215

PheWAS 216

We began by running PHESANT (version 1.1) on the full sample using the ’save’ option 217

to save the variables processed and derived by PHESANT. Out of the 4,546 UKB 218

phenotype fields we had to begin with, PHESANT created a total of 21,094 outcome 219

variables. We then performed the actual PheWAS analyses in two stages. 220
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Table 1. The ten SNPs and their weights used for calculating the GS for the NMR.

SNP CHR BP EA/NEA MINOR MAFUKB WEIGHT (MAF)

RS36103218 4 69359253 T/C C 0.3422 -0.175 (MAFMETA = 0.43)
RS189621498 19 41288136 A/G A 0.0003 0.6127 (MAFFY = 0.03)
RS74719953 19 41335799 T/C T 0.0652 -0.3581 (MAFFY = 0.09)
RS34945948 19 41340842 G/A G 0.1474 1.0276 (MAFFY = 0.14)
RS12985907 19 41343544 A/G A 0.2307 -0.8003 (MAFFY = 0.28)
RS1801272 19 41354533 T/A T 0.0271 -1.0103 (MAFFY = 0.02)
RS7250713 19 41355195 C/G G 0.4386 0.3251 (MAFFY = 0.37)
RS7248187 19 41437426 C/G G 0.3023 0.3187 (MAFFY = 0.24)
RS116382863 19 41534881 T/C T 0.1242 0.2212 (MAFFY = 0.13)
RS11466310 19 41861858 T/C T 0.0244 -0.5414 (MAFFY = 0.02)

For all chromosome 19 SNPs the weight has been obtained from their joint model using FINEMAP in the Finnish data. For
the chromosome 4 SNP the weight is the effect size obtained from our previous GWAS [15]. SNP, single-nucleotide
polymorphism; CHR, chromosome; BP, base pair position in GRCh37 coordinates; EA/NEA, the effect allele/ the non-effect
allele; MINOR, the less common allele; MAF, minor allele frequency; WEIGHT, weight used to calculate the GS (reported for
the effect allele); UKB, UK Biobank; META, data used in our previous GWAS meta-analysis (n = 5,185) from which the
weight for the chr 4 SNP is; FY, FINRISK and YFS data (n = 2,119) used to obtain the weights for the chr 19 SNPs.

Exploratory PheWAS. In the first stage, we used the 21,094 PHESANT derived 221

outcome variables to run an exploratory PheWAS for the entire sample (All), as well as 222

separately for those who had ever smoked daily (Ever) and those who had never smoked 223

(Never). We adjusted for age, sex and 1-10 PCs. For each PheWAS (All/Ever/Never), 224

we used the 5 % false discovery rate (FDR) level to define statistical significance at the 225

phenome-wide level. We used the Benjamini-Hochberg method to obtain the cut-off 226

points for the 5 % FDR, i.e. the thresholds for phenome-wide significance (TPWSs). 227

Within each PheWAS, we ranked the results based on ascending p-values. Next, for 228

each outcome variable, we calculated the critical value ci = 0.05× i/n, where i is the 229

rank and n the total number of tests performed in that PheWAS. The TPWS, was then 230

defined as the ci corresponding to the outcome with the highest rank to satisfy the 231

condition pi ≤ ci [32]. We used these TPWSs also in the second stage. 232

Final PheWAS. In the second stage of our analyses, we reran the regression analyses 233

for all the outcomes with phenome-wide significant (PWS) associations in any of the 234

three exploratory PheWASs described above (All/Ever/Never). First, we manually 235

checked the coding and the distributions of these highlighted variables, as well as the 236

appropriateness of the models used by PHESANT. Where appropriate, we split the 237

variable into multiple variables, adjusted the coding or used a different regression model. 238

We did these changes to obtain results that are more readily interpretable. Additionally, 239

we reran the highlighted linear regression analyses by regressing the covariates (age, sex, 240

1-10 PCs) out before inverse rank transforming the outcome variables to normality. We 241

did this because many of these continuous outcomes, such as waist circumference, are 242

known to be normally distributed around different values depending on sex (one of our 243

covariates). For the linear models, we didn’t adjust for covariates anymore in the actual 244

regression analyses. Otherwise, we used the same protocol as PHESANT for our final 245

analyses of the All, Ever and Never data sets. A detailed description of the second stage 246

outcomes that we derived, recoded or analysed using a different model from the initial 247

exploratory PheWASs can be found in Table S3. For each data set we used the 248

corresponding TPWS obtained previously to determine statistical significance at the 249

phenome-wide level. 250
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Differences between the ever and never smokers 251

We wanted to assess whether there were any outcome variables for which there was a 252

statistically significant difference between the effect sizes for the Ever and Never subsets. 253

We did the Ever versus Never analyses in R by deriving p-values for the differences 254

using the function pchisq(x, df=1, lower=FALSE), where 255

x =
(β̂ever − β̂never)

2

se2ever + se2never
, and x ∼ χ2

1 under the null hypothesis of βever = βnever.

First, we did this for our initial PheWAS results. Of all the 21,094 PHESANT 256

derived outcomes altogether 15,212 had been analysed for both the Ever and Never 257

subsets using the same regression model. Once again, we used the 5 % FDR level to 258

determine phenome-wide significance, and obtained the TPWS using the 259

Benjamini-Hochberg method. We repeated the Ever versus Never analyses for our 260

outcomes from the second stage of our PheWAS analyses, using this same TPWS to 261

define statistical significance. 262

Follow-up analyses 263

Current versus Former analysis. We followed-up our Ever versus Never analyses by 264

taking all the outcomes with a PWS difference in their effect sizes, and repeated the 265

analysis for current versus former smokers. We did this to obtain a better understanding 266

of the possible causal role of smoking in the association pathway. We constructed the 267

current and former smoker subgroups from our Ever subset, and repeated the second 268

stage PheWAS regression analyses for the chosen outcomes in these two groups. 269

Follow-up of the GS-Cessation association. Our PheWAS results suggested a 270

positive association between the GS for faster nicotine metabolism and smoking 271

cessation. To investigate further what could be driving the positive association, we 272

examined the variable “Why did you stop smoking? (You can select more than one 273

answer): Illness or ill health / Doctor’s advice / Health precaution / Financial reasons” 274

(UKB Field 6157), and the variable “Number of unsuccessful stop-smoking attempts” 275

(UKB Field 2926) which captures the difficulty of quitting. 276

As faster nicotine metabolism is thought to associate with a greater amount of 277

cigarettes smoked and more difficulties in quitting smoking successfully (reviewed 278

in [10]), we began by rerunning the logistic regression model for cessation, including 279

CPD as an additional covariate to adjust for possible confounding. In other words, 280

among ever smokers, we ran a logistic regression, where cessation was the dependent 281

variable, and the zGS, age, sex, 1–10 PCs, and CPD were the predictor variables. 282

