1	Causal association of the brain structure with the risk of knee osteoarthritis: A								
2	large-scale genetic correlation study								
3	Zhe Ruan ^{1#} , Shaohai Lin ^{1#} , Zhi Liu ¹ , Peng Chen ¹ , Tongtong Xie ² , Li Meng ³ , Haitao Long ^{1,4*} ,								
4	Shushan Zhao ^{1,4*} .								
5	1. Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China.								
6	2. College of Electrical and Information Engineering, Hunan University, Changsha, China.								
7	3. Department of Radiology, Xiangya Hospital, Central South University, Changsha, China.								
8	4. National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South								
9	University, Changsha, Hunan 410008, China.								
10	*Corresponding authors: Shushan Zhao (shushanzhao@csu.edu.cn). Haitao Long								
11	(doclong2008@aliyun.com);								
12	[#] These authors contributed equally to this work.								
13									
14	Zhe Ruan (First author)								
15	Institution: Department of Orthopaedics, Xiangya Hospital, Central South University,								
16	Changsha, 410008, Hunan, China.								
17	E-mail address: <u>zheruan@csu.edu.cn</u>								
18	Shaohai Lin (First author)								
19	Institution: Department of Orthopaedics, Xiangya Hospital, Central South University,								
20	Changsha, 410008, Hunan, China.								
21	E-mail address: <u>lsh_cn@163.com</u>								

22 NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

23 Zhi Liu

- 24 Institution: Department of Orthopaedics, Xiangya Hospital, Central South University,
- 25 Changsha, 410008, Hunan, China.
- 26 E-mail address: liuzhi990107@163.com
- 27 Peng Chen
- 28 Institution: Department of Orthopaedics, Xiangya Hospital, Central South University,
- 29 Changsha, 410008, Hunan, China.
- 30 E-mail address: chenpeng150@csu.edu.cn
- 31 Tongtong Xie
- 32 Institution: College of Electrical and Information Engineering, Hunan University, Changsha,
- 33 410008, Hunan, China.
- 34 E-mail: xietongtong@hnu.edu.cn
- 35 Li Meng
- 36 Institution: Department of Radiology, Xiangya Hospital, Central South University,
- 37 Changsha, 410008, Hunan, China.
- 38 E-mail: mengli96130@csu.edu.cn

39 Shushan Zhao (Corresponding Author) *

- 40 Institution: Department of Orthopaedics, Xiangya Hospital, Central South University,
- 41 Changsha, 410008, Hunan, China.
- 42 National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South
- 43 University, Changsha, Hunan 410008, China.
- 44 E-mail: shushanzhao@csu.edu.cn

45 Haitao Long (Corresponding Author) *

- 46 Institution: Department of Orthopaedics, Xiangya Hospital, Central South University,
- 47 Changsha, 410008, Hunan, China.
- 48 National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South
- 49 University, Changsha, Hunan 410008, China.
- 50 E-mail: doclong2008@aliyun.com
- 51

52 Abstract

53 **Objectives:** Observational studies have shown the association between knee osteoarthritis (KOA) 54 and neurological disorders with alterations in brain imaging-derived phenotypes (BIDPs). This 55 study aimed at investigating whether alterations in brain structure are correlated with the occurrence 56 of KOA.

57 **Methods:** Based on the summary data from two large scale genome-wide association studies 58 (GWASs), we performed a bidirectional two-sample Mendelian randomization (MR) analysis using 59 single-nucleotide polymorphisms (SNPs) as instrumental variables (IVs) to determine the potential 60 causal relationships between KOA and BIDPs.

61 **Results:** We identified the genetic correlations of 152 BIDPs with KOA using linkage 62 disequilibrium score regression. MR analysis revealed that increased volume but decreased 63 intensity-contrast of bilateral nucleus accumbens (NAc), as well as increased left paracentral area 64 was positively causally associated with KOA risk. For the IDPs of structural connectivity, we 65 identified causal associations between multiple increased DTI parameter indicators of corticospinal tract (CST) and KOA. Inversely, KOA was positively correlated with the thickness and intensity-66 67 contrast of the rostral anterior cingulate, as well as the intensity-contrast of caudal anterior cingulate, 68 insula cortex, and the grey matter volume of pallidum.

69 Conclusion: Our study supported bidirectional causal associations between KOA and BIDPs, 70 which may provide new insights into the interaction of KOA with structural alterations in the 71 nervous system.

72 Keywords: Mendelian randomization, brain imaging-derived phenotypes, knee osteoarthritis, causal

73 association.