Smoking more will increase the risk of severe illnesses and the need for treatments such 283

as surgery that require abstinence. Thus, we also ran this model within a subset of the 284

ever smokers from whom we had excluded those who listed illness and/or doctor’s 285

advice as the reason for stopping smoking. 286

Reasons for stopping smoking were available for those ever smokers who had at least 287

once managed to stop for over six months. We divided the Ever subset into three 288

approximately equal sized groups based on the GS tertiles, and named these groups as 289

slow, medium and fast metabolizers. We then compared, one reason at a time, whether 290

the proportions differed between the slow and fast groups. We used the 2-sample test 291

for equality of proportions using the prop.test function in R. 292

To assess the importance of the different reasons, we reran the cessation models 293

(with and without CPD included as a predictor) among those ever smokers who had at 294

least once managed to stop for over six months. Among this subset, we added all four 295
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reasons to the models. We wanted to see how the reasons predicted former status at the 296

time of the questionnaire. 297

Then, among our former smokers, we ran a negative binomial regression model with 298

”Number of unsuccessful stop-smoking attempts” as the dependent variable and each of 299

the four reasons, the zGS, age, sex, and 1–10 PCs as the predictor variables. We also 300

ran the model including CPD as a confounder. 301

MRBase and FinnGen PheWASs using the top SNP for the NMR. For 302

comparison, we ran PheWASs of the top SNP for the NMR (rs56113850) using GWAS 303

summary data from FinnGen (Data freeze 9, from April 2022) and MRBase (Database 304

version 0.3.0, from 25 Oct 2020). We used the open access web interfaces. The FinnGen 305

Data Freeze 9 has a total sample size of 377,277 and consists of 2,272 disease endpoints 306

from Finnish biobank participants [33,34]. The MRBase comprises GWAS summary 307

data from numerous consortia, including UKB and FinnGen [35,36]. From MRBase, we 308

got results for 39,105 outcomes. This group of outcomes included expression 309

quantitative trait loci (eQTLs) as well. 310

In both cases, we defined phenome-wide significance as before, and created tables of 311

the PWS results, i.e. those reaching statistical significance at the 5 % FDR level using 312

the Benjamini-Hochberg method. We used the library biomaRt in R to annotate the 313

eQTLs that were highlighted in the MRBase PheWAS. 314

Results 315

Descriptive statistics 316

For female participants, the smoking status (Ever/Experimenter/Never) category Never 317

was the largest (44 %), whilst for males the Ever category was the largest (38 %) 318

(Table 2). Among both sexes, over 70 % of the ever smokers were former smokers, and 319

roughly 70 % of the current smokers wanted to stop smoking. The distribution of the 320

GS for the NMR was nearly identical for both sexes (Table 2). When running a linear 321

model of the standardized GS by age, the age variable was not statistically significant 322

(p = 0.909). 323

The correlation between the GS and the top SNP (rs56113850) was 0.73 (Fig. S2). 324

Each standard deviation increase in the GS was associated with an increase of 0.6 325

cigarettes smoked per day (CPD), after adjusting for age, sex and 1–10 PCs (Table S4). 326

The association seemed to be stronger at the lower end of the GS than at the higher end 327

(Table S4, Fig 1a). This trend could also be seen in our Finnish sample when plotting 328

CPD or Cot+3HC against the NMR (Fig 1b). 329

Exploratory PheWAS 330

A total of 61 different outcomes reached phenome-wide significance across the initial All, 331

Ever, and/or Never PheWASs (Fig. S4, Table S5). The exploratory full sample 332

PheWAS resulted in 47 PWS associations (TPWSAll : 0.05 · 47/21094 = 1.1e− 04) 333

(Table S5a). For the Ever subset there were 29 PWS associations 334

(TPWSEver : 0.05 · 29/16648 = 8.7e− 05) (Table S5b), and for the Never subset, only 335

two associations were PWS (TPWSNever : 0.05 · 2/16103 = 6.2e− 06) (Table S5c). 336

Final PheWAS 337

The set of 61 outcome variables highlighted in the first stage of our PheWAS analyses 338

was then taken to the second stage. Some of these variables were split into multiple 339

variables to tease out which aspect of the phenotype was driving the association (Table 340
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Table 2. Descriptive statistics for age, sex, the GS for faster nicotine metabolism, and various smoking
variables in the UKB data.

All Female Male
n = 343, 662 n = 184, 565 (53.7%) n = 159, 097 (46.3%)

mean (sd), median [min, max] mean (sd), median [min, max] mean (sd), median [min, max]

Age 56.9 (8), 58 [39, 72] 56.7 (7.9), 58 [40, 71] 57.1 (8.1), 59 [39, 72]
GS 1.2 (0.6), 1.2 [-1.7, 2.9] 1.2 (0.6), 1.2 [-1.7, 2.9] 1.2 (0.6), 1.2 [-1.7, 2.8]
zGS 0 (1), 0.1 [-5.2, 3.1] 0 (1), 0.1 [-5.2, 3.1] 0 (1), 0.1 [-5.2, 2.9]

n (%) n (%) n (%)

Smoking status
Never 135,890 (39.7) 81,037 (44.1) 54,853 (34.6)
Experimenter 96,272 (28.1) 52,700 (28.6) 43,572 (27.5)
Ever 110,348 (32.2) 50,217 (27.3) 60,131 (38.0)

Former-Current (Ever subset)
Former 81,179 (73.6) 36,490 (72.7) 44,689 (74.3)
Current 29,141 (26.4) 13,711 (27.3) 15,430 (25.7)

Wants to quit (Current subset)
Yes 17,876 (70.3) 8,759 (72.4) 9,117 (68.4)
No 7,543 (29.7) 3,336 (27.6) 4,207 (31.6)

mean (sd), median [min, max] mean (sd), median [min, max] mean (sd), median [min, max]

Age started smoking on most days
Current (n = 25,522) 17.7 (5.8), 16 [5, 69] 18.1 (5.8), 17 [5, 69] 17.4 (5.7), 16 [5, 65]
Former (n = 80,788) 17.2 (3.6), 17 [5, 63] 17.7 (3.7), 17 [5, 60] 16.8 (3.4), 16 [5, 63]

Cigarettes smoked per day
Current (n = 23,682) 15.7 (8.4), 15 [1, 140] 14.2 (7.3), 15 [1, 120] 17.4 (9.2), 15 [1, 140]
Former (n = 76,865) 19.3 (10.5), 20 [1, 140] 16.8 (8.4), 15 [1, 100] 21.5 (11.6), 20 [1, 140]

Number of unsuccessful stop-smoking attempts
Current (n = 2,527) 4.1 (10.1), 3 [0, 200] 4 (10.7), 3 [0, 200] 4.1 (9.7), 3 [0, 200]
Former (n = 74,108) 2.9 (7.1), 2 [0, 200] 2.4 (5.3), 2 [0, 200] 3.2 (8.3), 2 [0, 200]

Age stopped smoking on most days
Current (n = 3,218) 47.3 (11.6), 48 [12, 70] 47.4 (11.5), 48 [13, 70] 47.1 (11.6), 48 [12, 70]
Former (n = 80,859) 39.5 (11.6), 39 [9, 69] 39.2 (11.5), 38 [12, 69] 39.7 (11.6), 39 [9, 69]

GS, genetic score for the nicotine metabolite ratio; zGS, standardized GS; Ever, individuals indicating smoking on most days
at present (UKB Field 1239) or in the past (UKB Field 1249); Never, individuals responding negatively to current (UKB
Field 1239) and past (UKB Field 1249) tobacco smoking; Experimenters, individuals indicating occasional or minimal past
(UKB Field 1249) or present (UKB Field 1239) tobacco use; Former-Current, subsets of ever smokers differentiating those
who had smoked in the past and those who smoke presently based on UKB Field 20116; Wants to quit, derived from the
variable “Wants to stop smoking” (UKB Field 3496) with responses grouped into “Yes” (including “Yes, definitely” and “Yes,
probably”) and “No” (including “No, probably not” and “No, definitely not”); Age started smoking on most days, UKB Field
2867 for former smokers, UKB Field 3436 for current smokers; Cigarettes smoked per day, UKB Field 3456 for current
smokers, UKB Field 2887 for former smokers; Number of unsuccessful stop-smoking attempts, all individuals who had
indicated that in the past they smoked tobacco on most or all days and that during the time they smoked they stopped for
more than 6 months were asked “How many times did you try to give up smoking before you were successful?” (UKB Field
2926); Age stopped smoking on most days, UKB Field 2897.

S3). For example, Smoking Status (Never/Previous/Current) was split into Cessation 341

(former vs current smoker) and Initiation (ever vs never smoker), out of which only 342
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Fig 1. A Loess curve depicting the association between the standardized genetic score (zGS) for the Nicotine Metabolite
Ratio (NMR) and cigarettes smoked per day (CPD) in UK Biobank (UKB). B Loess curves depicting the associations
between the standardized NMR (zNMR) and CPD, as well as zNMR and Cotinine + 3-Hydroxycotinine (Cot + 3HC), a
biomarker for nicotine intake, using the combined data from FINRISK and Young Finns Study (YFS). All plots are for
current smokers. The x-axes have been restricted to show only data points within two standard deviations from the mean to
highlight the main trends. Full data are shown in Fig. S3. The standardized variables (zGS and zNMR) were calculated by
subtracting the mean and dividing by the standard deviation.

Cessation showed a PWS association when we reran the analyses (Fig 2). 343

Our second stage of the PheWAS analyses included 71 outcome variables (Table S6). 344

Of these, 57 showed a PWS association in at least one of the three data sets based on 345

the data specific TPWSs (Fig 2, Fig 3). We had 45 PWS associations among the full 346

sample, 26 among the Ever subset and three among the Never subset (Fig 2, Table 347

S6b–d). 348

For 14 outcomes, we did not observe a PWS association with the GS for faster 349

nicotine metabolism in any of the three groups (All, Ever or Never). This set of 350

non-significant associations included five continuous variables that had reached the 351

TPWS in at least one of the data sets in the exploratory PheWASs (when the covariates 352

had not been adjusted for before normalizing the outcome). The rest of the 353

non-significant results included the derived Smoking Initiation and Occasional vs Daily 354

Smoker variables, as well as some of the derived tea and coffee variables. 355

Ever versus Never analyses 356

In the first stage of our PheWAS, a total of 15,212 outcome variables had been analysed 357

for both the Ever and Never subsets using the same regression model. Of these, only 358

two variables showed a PWS difference in their effect sizes between the ever and never 359

smokers (Table S5d). The TPWS was thus at 0.05 · 2/15212 = 6.6e− 06. Both of these 360

were lung capacity variables and were included among the variables highlighted in the 361

exploratory All and Ever PheWASs (Fig. S4). There was no association among the 362

Never subset while among the Ever and All groups higher values of the GS predicted 363

worse lung capacity. 364

Of the 71 outcome variables included in the second stage of our PheWAS analyses, 365
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14 / 71 were not stat. sig. in any of the data sets:
Waist circumference
Antigen for human cytomegalovirus
C-reactive protein
BrainSegVol-to-eTIV (whole brain)
Volume of VA (left hemisphere)
Tea drinker
Coffee drinker (excluding decaf)

Coffee drinker (including decaf)
Decaf vs caffeinated coffee
Decaf vs no coffee
Instant vs no coffee
Other caffeinated coffee vs none
Initiation
Occasional vs daily smoker

Impedance of arm
Degree of unsaturation

Linoleic acid
Omega-3 to total fatty acids ratio

Omega-6 to omega-3 ratio
Glycine

Eosinophill count
Eosinophill %

Apolipoprotein A
Calcium

Creatinine
Glycated haemoglobin

Urate
Father's age at death

Volume of grey matter in supracalcarine cortex
Coffee quantity (excluding decaf)
Coffee quantity (including decaf)

Creatinine in urine
Sodium in urine

Maternal smoking around birth
Free of mouth/teeth dental problems

Ground vs no coffee
Instant vs other caffeinated coffee

Serenace medication
Other operations on blood vessel

Radioactive seed implantation into prostate
Prosthetic replacement of hip joint

Liking coffee without sugar
Liking dark chocolate
Past tobacco smoking

FVC, best measure
FVC Z-score

FVC
Mouth/teeth dental problems: Dentures

Simvastatin medication
Leg artery bypass surgery
Worrier / anxious feelings

Anastomosis of ileum to anus (secondary)
Anastomosis of ileum to anus

Endarterectomy of femoral artery
Liking cigarette smoking

Chronotype

Alkaline phosphatase    
Alanine aminotransferase

CPD previously
Age stopped smoking

CPD currently
*FEV1, best measure
*FEV1, predicted %

*FEV1 Z-score
FEV1 to FVC ratio Z-score

*FEV1
Cessation

Cheese intake
Current smoking

Smoking compared to 10 years previous
Tea quantity

Fig 2. Venn diagram of the results of the final 71 variables. Out of these variables, 57 had a phenome-wide significant (PWS)
association in at least one of the data sets (All / Ever /Never). Those with a PWS difference in their effect sizes between the
ever and never smokers have been indicated with a star and bolded text.

58 were available for our Ever versus Never analysis. Of these, four showed a PWS 366

difference between ever and never smokers in their effect sizes (p < 6.6e− 06) (Table 367

S6a, Fig 3). All four were lung capacity measures. For all four, there was no evidence of 368

association among never smokers but a PWS association among ever smokers, 369

suggesting a causal pathway through smoking. The results suggested that only among 370

ever smokers higher values of the GS predicted worse lung capacity. 371

Never smokers: associations with liver enzymes and tea quantity 372

Among never smokers, a higher GS for faster nicotine metabolism was associated with 373

decreased alkaline phosphatase and increased alanine aminotransferase, both of which 374

are liver enzymes (Table S6d). These associations were also seen among the Ever and 375

All groups (Fig 2, Fig 3), and were PWS for all three groups already in our exploratory 376

PheWASs (Fig. S4). 377

Among never smokers, there was also a PWS association with increased tea 378

consumption. This was PWS in the All group too, but not among the ever smokers 379

subset. Apart from these three outcomes, none of the other outcomes showed a PWS 380

association in the never smokers subset. The direction and magnitude of association was 381

nevertheless similar to those of the other groups for many variables such as for the other 382

blood and urine assay variables and variables related to coffee (Fig 3). 383

Ever smokers: associations with liver enzymes and smoking related variables 384

Among ever smokers, 26 of the final second stage outcome variables showed PWS 385

associations (Fig 2, Table S6c). In addition to the liver enzymes, a higher GS for faster 386
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Urine assays