74 1. Introduction

75 Osteoarthritis (OA) is the most common musculoskeletal disorder around the world, it is 76 characterized by articular cartilage degeneration, osteophyte formation, and asymmetric joint spaces 77 narrowing, leading to pain and disability[1]. It has been recently estimated that there is an overall 78 prevalence of about 300 million for OA, of which 263 million had knee osteoarthritis (KOA)[2]. 79 With prolonged life expectancy and population aging, the prevalence of KOA is predicted to 80 dramatically increase in the future. Epidemiologic studies have shown that the most common risk 81 factors for KOA include previous joint injuries, older age, obesity, female gender, and anatomical 82 abnormalities of the joints[3]. 83 It has been found that many neurological disorders such as major depressive disorder (MDD)[4, 84 5], Alzheimer's disease (AD)[6, 7], Parkinson's disease (PD)[8], and cerebrovascular dysfunction 85 diseases[9] are closely related to OA and may be comorbidities or risk factors for it. Neuroimaging 86 techniques have been utilized in recent years for the non-invasive detection of central and peripheral 87 nervous system degeneration so as to monitor disease progression and prognosis, and it has also 88 been applied to investigate brain structure, function and metabolism[10, 11]. It is also worth noting that these disorders usually have neurological degeneration to certain extent. Most magnetic 89 90 resonance-based structural imaging studies suggested that the degree and rate of atrophy in medial 91 temporal structures, such as the hippocampus, can be recognized as diagnostic and progression 92 markers or AD[12]. Another recent structural network study using diffusion tensor imaging (DTI) 93 revealed that lower fractional anisotropy (FA) values of superior longitudinal fasciculus, prefrontal 94 cortex, and parietal lobe in left hemisphere among patients with MDD compared to health 95 controls[13]. However, there are no studies investigating whether brain structure alterations are

96 associated with the occurrence of KOA.

97	Mendelian randomization (MR) utilizes genetic variants, such as single-nucleotide
98	polymorphisms (SNPs), as instrumental variables (IVs) to determine the potential associations
99	between exposures and disorders, and it circumvents the bias caused by confounding factors in
100	traditional observational studies[14]. With the development of genome-wide association studies
101	(GWAS), a large number of public databases are now available for MR studies to assess potential
102	causal associations between OA and other diseases[15-17]. Here we used SNPs strongly associated
103	with brain imaging-derived phenotypes (BIDPs) and KOA as IVs. We performed a bidirectional
104	two-sample MR analysis to investigate the association between brain structures and KOA risk.
105	2. Materials and Methods
106	2.1 Brain imaging-derived phenotypes (BIDPs) data

107 A recent GWAS of brain imaging traits was performed on 33,224 individuals of European 108 ancestry (aged between 40 and 80 years) based on data from the UK Biobank ^{Error! Reference source not} 109 ^{found.} Full summary GWAS statistics for the BIDPs are available from the Oxford Brain Imaging

110 Genetics (BIG40) (<u>https://open.win.ox.ac.uk/ukbiobank/big40</u>).

The selected BIDPs are divided into two categories: brain structure (structural MRI) and brain structural connectivity (diffusion MRI, dMRI). The original IDPs for brain structure are T1- or T2weighted structural images, which are subsequently processed by different algorithms to generate the final traits. The structural brain connectivity IDPs are initially determined by dMRI, which measures the diffusion of water molecules and allows for the indirect mapping of the axon connectivity in the human brain. Details procedures of imaging acquisition and processing of brain

MRI scans can be found in previous studies. Overall, we extracted brain structures including 1,451 global and regional anatomical subtypes, including volume, subcortical thickness and superficial area, regional and tissue intensity, cortical gray-white contrast, as well as 675 brain structural connections, including long-range structural connectivity and local microstructure (Supplementary Table 1).

122 **2.2 Knee osteoarthritis (KOA) data**

123 Summary statistics for KOA were obtained from Arthritis Research UK Osteoarthritis Genetics

- 124 (arcOGEN) Consortium cohorts of European descent (<u>http://www.arcogen.org.uk/</u>), which included
- 125 11,655 individuals (646 cases and 11,009 controls)[18]. Osteoarthritis cases were identified on the
- 126 basis of clinical evidence of disease to a level requiring joint replacement or radiographic evidence
- 127 of disease (Kellgren–Lawrence grade ≥ 2).

128 **2.3 Linkage disequilibrium score regression (LDSC) analysis**

129 LD score regression is a reliable and efficient method to estimate the SNP heritability for

130 complex traits and diseases GWAS summary-level results, and has recently been used to determine

- 131 whether different traits have overlapping genetic backgrounds[19]. LDSC regression was first used
- to assess the correlation between BIDPs and KOA, which can be inferred from the regression slope.
- 133 Variants were excluded if the following criteria were met: missing value, missing in Hapmap3,
- 134 INFO score ≤ 0.9 , minor allele frequency (MAF) ≤ 0.01 , non-SNPs or rs number duplicates.
- 135 **2.4 Instrumental variable selection**

136 The genetic variants utilized as IVs for MR should be strongly related to the exposure,

137 independent from any confounding factors, and independent from any pathway associated with the

138	outcome, except for the exposure pathway. In our MR analysis, we initially extracted IVs based on
139	the genome-wide significance threshold ($p < 5 \times 10^{-8}$), followed by calculating the F statistics of
140	each SNP to exclude weak IVs with F statistics < 10. We then ensured independence among IVs
141	for each exposure by conducting an LD test on each SNP identified as an IV based on individuals
142	with European ancestry from the 1000 Genomes Project with $r^2 < 0.001$ and a window size of 10,000
143	kb. Finally, in case the target SNPs were not found in the outcome GWAS, we used SNPs with high
144	LD ($r^2 > 0.8$) to substitute.

145 **2.5 Mendelian randomization**

146 To analyze the causal association between BIDPs and KOA, we utilized multiple 147 complementary methods, including inverse variance weighted (IVW), MR-Egger, weighted median, 148 simple mode, weighted mode, and Wald ratio methods. The IVW model was used as the major 149 primary statistical method, and the Wald ratio method was used when a genetic variant contained 150 only one genetically related SNP. We assessed the presence of horizontal pleiotropy by using Cochran's Q statistic to test for heterogeneity among IVs, with p < 0.05 indicating heterogeneity. If 151 152 heterogeneity was present, we used the random-effects model for subsequent analyses; otherwise, 153 we used the fixed-effects model. Leave-one-out cross-validation was performed to evaluate the 154 stability of the MR results through sequential exclusion of each IV. In addition, we conducted MR-155 Egger analysis to identify directional pleiotropy. Funnel plot asymmetry indicated the presence of 156 horizontal pleiotropy. In the current study, we focused on those positive MR analysis results with 157 the number of SNPs greater than or equal to three.

158 **2.6 Statistical Analyses**

159

All statistical analyses were performed using the "TwoSampleMR" and "MR-PRESSO"

- 160 packages of R software (version 3.3). All estimates are reported as two-tailed p values with the
- 161 threshold of significance at 0.05.

162 **3. Results**

- 163 **3.1 Linkage Disequilibrium Score Regression**
- 164 We first examined the genetic association of GWAS datasets of 2,126 BIDPs with KOA using
- 165 LDSC. A total of 152 BIDPs (53 IDPs of brain structure and 99 IDPs of structural connectivity,
- 166 respectively) showed significant correlations with the risk of KOA (Supplementary Table 2).
- 167 **3.2 Causal effect of BIDPs on KOA**

168 *F*-statistic is used to assess the strength of the association between instrumental variables and

169 exposure factors. All *F*-statistics are greater than 10 (range:29.73-1081.32, with an average value

170 of 51.89), indicating a relatively low likelihood of weak instrument bias for the instrumental

171 variables (Supplementary Table 3).

172 In the current MR analysis, a total of 60 BIDPs were identified to be causally associated with 173 the risk of KOA (Table 1). Among the brain structural IDPs relevant to the nucleus accumbens 174 (NAc), the increased volume in both left ($\beta = 0.4893$, p = 0.0434) and right ($\beta = 0.6877$, p = 0.029) 175 hemisphere was found to be positively causally associated with KOA. However, the increased 176 intensity contrast of NAc in both hemispheres had a negative causal association with KOA (left: β 177 = -0.1829, p = 0.046; right: $\beta = -0.1862$, p = 0.0322). In addition, the increased paracentral area in 178 the left hemisphere measured by Desikan ($\beta = 0.7444$, p = 0.0248) and DKTatlas ($\beta = 0.7398$, p =179 0.0266) algorithms, the left BA4a area ($\beta = 0.7274$, p = 0.029), the total white matter volume ($\beta =$ 180 0.3356, p = 0.0386), the bilateral gray matter volume of putamen (left: $\beta = 0.2259$, p = 0.009; right:

 $\beta = 0.1957$, p = 0.0293) and cerebellum crus I (left: $\beta = 0.2991$, p = 0.012; right: $\beta = 0.2984$, p = 0.012

182 0.0343), and the bilateral cuneus intensity contrast (left: $\beta = 0.2257$, p = 0.046; right: $\beta = 0.2807$, p183 = 0.0084) were positively correlated with KOA. We also observed significant causal effects of the 184 decreased left circular sulcus volume ($\beta = -1.0172$, p = 0.0173), right superiortemporal area ($\beta = -$ 185 0.5876, p = 0.0363), left inferiortemporal thickness based on Desikan ($\beta = -0.695$, p = 0.0121) and 186 aparc-a2009s ($\beta = -0.6405$, p = 0.024) parcellation, as well as right amygdala intensity contrast (β 187 = -0.6031, p = 0.0464) on KOA risk (**Table 1**).

188 For the IDPs of structural connectivity derived from dMRI data, we found significant causal 189 relationships between parameters on FA (fractional anisotropy) of axonal connections such as the 190 corticospinal tract (CST), the pontine crossing tract (PCT), the superior thalamic radiation, the 191 superior longitudinal fasciculus, the fronto-occipital fasciculus, as well as of local microstructures 192 such as the anterior limb of internal capsule and KOA risk (Table 1). Notably, our results supported 193 causal associations between several decreased DTI parameter indicators (including Mean MD, 194 Mean L1/L2/L3, and Mean ISOVF) of CST/PCT and KOA. The detailed MR estimates of the 195 different methods were presented in Supplementary Table 4. No directional pleiotropy was found 196 in the MR-Egger regression (Supplementary Table 5). The detailed forest plots, scatter plots, 197 funnel plots, and leave-one-out analysis plots for each analysis were presented in Supplementary 198 Figure 1–50.

199 **3.3 Causal effect of KOA on BIDPs**

181

200 We further explored the reverse causal effect of KOA on BIDPs using the KOA-related SNPs 201 as IVs, with an *F*-statistic > 10 (range:22.51-28.12, with an average value of 24.91). We found that

202 increased risk of KOA could reduce the thickness of right caudomedial frontal lobe and the area of 203 left parahippocampal gyrus under both Desikan and DKTatlas parcellation (Table 2). However, 204 KOA was positively correlated with the thickness and intensity-contrast of the left rostral anterior 205 cingulate, as well as the intensity-contrast of caudal anterior cingulate (left: $\beta = 0.071$, p = 0.017; 206 right: $\beta = 0.075$, p = 0.011), the intensity-contrast of insula cortex in right hemisphere ($\beta = 0.072$, p 207 = 0.016), and the grey matter volume of in both left ($\beta = 0.1, p = 0.0001$) and right ($\beta = 0.079, p =$ 208 0.006) pallidum. In addition, KOA could contribute to decreased Mean ISOVF in medial thalamic 209 (left: $\beta = -0.063$, p = 0.036; right: $\beta = -0.064$, p = 0.033) (**Table 2**). 210 4. Discussion

To the best of our knowledge, this is the first two-sample MR study to investigate causal relationships between KOA and BIDPs. Our study supported bidirectional causal associations between KOA and BIDPs, which may provide new insights into the interaction of KOA with structural alterations in the nervous system.