Spirometry

Lifestyle and environment

Imaging

Family history

Blood assays

Anthropometry

−0.05 0.00 0.05

n23109 − Impedance of arm

n30880 − Urate
n30750 − Glycated haemoglobin

n30700 − Creatinine
n30680 − Calcium

n30630 − Apolipoprotein A
n30620 − Alanine aminotransferase

n30610 − Alkaline phosphatase
n30210 − Eosinophill %

n30150 − Eosinophill count
n23462 − Glycine

n23459 − Omega−6 to omega−3 ratio
n23451 − Omega−3 to total fatty acids ratio

n23449 − Linoleic acid
n23443 − Degree of unsaturation

n1807 − Father's age at death

n25874 − Volume of grey matter in supracalcarine cortex

nd1498 − Coffee quantity (including decaf)
nd1498 − Coffee quantity (excluding decaf)

nd1488 − Tea quantity
n3456 − CPD currently

n2897 − Age stopped smoking
n2887 − CPD previously

n3062 − FVC
n20258 − FEV1 to FVC ratio Z−score

n20257 − FVC Z−score
n20151 − FVC, best measure

*n3063 − FEV1
*n20256 − FEV1 Z−score

*n20154 − FEV1, predicted %
*n20150 − FEV1, best measure

n30530 − Sodium in urine
n30510 − Creatinine in urine

Beta 
 1−SD increment in phenotype 

 per 1−SD increment in the GS of the NMR

Data

Never

Ever

All

Linear Regression

Fig 3. Results of the 71 variables from the final PheWAS analyses. The results of those variables (n = 57) that
were phenome-wide significant (PWS) (solid circles) in at least one of the data sets (All / Ever / Never) are shown. *, there
was a PWS difference between the effect sizes of the ever and never smokers; n, normalised after covariates had first been
regressed out; d, derived from the original UKB phenotype; c, coding corrected to be more intuitive.
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Psychosocial factors

Lifestyle and environment

Health and medical history

Early life factors

0.975 1.000 1.025 1.050 1.075

1787 − Maternal smoking around birth

20003#1140861958 − Simvastatin medication

6149#6 − Mouth/teeth dental problems: Dentures

6149#100 − Free of mouth/teeth dental problems

d20116 − Cessation

d1508 − Instant vs other caffeinated coffee

d1508 − Ground vs no coffee

1980 − Worrier / anxious feelings

Logistic regression

Operations

Medical information

0.3 0.5 1.0 3.0 5.0

20003#1140867092 − Serenace medication

41272#W384 − Prosthetic replacement of hip joint

41272#L601 − Endarterectomy of femoral artery

41272#G725 − Anastomosis of ileum to anus

41210#G725 − Anastomosis of ileum to anus (secondary)

41200#M706 − Radioactive seed implantation into prostate

41200#L978 − Other operations on blood vessel

20004#1102 − Leg artery bypass surgery

OR 
 Odds ratio for phenotype (95 % CI) 
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Data

Never

Ever
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Fig 3 continued

nicotine metabolism was associated with a greater number of cigarettes smoked per day, 387

an increased likelihood of having quit smoking, decreased lung capacity, an increased 388

likelihood of taking cholesterol medicine (Simvastatin), being more of a morning person 389
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Lifestyle and environment

Food (and other) preferences

0.90 0.95 1.00 1.05

20652 − Liking dark chocolate

20644 − Liking coffee without sugar

20641 − Liking cigarette smoking

c3506 − Smoking compared to 10 years previous

c1249 − Past tobacco smoking

c1239 − Current smoking

1408 − Cheese intake

1180 − Chronotype

OR 
 Odd ratio for one increment in phenotype category 

 per 1−SD increment in the GS of the NMR

Data

Never

Ever

All

Ordered logistic regression

Fig 3 continued

than an evening person, quitting smoking at a younger age, an increased likelihood of 390

having dentures, increased smoking compared to 10 years ago, decreased consumption of 391

cheese, a decreased likelihood of being a worrier, decreased liking for cigarette smoking, 392
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an increased likelihood of leg artery operations, and a decreased likelihood of an 393

anastomosis of ileum to anus. 394

The GS for faster nicotine metabolism was also associated with an increased 395

likelihood of smoking less at the time of the interview (”Do you smoke tobacco now?: 396

No / Only occasionally / Yes, on most or all days”, UKB field 1239). This negative 397

association with current smoking was driven by the higher odds of quitting. There was 398

no association for the derived Occasional vs Daily outcome, whereas our derived 399

Cessation outcome demonstrated one of the strongest associations (Table S6c). Our ever 400

smokers only contained individuals who smoked daily or had smoked daily in the past. 401

Therefore, we had better statistical power for our Occasional vs Daily phenotype in our 402

full sample. Nevertheless, we saw no association there either (p = 0.90, Table S6b). 403

Full sample: strongest associations with liver enzymes, smoking related 404

variables, coffee, and tea 405

Among the full sample there were 45 outcome variables that showed a PWS association 406

with the GS for the NMR (Fig 2,Table S6b). The strongest associations were observed 407

for the liver enzymes, CPD, cessation, and coffee and tea consumption. The GS was 408

also associated with 16 biomarkers, often used to assess overall health. For example, the 409

GS was associated with outcomes related to fatty acids, blood sugar, kidney and liver 410

health, impedance of arm, calcium, and white blood cells. The Never and Ever 411

associations for these biomarkers were in line with each other but neither reached 412

phenome-wide significance, except for the liver enzymes mentioned earlier (Fig 3). 413

Some additional outcome variables, that had not reached phenome-wide significance 414

in the smaller subsets, were highlighted in the full sample. For example, among the full 415

set, the GS for faster nicotine metabolism was associated with an increased liking for 416

dark chocolate and coffee without sugar, decreased father’s age at death, decreased 417

maternal smoking around birth, increased volumes of grey matter in the supracalcarine 418

cortex, and a decreased likelihood of using haloperidol (Serenace), an anti-psychotic 419

medication. Some outcomes were only analysed in some groups due to a lack of cases, 420

and the use of haloperidol was one of these (only analysed in the full sample). The 421

outcome Past tobacco smoking (Never/Tried once or twice/Occasionally/Most days or 422

daily) was only analysed in the All group as it required answers from both ever and 423

never smokers. The GS for faster nicotine metabolism was associated with an increased 424

likelihood of being in a higher past tobacco smoking category. 425

Follow-up analyses 426

Comparison of current and former smokers supports the causal role of 427

smoking on worse lung functioning. Our Ever versus Never analyses highlighted 428

four lung capacity measures, suggesting a causal pathway through smoking, as the 429

association was only seen in the ever smokers. We followed-up these results by rerunning 430

the analyses for the current and former smoker subsets. The effect sizes for all four lung 431

capacity measures were smaller among former smokers compared to current smokers, 432

though they too remained PWS (p < TPWSEver = 8.7e− 05) (Fig 4, Table S6e). 433

GS-Cessation association possibly explained by CPD and ill health. In our 434

sensitivity analyses of cessation, the odds ratio of the GS remained positive after 435

adjusting for CPD (Table S7a–b), although it did decrease from 1.07 (95 % CI: [1.06, 436