215 Although OA and neurological disorders belong to two distinct medical categories, the close 216 association between them has been well documented [5, 6]. A recent MR study further assessed 217 causal relationships between osteoarthritis and central nerve system dysfunction in the elderly, 218 which suggested that there was a positive causal effect of OA on PD, but not on AD nor ischemic 219 stroke[20]. Neuroimaging techniques have been utilized in monitoring the progression and 220 prognosis of neurological diseases. Owing to the increasing availability of MRI-based GWAS, 221 structural imaging studies have revealed alterations in BIDPs in neurological disorders. For example, 222 the causal AD-associations for the left hippocampus and right inferior temporal cortex volumes have 223 been identified by utilizing brain MRI database from the Alzheimer's Disease Neuroimaging

Initiative and the UK Biobank[21]. However, the causal relationship between BIDP alterations andKOA is still unclear.

226 Our findings supported that increased area of the paracentral lobule (PCL) could reduce the risk 227 of KOA. The PCL is on the medial surface of the cerebral hemisphere and is the continuation of the 228 precentral and postcentral gyri. In the human brain, motor control and somatosensory 229 representations of different parts of the body are ordered respectively along the entire range of the 230 precentral and postcentral gyrus (generally categorized into five sections: toes/legs, arms/hands, 231 blinking, mouth, and tongue)[22, 23]. Interestingly, the PCL controls motor and sensory 232 innervations of the contralateral lower extremity, including the knee. Pain is an important 233 somatosensation and a major symptom of OA, especially, in KOA where pain is recognized as typically changing from intermittent weight-bearing pain to chronic pain[24]. Several studies have 234 235 reported the association between chronic pain and reduced gray matter in areas associated with pain 236 processing and modulation, such as the dorsolateral prefrontal cortex, thalamus, dorsolateral pons, 237 and somatosensory cortex[25-27]. Another study also reported a significant reduction in gray matter 238 volume in the left precentral gyrus in patients with KOA relative to healthy controls[28]. Here we 239 identified that alterations in the area of PCL as a cause, rather than a consequence, of KOA. 240 Moreover, we found that increased BA4a area in the left hemisphere was also a protective factor for 241 KOA. BA4 belongs to the anterior two-thirds of the PCL (medial surface of the precentral gyrus), 242 where the ungranulated cortex reflects the primary motor cortex in the PCL for the contralateral leg 243 and foot muscles, reinforcing its possible role in the pathogenesis of OA[29].

The nucleus accumbens (NAc) is a subcortical brain structure located in the ventral striatum. It is often known as the pleasure center and is closely associated with behaviors such as reward,

246	motivation, and learning[30]. Its imbalance is commonly associated with many mental and
247	neurological disorders such as depression, obsessive-compulsive disorder, anxiety, and substance
248	abuse[31]. In recent years, however, the NAc has been shown to play a role in acute and chronic
249	pain modulation[32, 33], and even to be effective in pain relief through deep brain stimulation of
250	the human NAc[34]. Although the current study found a causal link between increased volume but
251	decreased intensity-contrast of NAc and KOA risk, further studies are still needed to determine
252	whether the altered neuroimaging in this region is associated with changes in the size, number, and
253	function of neurons or glial cells.
254	DTI quantifies the Brownian motion of water molecules in tissues and organs, which is sensitive
255	in detecting the integrity and direction of fiber bundles[35]. Considered to be the most useful
256	parameter of DTI, FA reflects the integrity of myelin sheaths as well as the number, size, and density
257	of fibers. Pathological process impairing the microstructure of the CNS (such as inflammation,

demyelination, or axonal degeneration) will alter the anisotropy of water diffusion and thus the FA.

259 CST transmit output signals of superficial neurons and ultimately projects to the spinal cord anterior

260 horn cells to regulate basic motor functions[36]. As the most common motor neuron disease,

amyotrophic lateral sclerosis (ALS), there have been extensive studies showing that the FA of the

262 CST was reduced and correlates with functional scores as well as progression in ALS patients[37-

263 39]. In the current study, we confirmed a causal link between decreased DTI parameters on FA in

264 CST and KOA risk. Although the underlying mechanisms are unknown, these indicators may

265 provide new perspectives for the screening of KOA susceptibility in the future.

266 On the other hand, the current findings suggest that KOA in turn may also lead to an increment 267 of thickness or intensity-contrast in the cingulate, insula, and pallidum. Reduced gray matter volume

268 or density often corresponds to neuronal degeneration or death, as manifested in patients with 269 cerebral hypoxia or infarction[40, 41], and conversely we believe it may be related to neural 270 sensitization. Peripheral and central sensitization has been demonstrated in patients with OA, which 271 leads to local nociceptive sensitization as manifested by decreased pain thresholds[42]. Our results 272 are consistent with a previous pain fMRI meta-analysis study indicating that patients with chronic 273 pain, or experimental pain caused by nociceptive hypersensitivity, showed stronger activation in 274 these brain regions [43]. Moreover, the cingulate and insula are important component of the limbic 275 system, which has a key role in coordinating injurious, cognitive-emotional pain processing [44, 45]. 276 It has also been established that depression or low mood triggered by chronic pain contribute to central pain exacerbation and severity[46, 47]. Our findings may provide new explanations for 277 278 nociceptive hypersensitivity of chronic pain in KOA patients. 279 This study is not without limitations. First, the study used GWAS summary data, which may 280 not allow for stratified analysis of relevant risk factors such as gender, age, obesity, and OA severity. 281 Second, the data of exposure and outcome were obtained only from European populations, which 282 limits the cross-ethnic extrapolation of our findings. Third, as the function of many brain regions is 283 not yet fully understood, which constrained the interpretation of our MR results. In conclusion, this 284 study demonstrated a bidirectional causal relationship between BIDPs and KOA risk. Further

studies are needed to confirm and further explore these findings.

286

287 Author contribution Statement

288 S.-S.Z. and H.-T.L.designed this study. Z.R. and S.-H.L.wrote the manuscript. S.-S.Z., Z.R. and S.-H.L

- analyzed the data and prepared all the figures. C.P., T.-T.X., and L.M. provided technical support. H.-
- 290 T.L., and S.-S.Z. provided financial support.
- 291

292 **Ethics approval**

- All analyses were based on publicly shared databases, and no additional ethical approvals were
- required.

295

296	Conflict	of Intere	est Stateme
296	Conflict	of Intere	est Stateme

- 297 No conflict of interest declared.
- 298

299 Funding

- 300 This work was financially supported by the National Natural Science Foundation of China (Nos.
- 301 81902222, and Nos.82060395).
- 302

303 Data Availability Statement

304 All the data are available if qualified authors apply for them.

305 References

- O'Neill TW, McCabe PS, McBeth J: Update on the epidemiology, risk factors and disease 306 1. 307 outcomes of osteoarthritis.
- 308 Global, regional, and national incidence, prevalence, and years lived with disability for 2. 309 354 diseases and injuries for 195 countries and territories, 1990-2017: a systematic 310 analysis for the Global Burden of Disease Study 2017.
- 311 Katz JN, Arant KR, Loeser RF: Diagnosis and Treatment of Hip and Knee Osteoarthritis: 3. 312 A Review.
- 313 Sharma A, Kudesia P, Shi Q, Gandhi R: Anxiety and depression in patients with 4. 314 osteoarthritis: impact and management challenges.
- 315 5. Zhang FA-O, Rao S, Baranova A: Shared genetic liability between major depressive 316 disorder and osteoarthritis.
- 317 Culibrk RA, Hahn MS: The Role of Chronic Inflammatory Bone and Joint Disorders in the 6. 318 Pathogenesis and Progression of Alzheimer's Disease.
- 319 7. Innes KE, Sambamoorthi U: The Association of Osteoarthritis and Related Pain Burden to 320 Incident Alzheimer's Disease and Related Dementias: A Retrospective Cohort Study of 321 **U.S. Medicare Beneficiaries.**
- 322 Feng SH, Chuang HJ, Yeh KC, Pan SA-O: Association of Osteoarthritis With Increased Risk 8. 323 of Parkinson's Disease: A Population-Based, Longitudinal Follow-Up Study.
- 324 Al-Khazraji BK, Appleton CT, Beier F, Birmingham TB, Shoemaker JK: Osteoarthritis, 9. 325 cerebrovascular dysfunction and the common denominator of inflammation: a narrative 326 review.
- 327 10. Filippi M, Agosta F Fau - Abrahams S, Abrahams S Fau - Fazekas F, Fazekas F Fau -328 Grosskreutz J, Grosskreutz J Fau - Kalra S, Kalra S Fau - Kassubek J, Kassubek J Fau - Silani 329 V, Silani V Fau - Turner MR, Turner Mr Fau - Masdeu JC, Masdeu JC: EFNS guidelines on 330 the use of neuroimaging in the management of motor neuron diseases.
- 331 Mori S, Zhang J: Principles of diffusion tensor imaging and its applications to basic 11. 332 neuroscience research. Neuron 2006, 51:527-539.
- 333 12. Frisoni GB, Fox Nc Fau - Jack CR, Jr., Jack Cr Jr Fau - Scheltens P, Scheltens P Fau - Thompson 334 PM, Thompson PM: The clinical use of structural MRI in Alzheimer disease.
- 335 He M, Shen Z, Ping L, Zhou C, Cheng Y, Xu X: Age-related heterogeneity revealed by 13. 336 disruption of white matter structural networks in patients with first-episode untreated 337 major depressive disorder: WM Network In OA-MDD.
- 338 14. Emdin CA, Khera AV, Kathiresan S: Mendelian Randomization.
- 339 15. Funck-Brentano TA-O, Nethander M, Movérare-Skrtic S, Richette PA-O, Ohlsson CA-O: 340 Causal Factors for Knee, Hip, and Hand Osteoarthritis: A Mendelian Randomization 341 Study in the UK Biobank.
- 342 16. Meng H, Jiang LA-O, Song Z, Wang FA-O: Causal Associations of Circulating Lipids with 343 Osteoarthritis: A Bidirectional Mendelian Randomization Study. LID 344 10.3390/nu14071327 [doi] LID - 1327.
- 345 17. Lin L, Luo P, Yang M, Wang J, Hou W, Xu P: Causal relationship between osteoporosis and 346 osteoarthritis: A two-sample Mendelian randomized study.
- 347 Zeggini E, Panoutsopoulou K, Southam L, Rayner NW, Day-Williams AG, Lopes MC, Boraska 18.