1.09]) to 1.05 [1.04, 1.07]. The odds ratio decreased further to 1.01 [0.97, 1.06] and was 437

no longer statistically significant once we excluded individuals who had stopped due to 438

’Illness or ill health’ and/or ’Doctor’s advice’ (p = 0.54) (Table S7c). 439

When comparing the reasons for stopping smoking (llness or ill health / Doctor’s 440

advice / Health precaution / Financial reasons - participants could choose as many as 441
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p = 0.0193

p = 0.0334

p = 0.0008

p = 0.0089

Spirometry
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n3063 − FEV1

n20256 − FEV1 Z−score
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Data
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Fig 4. Current versus Former smokers comparison for the four lung capacity variables highlighted in the Ever
versus Never smoker analysis. For both Current and Former subsets all four variables had a phenome-wide significant
(PWS) association with the GS. Differences between these two subsets were not PWS. Nevertheless, the association is visibly
attenuated for the former smokers for all four variables. n, normalised after covariates had first been regressed out.
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they wanted), fast metabolizers of nicotine (high GS) seemed to have more incentive to 442

quit than slow metabolizers (low GS), though differences were small (Table S8). 443

Regardless of reason, fast metabolizers had a slightly higher percentage of people 444

selecting it than slow metabolizers. For the more prevalent reasons: ’Health precaution’ 445

and ’Financial reasons’, the differences were statistically significant at the 0.05 level 446

(Table S8). 447

We took a closer look at ever smokers who had managed to quit at least once for 448

over six months, to see whether any of the reasons for stopping smoking were associated 449

with remaining a former smoker still at the time of the questionnaire (Table S7d–e). 450

Listing ’Financial reasons’ was positively associated with remaining a former smoker 451

(OR = 1.21 [1.11, 1.31]), while ’Doctor’s advice’ had a negative association (OR = 0.61 452

[0.54, 0.69]) (Table S7d). The GS for faster nicotine metabolism showed a positive 453

association (OR = 1.04 [1.005, 1.08]). After adding CPD to the model, the direction of 454

the association remained the same for all reasons, as well as for the GS (Table S7e). 455

Now the reasons with p-values below 0.05 were ’Doctor’s advice’ (OR = 0.51 [0.45, 456

0.59]), ’Illness or ill health’ (OR = 0.83 [0.74, 0.94]), and ’Health precaution’ (OR = 457

1.08 [1.001, 1.17]). For every additional cigarette the odds of remaining a former smoker 458

was 6 % greater (OR = 1.06 [1.06, 1.07]). 459

Among former smokers of the Ever subset, the median number of unsuccessful 460

smoking attempts was 2.0, the mean was 2.9 and the standard deviation was 7.1. Once 461

we excluded those listing ’Illness or ill health’ and/or ’Doctor’s advice’, the numbers 462

hardly changed: 2.0, 2.8, and 6.9. 463

All four reasons were statistically significant at the 0.05 level in explaining the 464

number of unsuccessful stop-smoking attempts in the former smokers subset (Table S9). 465

They were all associated with an increased number of attempts, with ’Health precaution’ 466

demonstrating the strongest association. Individuals listing ’Health precaution’ had a 39 467

% higher number of attempts compared to those who had not listed it (IRR = 1.39 [1.36, 468

1.42]) (Table S9a). Additionally, for every standard deviation increase in the GS for the 469

NMR, there was an expected 1 % increase in the number of attempts (IRR = 1.012 470

[1.002, 1.022]). However, after including CPD in the model, the GS was not statistically 471

significant anymore (p = 0.24) (Table S9b). With every additional cigarette, the number 472

of unsuccessful stop-smoking attempts increased by 1.6 % (IRR = 1.016 [1.01, 1.02]). 473

PheWASs in MRBase and FinnGen confirm our findings and highlight lung 474

cancer and lipid outcomes. The NMR top SNP in our previous Meta GWAS of 475

current smokers with European ancestry was rs56113850 on chromosome 19 [15]. Based 476

on our Meta GWAS, the beta for the major allele C (vs. T) was 0.682 (se = 0.02) (C 477

allelle frequency was 0.553). Both the FinnGen and MRBase PheWAS results have been 478

presented for the allele C so that the results can be interpreted for genetically 479

determined faster nicotine metabolism. 480

The FinnGen PheWAS highlighted two PWS associations: both were for lung cancer 481

diagnoses (Table S10a). The associations were positive, so genetically determined faster 482

nicotine metabolism was associated with greater odds of having lung cancer. The 483

MRBase database pinpointed 199 outcomes with a PWS association (Table S10b). 484

However, many of these outcomes overlapped or were highly similar (Table S10c). Most 485

of the top associations were related to smoking, lung cancer, lung functioning, liver 486

enzyme levels, cholesterol and other lipids, as well as gene expression (See annotations 487

for highlighted genes: Table S10d). Our own PheWAS of the UKB had not included 488

some of these outcomes such as those related to gene expression, but otherwise the 489

MRBase results closely mirrored ours. 490
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Discussion 491

In our study we used a hypothesis-free method, GxE MR-PheWAS [22], to identify 492

novel associations across the phenome with the NMR. Importantly, we conducted 493

separate PheWAS analyses for ever and never smokers. This enabled us to identify 494

which associations might be attributable to a causal effect through smoking. We 495

explored over 21,000 outcome variables, making our PheWAS the most comprehensive 496

to date on the rate of nicotine metabolism. Notably, our study was the first PheWAS to 497

explicitly focus on the NMR itself, rather than solely on CYP2A6 activity. 498

We found associations with several smoking related traits and diseases. These were 499

in line with existing literature, with the exception of a positive association between our 500

GS for faster nicotine metabolism and smoking cessation. Additionally, our study 501

unveiled novel associations with measures not previously reported to associate with the 502

NMR, including liver enzymes, lipids, and consumption of coffee and tea. 503

We did not replicate the hearing loss finding identified by the initial PheWAS of 504

CYP2A6 activity [19]. The other PheWAS published to date on CYP2A6 activity, used 505

the UKB data, but focused only on about 1,000 disease endpoints [20]. They did not 506

replicate the hearing loss finding either. Their findings, limited to tobacco related 507

diseases, were in line with ours, although none of their findings reached phenome-wide 508

significance in our study which included over 21,000 outcome variables. Their top 509

finding, lung cancer, ranked 56th in significance in our subset of ever smokers, for which 510

we saw 29 PWS associations. In our secondary analyses, however, we conducted a 511

PheWAS replication study of the top GWAS SNP for the NMR using the FinnGen data. 512

This FinnGen PheWAS consisted of roughly 2,000 disease endpoints, and here, the only 513

two PWS associations were indeed for lung cancer diagnoses (Table S10a). 514

Faster nicotine metabolism is known to associate with increased smoking [8,9]. Our 515