348		V, Esko T, Evangelou E, Hoffman A, et al: Identification of new susceptibility loci for
349		osteoarthritis (arcOGEN): a genome-wide association study. Lancet 2012, 380:815-823.
350	19.	Bulik-Sullivan BK, Loh PR, Finucane HK, Ripke S, Yang J, Patterson N, Daly MJ, Price AL,
351		Neale BM: LD Score regression distinguishes confounding from polygenicity in genome-
352		wide association studies. Nat Genet 2015, 47:291-295.
353	20.	Cai Y, Zhang G, Liang J, Jing Z, Zhang R, Lv L, Dang X: Causal Relationships Between
354		Osteoarthritis and Senile Central Nerve System Dysfunction: A Bidirectional Two-Sample
355		Mendelian Randomization Study.
356	21.	Knutson KA, Deng Y, Pan W: Implicating causal brain imaging endophenotypes in
357		Alzheimer's disease using multivariable IWAS and GWAS summary data.
358	22.	Willoughby WR, Thoenes K, Bolding M: Somatotopic Arrangement of the Human Primary
359		Somatosensory Cortex Derived From Functional Magnetic Resonance Imaging.
360	23.	Woolsey Cn Fau - Erickson TC, Erickson Tc Fau - Gilson WE, Gilson WE: Localization in
361		somatic sensory and motor areas of human cerebral cortex as determined by direct
362		recording of evoked potentials and electrical stimulation.
363	24.	Neogi T: The epidemiology and impact of pain in osteoarthritis.
364	25.	Apkarian AV, Sosa Y, Sonty S, Levy RM, Harden RN, Parrish TB, Gitelman DR: Chronic
365		back pain is associated with decreased prefrontal and thalamic gray matter density. J
366		Neurosci 2004, 24: 10410-10415.
367	26.	Buckalew N, Haut MW, Morrow L, Weiner D: Chronic pain is associated with brain volume
368		loss in older adults: preliminary evidence. Pain Med 2008, 9:240-248.
369	27.	Schmidt-Wilcke T, Leinisch E, Gänssbauer S, Draganski B, Bogdahn U, Altmeppen J, May A:
370		Affective components and intensity of pain correlate with structural differences in gray
371		matter in chronic back pain patients. Pain 2006, 125:89-97.
372	28.	Liao X, Mao C, Wang Y, Zhang Q, Cao D, Seminowicz DA, Zhang M, Yang X: Brain gray
373		matter alterations in Chinese patients with chronic knee osteoarthritis pain based on
374		voxel-based morphometry. Medicine (Baltimore) 2018, 97:e0145.
375	29.	Strotzer M: One century of brain mapping using Brodmann areas. Klin Neuroradiol 2009,
376		19: 179-186.
377	30.	Floresco SB: The nucleus accumbens: an interface between cognition, emotion, and action.
378		Annu Rev Psychol 2015, 66:25-52.
379	31.	Salgado S, Kaplitt MG: The Nucleus Accumbens: A Comprehensive Review. Stereotact
380		Funct Neurosurg 2015, 93: 75-93.
381	32.	Chang PC, Pollema-Mays SL, Centeno MV, Procissi D, Contini M, Baria AT, Martina M,
382		Apkarian AV: Role of nucleus accumbens in neuropathic pain: linked multi-scale evidence
383		in the rat transitioning to neuropathic pain. Pain 2014, 155:1128-1139.
384	33.	Goffer Y, Xu D, Eberle SE, D'Amour J, Lee M, Tukey D, Froemke RC, Ziff EB, Wang J:
385		Calcium-permeable AMPA receptors in the nucleus accumbens regulate depression-like
386		behaviors in the chronic neuropathic pain state. J Neurosci 2013, 33:19034-19044.
387	34.	Mallory GW, Abulseoud O, Hwang SC, Gorman DA, Stead SM, Klassen BT, Sandroni P,
388		Watson JC, Lee KH: The nucleus accumbens as a potential target for central poststroke
389		pain. Mayo Clin Proc 2012, 87:1025-1031.
390	35.	Martin AR, Aleksanderek I, Cohen-Adad J, Tarmohamed Z, Tetreault L, Smith N, Cadotte DW,
391		Crawley A, Ginsberg H, Mikulis DJ, Fehlings MG: Translating state-of-the-art spinal cord