PheWAS results align with this established relationship. The GS for faster nicotine 516

metabolism was associated with a greater number of cigarettes smoked per day, 517

increased smoking compared to ten years earlier, and greater smoking in the past (asked 518

from all except daily current smokers). 519

We found both the GS and the NMR to have a non-linear association with CPD 520

(Fig 1). This non-linear relationship, indicative of a plateau-effect on CPD, aligns with 521

previous findings for cotinine [37], where a plateau-effect was observed on cotinine when 522

modelling it against CPD. However, to our knowledge, this phenomenon has not been 523

previously reported for the NMR. This relationship provides a possible explanation to 524

why in previous studies CYP2A6 variation has shown a stronger association with lung 525

cancer risk in light smokers (CPD ≤ 20) than in the total sample [20,38], and hasn’t 526

shown any association among the heavy smokers (CPD > 20) [38]. However, it is 527

possible that, as our population-based data relied on voluntary participation from 528

invitees, some subgroups of individuals with ill health, such as those with high GS and 529

high CPD values, were underrepresented. More research conducted in a controlled 530

setting would be warranted to explore this association more comprehensively. 531

While clinical trials and longitudinal data have shown that faster nicotine 532

metabolism predicts lower quit rates [11,12], our PheWAS yielded contrasting results. 533

The GS was associated with greater odds of quitting, and quitting at a younger age 534

(Fig 3). This positive association between genetically determined faster nicotine 535

metabolism and cessation was also seen by Loukola et al. in their follow-up analyses of 536

their NMR GWAS [14]. Cessation was not included in our FinnGen and MRBase 537

replication PheWASs which we performed using the top NMR SNP, rs56113850. 538

However, the same positive association was seen for the top NMR SNP allele C count 539

with cessation in the GSCAN GWAS [39]. They found that with every additional allele 540

C, the odds for being a former smoker (versus current) increased by 6 % (OR = 1.06 541
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[1.05, 1.07], p = 1.61e− 48 —calculated from [39] Table S3 to reflect our coding for 542

cessation (1 = former, 0 = current)). 543

To further investigate the positive relationship between genetically determined faster 544

nicotine metabolism and smoking cessation seen in these population based 545

cross-sectional data, we reran the UKB cessation analyses adding CPD as a covariate to 546

the model. We speculated whether CPD might be acting as a possible mediator for the 547

association. Faster nicotine metabolism is known to be positively associated with CPD. 548

Amount smoked, in turn, impacts one’s health and possibly one’s inclination to quit due 549

to the realization of adverse health effects or the necessity of abstinence, for example, 550

for consequent surgical procedures. After adding CPD into the model, the association 551

weakened but remained positive (Table S7a–b). Once we additionally excluded 552

individuals who listed ill health and/or doctor’s advice as the reason for quitting, the 553

association was no longer statistically significant (Table S7c). Loukola et al. observed 554

similar findings in their follow-up analyses of their NMR GWAS [14]. 555

When we looked at the reasons for quitting more closely, it did appear that fast 556

metabolizers might have had slightly more incentive to quit (Table S8). Additionally, it 557

looked like internal reasons (health precaution and financial reasons) were more likely to 558

result in continued abstinence (remaining a former smoker at the time of the UKB 559

questionnaire) (Table S7d–e). Conversely, having quit because of doctor’s advice seemed 560

to decrease the likelihood of remaining a former smoker at the time of the questionnaire. 561

As mentioned, those with faster nicotine metabolism are thought to have a harder 562

time succeeding at quitting [10]. Among former smokers, the GS had a positive 563

association with the number of unsuccessful quit attempts but the association was no 564

longer statistically significant once we adjusted for CPD (Table S9). All four reasons 565

increased the number of attempts, as did CPD. Health precaution and ill health however, 566

had considerably stronger associations than doctor’s advice and financial reasons. 567

Our results suggest that several factors are at play when it comes to cessation. 568

Individuals with faster nicotine metabolism may smoke more, spend more money on 569

tobacco, and experience more health problems. They may thus be more motivated to 570

quit but succeeding can possibly be more challenging due to greater nicotine 571

dependence which has been shown to correlate with faster nicotine metabolism by some 572

studies [38,40]. Regardless of the difficulties, faster metabolizers of nicotine appear 573

more likely to quit long-term (remain former smokers) than slower metabolizers of 574

nicotine. This could be due to their heightened motivation and more frequent quit 575

attempts. Additionally, due to the nature of the UKB dataset, selection bias may be 576

also contributing to this positive association. The UKB dataset is enriched with 577

individuals who are healthier and come from higher socioeconomic backgrounds [41]. 578

Thus those who smoke more and have not quit may be underrepresented, potentially 579

affecting the results. 580

In summary, our findings suggest that health precautionary reasons and higher daily 581

cigarette consumption make quitting more challenging. However, they also make it 582

more likely for the individual to remain a former smoker if they do manage to quit. We 583

believe that the positive association between the GS and cessation may be explained, to 584

some extent, by possible confounding or mediation by CPD and ill health, as well as, 585

various selection biases in UKB. 586

Our Ever versus Never analyses highlighted four lung capacity measures. The 587

associations were only seen in the ever smokers, providing evidence for a causal pathway 588

through smoking (Table S6a, Fig 3). When we divided the ever smokers into subsets of 589

former and current smokers, the effect sizes for all four lung capacity measures were 590

attenuated among the former smokers, giving further support for the possible causal 591

role of smoking on worse lung functioning (Fig 4, Table S6e). Our results align with 592

existing research. Smoking is known to accelerate the decline in lung function, which 593
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may develop into chronic obstructive pulmonary disease [42, 43]. It is worth noting that, 594

although smoking cessation has been shown to slow down this rate of decline, it does 595

not appear to fully revert the rate of decline to that of never smokers [44]. 596

Beyond variables related to smoking, our study identified several other variables 597

associated with our GS for the NMR. It is noteworthy that many of these associations 598

did not seem to rely on pathways through smoking. Interesting associations, where we 599

saw no apparent differences between ever and never smokers, included liver enzymes, 600

lipid measures, and coffee and tea consumption. 601

In our PheWAS, only two phenotypes, the liver enzymes alkaline phosphatase (ALP) 602

and alanine aminotransferase (ALT), showed associations with the GS that were PWS 603

in both ever and never smokers (Fig 3). These associations ranked among the top 604

findings in all three groups (All, Ever, Never), as well as in the PheWAS results from 605

MRBase (Table S6b–d, Table S10b). 606

Both ALP and ALT are blood serum liver enzymes that are key biomarkers for 607

assessing the extent and cause of liver damage [45–47]. One cause of liver damage is 608

alcohol use, and alcohol use and smoking are well known to be associated behaviours. 609

However, the strengths of the associations did not differ between the ever and never 610

smokers, implying that the associations are not mediated by smoking, and thus most 611

likely not by alcohol either. 612

Building upon previous PheWAS analyses of these liver enzymes, conducted by Liu 613

et al. [45], our study suggests that a higher GS for faster nicotine metabolism is 614

correlated with less favourable liver enzyme levels with respect to associated diseases. 615

We observed a negative association between the GS and ALP levels. The ALP PheWAS 616

by Liu et al., revealed that lower values of the genetically determined ALP were 617

associated with increased odds of hypercholesterolemia, pulmonary heart disease, as well 618

as phlebitis and thrombophlebitis of lower extremities. 619

On the other hand, we found a positive association between the GS and ALT levels. 620

For genetically determined ALT levels, Liu et al. found 16 associations in their ALT 621

PheWAS. The strongest associations, based on p-values, highlighted a clear trend: 622

higher values of genetically determined ALT levels were consistently associated with a 623

higher risk of hepatic diseases such as hepatitis, primary liver cancer and non-alcoholic 624

cirrhosis. Additionally, genetically determined ALT was positively associated with Type 625

2 Diabetes, possibly due to the role ALT plays in insulin resistance [45]. In our 626

PheWAS of the entire sample, we identified a PWS positive association between the GS 627

and glycated haemoglobin, suggesting that higher GS values correlate with poorer blood 628

sugar control. The effect size remained consistent across the Ever and Never subsets but 629

did not reach PWS in ether subset. Of the 16 associations reported by Liu et al. for 630

ALT, only three showed an opposite direction of effect: dementias, fracture of hand and 631

wrist, and corneal degenerations. However, all three had p-values that had only just 632

surpassed the 5 % FDR threshold, and for dementias, the direction of the effect varied 633

depending on the Mendelian Randomization analysis method they used. 634

A substantial portion of our MRBase PheWAS results concerned outcome variables 635

related to cholesterol, fatty acids, and other lipids (Table S10c). Likewise, other 636

outcomes indicative of cardiovascular health were also highlighted. For instance, 637

genetically determined faster nicotine metabolism (the NMR top SNP, rs56113850, 638

allele C count), was associated with elevated levels of cholesterol, triglycerides, LDL 639

levels, and a higher apolipoprotein B/apolipoprotein A ratio (indicative of poorer 640

cardiovascular health), as well as an increased waist circumference, higher BMI and 641

greater odds of using cholesterol medication. Of note, cholesterol medication was among 642

the top five associations in the PheWAS of the FinnGen data, based on p-values, 643

although it did not reach phenome-wide significance. 644
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In our UKB PheWAS, the GS was associated with decreased apolipoprotein A, 645

increased linoleic acid, a higher omega-6 to omega-3 ratio and a decreased omega-3 to 646

total fatty acids ratio (Fig 3). Again, the direction of association was such that higher 647

GS values predicted worse lipid values with respect to cardiovascular health (see 648

e.g. [48]). These results were in line with our findings from the MRBase PheWAS. 649

However, they were PWS only in our All group. Nevertheless, there was no apparent 650

difference between the effect size estimates among the ever and never smokers, alluding 651

to effects independent of smoking, and possibly to a shared genetic component between 652

nicotine metabolism and lipid levels. Interestingly, only among ever smokers, we 653

observed PWS positive associations between the GS and the use of cholesterol 654

medication, leg artery bypass surgery, and endarterectomy of femoral artery (Fig 3). 655

This suggests that ever smokers with higher GS values may face a compounded risk for 656

cardiovascular diseases due to their smoking history and genetics, and may thus be 657

more likely to face adverse health effects and require medical interventions. 658

Moving on to another noteworthy association highlighted in our PheWAS, the GS 659

for faster nicotine metabolism was associated with increased coffee and tea consumption 660

(Fig 3). We observed PWS associations with coffee consumption in the All group and 661

with tea consumption in the All and Never groups. The concordant results between 662

Ever and Never subsets suggest an association pathway distinct from smoking. 663

When decaffeinated coffee was included in the coffee quantity variable, there was a 664

slight attenuation of associations, suggesting that the observed effect is possibly driven 665

by caffeine metabolism. Notably, in a GWAS of caffeine metabolites, multiple SNPs at 666

19q13.2, including the CYP2 cluster, NUMBL, ADCK4, MIA and EGLN2, showed 667

genome wide significant associations [49]. The CYP2A6 enzyme is known to play a 668

minor role in caffeine metabolism [49], and it is possible that our results reflect this 669

connection. 670

Interestingly, our PheWAS also highlighted a positive correlation between the GS 671

and preferences for dark chocolate and coffee without sugar. These associations were 672

PWS only in the All subset. However, both the Ever and Never results were consistent 673

with those of the All subset. Once again, this would imply that the association pathway 674

is unlikely to involve smoking. Like coffee and tea, dark chocolate contains caffeine and 675

tastes bitter. Therefore, these findings suggest that the association with coffee and tea 676

consumption could be mediated through preference for bitter taste in addition to 677

caffeine metabolism. Cornelis and van Dam (2021) found in their study that genetically 678

inferred bitter taste perception indeed did play a role in coffee and tea drinking 679

behaviour but to a lesser extent than genetically inferred caffeine sensitivity [50]. They 680

also found support for conditioned taste preferences where individuals learn to associate 681

the bitter taste with either beneficial or adverse physiological effects of caffeine. 682

While we did not observe direct evidence of a pathway involving smoking, it is well 683

known that smoking and coffee consumption correlate [51]. The prevailing belief is that 684

tobacco smoke increases an individual’s caffeine metabolism and that is why smokers 685

require more caffeine to achieve the desired effect [52]. Once an individual stops 686

smoking, their caffeine metabolism eventually returns to normal. A previous Mendelian 687

randomization study found support for this relationship [53]. They compared current, 688

former and never smokers using a single SNP as a biomarker for CPD [53]. They found 689

no association with coffee consumption among never or former smokers in their 690

meta-analysis of three datasets but did find an association among current smokers. 691

Our results align with the work of Cornelis and van Dam, suggesting some shared 692

genetics between nicotine metabolism and caffeine metabolism, along with potential 693

connections to bitter taste perception. Both smoking and caffeine impact the 694

metabolism of some medications and affect optimal dosages [52]. Additionally, it has 695

been proposed that smokers attempting to quit, may inadvertently confuse symptoms of 696
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caffeine toxicity with nicotine withdrawal symptoms if they fail to adjust their coffee 697

consumption [51]. Thus, understanding the interactions between smoking and caffeine 698

consumption is of great interest. 699

Conclusions 700

In summary, our results suggest that faster nicotine metabolism is associated not only 701

with smoking related traits but also with various other health-related characteristics. 702

Our GS for faster nicotine metabolism was associated with worse liver enzyme and lipid 703

values with respect to associated diseases, as well as increased coffee and tea 704

consumption. Importantly, we saw no evidence of a causal pathway through smoking for 705

these associations. Leaning on the assumption that slow metabolizers of nicotine have 706

an easier time quitting, our findings are promising. They imply that drugs designed to 707

convert fast metabolizers into slower metabolizers may not involve adverse side effects 708

but instead could offer therapeutic benefits for other health issues as well. Future 709

research, focusing on these newly highlighted variables using additional data and study 710

designs, involving different sources of potential bias, is warranted to confirm and extend 711

these findings. 712

Availability of data and materials 713

Access to the UK Biobank data can be applied at 714

http://ukbiobank.ac.uk/register-apply/. To apply for access to the YFS data see: 715

http://youngfinnsstudy.utu.fi/, and for FINRISK see: 716

https://thl.fi/en/web/thl-biobank. All analyses were performed in R and bash. Scripts 717

will be deposited on GitHub upon publication of the manuscript. 718

Supporting information 719

Fig. S1 Boxplots of the standardised GS for the NMR in UKB by 720

subgroups. Experimenters includes those individuals who answered ”Occasionally” or 721