392		MRI techniques to clinical use: A systematic review of clinical studies utilizing DTI, MT,
393		MWF, MRS, and fMRI. Neuroimage Clin 2016, 10:192-238.
394	36.	Welniarz Q, Dusart I, Roze E: The corticospinal tract: Evolution, development, and human
395		disorders. Dev Neurobiol 2017, 77:810-829.
396	37.	Du XQ, Zou TX, Huang NX, Zou ZY, Xue YJ, Chen HJ: Brain white matter abnormalities
397		and correlation with severity in amyotrophic lateral sclerosis: An atlas-based diffusion
398		tensor imaging study. J Neurol Sci 2019, 405:116438.
399	38.	Ellis CM, Simmons A, Jones DK, Bland J, Dawson JM, Horsfield MA, Williams SC, Leigh PN:
400		Diffusion tensor MRI assesses corticospinal tract damage in ALS. Neurology 1999,
401		53: 1051-1058.
402	39.	Rosskopf J, Müller HP, Dreyhaupt J, Gorges M, Ludolph AC, Kassubek J: Ex post facto
403		assessment of diffusion tensor imaging metrics from different MRI protocols: preparing
404		for multicentre studies in ALS. Amyotroph Lateral Scler Frontotemporal Degener 2015,
405		16: 92-101.
406	40.	Joo EY, Jeon S, Kim ST, Lee JM, Hong SB: Localized cortical thinning in patients with
407		obstructive sleep apnea syndrome. Sleep 2013, 36:1153-1162.
408	41.	Yu W, Yang J, Liu L, Song W, Zhang Z, Xu M, Cao Z: The value of diffusion weighted
409		imaging in predicting the clinical progression of perforator artery cerebral infarction.
410		Neuroimage Clin 2022, 35: 103117.
411	42.	Suokas AK, Walsh DA, McWilliams DF, Condon L, Moreton B, Wylde V, Arendt-Nielsen L,
412		Zhang W: Quantitative sensory testing in painful osteoarthritis: a systematic review and
413		meta-analysis. Osteoarthritis Cartilage 2012, 20:1075-1085.
414	43.	Tanasescu R, Cottam WJ, Condon L, Tench CR, Auer DP: Functional reorganisation in
415		chronic pain and neural correlates of pain sensitisation: A coordinate based meta-analysis
416		of 266 cutaneous pain fMRI studies. Neurosci Biobehav Rev 2016, 68:120-133.
417	44.	Starr CJ, Sawaki L, Wittenberg GF, Burdette JH, Oshiro Y, Quevedo AS, McHaffie JG, Coghill
418		RC: The contribution of the putamen to sensory aspects of pain: insights from structural
419		connectivity and brain lesions. Brain 2011, 134:1987-2004.
420	45.	Segerdahl AR, Mezue M, Okell TW, Farrar JT, Tracey I: The dorsal posterior insula
421		subserves a fundamental role in human pain. Nat Neurosci 2015, 18:499-500.
422	46.	Villemure C, Bushnell MC: Mood influences supraspinal pain processing separately from
423		attention. J Neurosci 2009, 29:705-715.
424	47.	Piñerua-Shuhaibar L, Villalobos N, Delgado N, Rubio MA, Suarez-Roca H: Enhanced central
425		thermal nociception in mildly depressed nonpatients and transiently sad healthy subjects.
426		<i>J Pain</i> 2011, 12: 360-369.

Exposure				KOA vs Control							
BIDPs	Outcome	IDP short name	N (SNPs)	ß	SE	P value	OR	Method			
ID				<i>r</i>							
7	Knee OA (arcOGEN)	IDP_T1_SIENAX_white_normalised_volume	16	0.335593198	0.162237867	0.038590616	1.398769887	IVW			
8	Knee OA (arcOGEN)	IDP_T1_SIENAX_white_unnormalised_volume	15	0.364103774	0.172827997	0.035140062	1.439223561	IVW			
24	Knee OA (arcOGEN)	IDP_T1_FIRST_right_accumbens_volume	4	0.687650204	0.314952856	0.029010539	1.989036208	IVW			
126	Knee OA (arcOGEN)	IDP_T1_FAST_ROIs_L_putamen	18	0.225852679	0.086885759	0.009338113	1.253391001	IVW			
127	Knee OA (arcOGEN)	IDP_T1_FAST_ROIs_R_putamen	16	0.195681385	0.089810251	0.029344203	1.216139363	IVW			
144	Knee OA (arcOGEN)	IDP_T1_FAST_ROIs_L_cerebellum_crus_I	21	0.29906601	0.118375693	0.01152336	1.348598641	IVW			
146	Knee OA (arcOGEN)	IDP_T1_FAST_ROIs_R_cerebellum_crus_I	13	0.298411367	0.140955296	0.034254426	1.34771608	IVW			
181	Knee OA (arcOGEN)	aseg_global_volume_Optic-Chiasm	4	0.726762749	0.296972732	0.014395602	2.068373912	IVW			
201	Knee OA (arcOGEN)	aseg_lh_volume_Accumbens-area	9	0.489288172	0.242267012	0.043422446	1.631154705	IVW			
272	Knee OA (arcOGEN)	HippSubfield_rh_volume_presubiculum-body	5	0.576319605	0.236674376	0.014888747	1.779477185	IVW			
277	Knee OA (arcOGEN)	HippSubfield_rh_volume_CA3-body	6	0.518745785	0.230132289	0.024188622	1.679919348	IVW			
289	Knee OA (arcOGEN)	ThalamNuclei_lh_volume_PuI	3	0.517937664	0.237806723	0.029407721	1.678562318	IVW			
448	Knee OA (arcOGEN)	aparc-DKTatlas_lh_volume_lingual	6	0.63249724	0.207642094	0.002318357	1.882305283	IVW			
547	Knee OA (arcOGEN)	aparc-a2009s_lh_volume_S-circular-insula-inf	3	-1.017220792	0.427168845	0.017251259	0.361598502	IVW			
664	Knee OA (arcOGEN)	aparc-Desikan_lh_area_paracentral	3	0.744386864	0.331556352	0.024759836	2.105150295	IVW			
711	Knee OA (arcOGEN)	aparc-Desikan_rh_area_superiortemporal	3	-0.631373884	0.312334496	0.043231443	0.531860584	IVW			
786	Knee OA (arcOGEN)	BA-exvivo lh area BA4a	4	0.727435725	0.333183684	0.029014655	2.069766347	IVW			
824	Knee OA (arcOGEN)	aparc-DKTatlas lh area paracentral	3	0.739780786	0.333685688	0.026623171	2.095476105	IVW			
967	Knee OA (arcOGEN)	aparc-a2009s_rh_area_G-oc-temp-med-Lingual	9	0.421148192	0.188918775	0.025796919	1.523710063	IVW			
1028	Knee OA (arcOGEN)	aparc-Desikan lh thickness inferiortemporal	4	-0.695018214	0.276983682	0.012099164	0.499065358	IVW			
1029	Knee OA (arcOGEN)	aparc-Desikan_lh_thickness_isthmuscingulate	3	-0.752642108	0.310066749	0.015209361	0.471120157	IVW			
1084	Knee OA (arcOGEN)	aparc-Desikan rh thickness supramarginal	4	-0.587562051	0.280617622	0.036276252	0.555680355	IVW			
1099	Knee OA (arcOGEN)	BA-exvivo lh thickness MT	4	-0.683857342	0.288409946	0.017733815	0.504666562	IVW			
1214	Knee OA (arcOGEN)	aparc-a2009s lh thickness G-temporal-inf	4	-0.640463217	0.283699208	0.023974154	0.52704823	IVW			
1327	Knee OA (arcOGEN)	aseg global intensity 4th-Ventricle	5	-0.554646703	0.232468154	0.017037197	0.574275115	IVW			
1349	Knee OA (arcOGEN)	aseg lh intensity Accumbens-area	18	-0.182872874	0.09163022	0.04595893	0.832874029	IVW			