”Tried once or twice” to the questions on current and past smoking behaviour. 722

Fig. S2 Scatterplot of the GS for faster nicotine metabolism against the 723

imputed genotype dosage (allele C) at the chromosome 19 top SNP 724

(rs56113850) for the NMR in UKB. 725

Fig. S3 Scatterplots and loess curves presenting the full data of the 726

association between A the standardized genetic score for the NMR (zGS) and 727

cigarettes smoked per day (CPD) in UKB, B the standardized NMR (zNMR) and CPD 728

in the Finnish data, C the NMR and CPD in the Finnish data, and D the zNMR and 729

Cotinine + 3-Hydroxycotinine (Cot + 3HC), a biomarker for nicotine intake, in the 730

Finnish data. Note: The standardized variables (zGS and zNMR) were calculated by 731

subtracting the mean and dividing by the standard deviation. 732

Fig. S4 Venn diagram of the 61 variables highlighted in our initial 733

PheWAS. The figure shows the 61 variables that were statistically significant at the 5 734

% FDR level in at least one of the data sets (All / Ever / Never). The variable Smoking 735

status has been listed twice in the figure as it contained a different amount of categories 736

for the All and Ever groups. 737
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Table S1 GS distribution by subset of smoking status. The p-values are from 738

Mann-Whitney U tests comparing the GS distributions to the Never group. sd, 739

standard deviation. 740

Table S2 FINEMAP top configuration of causal SNPs for the NMR on the 741

chromosome 19 locus in the Finnish data. FINEMAP results of the 5Mb region 742

centred at the top SNP when only including SNPs passing quality control in UKB 743

(n(SNP) = 10,133). The most probable configuration consisted of 9 SNPs (depicted in 744

the table) and their heritability estimate was 32.1% (95% CI: 28.5–35.6%). FINEMAP 745

gave a regional heritability estimate of 33.8% (95% CI: 30.0–37.8%) and suggested that 746

there are 7–11 causal SNPs within the region. SNP, single-nucleotide polymorphism; 747

BP, base pair position in GRCh37 coordinates; EA/NEA, the effect allele/ the 748

non-effect allele; MINOR, the less common allele; MAF, minor allele frequency in the 749

Finnish dataset (n = 2,119) used for the FINEMAP analysis; SNP PROB, posterior 750

probability of being a causal SNP; BETAJ, effect estimate from the joint model 751

including all these 9 SNPs (reported for the effect allele); SEJ, standard error for the 752

BETAJ; P-VALUEJ, p-value for the BETAJ. 753

Table S3 Variable descriptions for PheWAS outcomes. A Variable 754

information on all the second stage outcomes that we derived, recoded or analysed using 755

a different model from our initial PheWAS (See Table S3b). B Variable information on 756

all 61 variables highlighted in our initial PheWAS analyses. 757

Table S4 Linear regression beta coefficient for the zGS when explaining 758

CPD by zGS in UK Biobank. Analysis was done for the current smokers subset of 759

UK Biobank. CPD has been adjusted for sex, age and the first 10 genetic principal 760

components, and then inverse normalized (rank-based-inverse-normal-transformation) 761

before regressing it on zGS. The standard deviation of the adjusted CPD was 8.3. 762

When looking at all individuals, each standard deviation increase in the GS is 763

associated with a 0.07516 standard deviation increase in CPD, i.e. a 0.6 increase in 764

cigarettes smoked per day. The regression was ran for three subsets of the data 765

including either all individuals (ALL), only those with lower zGS values (LOW GS; zGS 766

< 0) or only those with higher zGS values (HIGH GS; zGS ≥ 0). 767

Table S5 Results from the initial PheWAS. A-C PheWAS results for the 768

variables that were significant at the 5 % FDR level for the All, Ever and Never data, 769

respectively. D Ever versus Never analysis results for the variables that had a 770

statistically significant difference at the 5 % FDR level between their effect sizes for the 771

Ever and Never subsets. 772

Table S6 Results from the final stage of the PheWAS. A Ever versus Never 773

analysis results. B-D PheWAS results for the All, Ever and Never data, respectively. E 774

Current versus Former analysis results for the four lung capacity measures that had 775

been highlighted in the Ever versus Never analysis (See Table S6a). 776

Table S7 Odds ratios from the logistic regression model for cessation. A 777

Among Ever smokers (n = 110348 ), model including the standardized GS, sex (1=Male, 778

0=Female), age and the first 10 genetic principal components as the predictor variables. 779

B Among Ever smokers (n = 110348 ), model including CPD as an additional predictor 780

variable. C Among subset of Ever smokers who did not stop smoking due to Illness or 781

Doctor’s advice (n = 70278), model including all the same variables as in B. D Among 782

subset of Ever smokers who had at least once managed to quit for over 6 months (n = 783
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83704 ), model including the 4 reasons for stopping smoking. E Among subset of Ever 784

smokers who had at least once managed to quit for over 6 months (n = 79228 ), model 785

including the 4 reasons for stopping smoking and CPD. 786

Table S8 Reason for stopping smoking by nicotine metabolism group 787

(grouped based on the tertiles of the GS for the NMR). Ever smokers who had 788

stopped smoking for over 6 months during the time they smoked were asked: ”Why did 789

you stop smoking? (You can select more than one answer)” (UK Field 6157). Total 790

number of ever smokers included in this analysis was n = 110 348, of which 26 % were 791

current smokers and 74 % former smokers. *, statistically significant difference (p < 792

0.05, 2-sample test for equality of proportions) between the Slow and Fast groups. 793

Table S9 Incident Rate Ratios (IRRs) from the negative binomial 794

regression model for Number of unsuccessful stop-smoking attempts. A 795

Among former smokers, model including standardized GS, the four reasons (1 = Yes, 0 796

= No), sex (1 = Male, 0 = Female), age and the first 10 genetic principal components 797

as the predictor variables. B Same as A but including CPD as a covariate in the model. 798

Table S10 The FDR significant results from the PheWAS of the top NMR 799

SNP, rs56113850 (allele C), using FinnGen and MRBase. A Using the 800

FinnGen r9 there were two outcomes reaching statistical significance at the 0.05 FDR 801

level. Beta has been counted for the C allele. Allele C frequency (vs T) was 56–57 % 802

across all phenotypes. mlogp,-log10(p); Bhcritical, Benjamini-Hochberg critical value. B 803

Using the MRBase (Database version: 0.3.0 from 25 October 2020) there were 199 804

outcomes reaching statistical significance at the 0.05 FDR level. minuslogp,-log10(p); 805

Bhcritical, Benjamini-Hochberg critical value; bf, significant at the 0.05 bonferroni level 806

(T=TRUE, F=FALSE). C Same as B but ordered by trait. D Annotations for the 14 807

gene expression outcomes that were among the 199 MRBase results. Annotations were 808

obtained from the Ensembl database using BiomaRt in R. band, Karyotype band; 809

gene biotype, Gene type; hgnc symbol, HGNC (The HUGO Gene Nomenclature 810

Committee) gene symbol. Note: MRBase id column can be searched as the GWAS ID 811

here: https://gwas.mrcieu.ac.uk/datasets/ for more information on the study. 812
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