Table 1. The results of Forward MR (BIDPs were used as exposures).

1362	Knee OA (arcOGEN)	aseg_rh_intensity_Amygdala	3	-0.603116447	0.302801552	0.046394342	0.547103956	IVW
1363	Knee OA (arcOGEN)	aseg_rh_intensity_Accumbens-area	18	-0.186169809	0.086901398	0.032168475	0.830132619	IVW
1371	Knee OA (arcOGEN)	wg_lh_intensity-contrast_cuneus	18	0.225734307	0.113240385	0.046216772	1.253242643	IVW
1406	Knee OA (arcOGEN)	wg_rh_intensity-contrast_cuneus	22	0.280719327	0.10646927	0.008373584	1.324081918	IVW
1439	Knee OA (arcOGEN)	IDP_SWI_T2star_right_thalamus	5	-0.466016192	0.222154767	0.035930805	0.627497124	IVW
1491	Knee OA (arcOGEN)	IDP_dMRI_TBSS_FA_Fornix_cres+Stria_terminalis_L	8	0.710499467	0.297056239	0.016765921	2.035007423	IVW
1603	Knee OA (arcOGEN)	IDP_dMRI_TBSS_MD_Pontine_crossing_tract	4	-1.038511303	0.332764364	0.001803232	0.353981261	IVW
1651	Knee OA (arcOGEN)	IDP_dMRI_TBSS_L1_Pontine_crossing_tract	8	-0.86702052	0.219996619	8.11213E-05	0.420201668	IVW
1667	Knee OA (arcOGEN)	IDP_dMRI_TBSS_L1_Anterior_limb_of_internal_capsule_L	10	-0.471261642	0.186928873	0.011699703	0.624214237	IVW
1696	Knee OA (arcOGEN)	IDP_dMRI_TBSS_L1_Tapetum_R	3	-0.730049887	0.322082217	0.023411192	0.48188495	IVW
1704	Knee OA (arcOGEN)	IDP_dMRI_TBSS_L2_Corticospinal_tract_R	7	-0.525102523	0.25581608	0.04010591	0.59149472	IVW
1705	Knee OA (arcOGEN)	IDP_dMRI_TBSS_L2_Corticospinal_tract_L	7	-0.808443389	0.264859886	0.00227062	0.445551076	IVW
1747	Knee OA (arcOGEN)	IDP_dMRI_TBSS_L3_Pontine_crossing_tract	3	-1.100943965	0.385352012	0.004276894	0.332557013	IVW
1844	Knee OA (arcOGEN)	IDP_dMRI_ProbtrackX_L1_str_1	7	-0.37913881	0.185718772	0.041204395	0.684450597	IVW
1845	Knee OA (arcOGEN)	IDP_dMRI_ProbtrackX_L1_str_r	6	-0.484829751	0.239481298	0.042918791	0.615802027	IVW
1861	Knee OA (arcOGEN)	IDP_dMRI_ProbtrackX_L2_ifo_r	13	-0.291854609	0.132295676	0.027378524	0.746877117	IVW
1918	Knee OA (arcOGEN)	IDP_dMRI_TBSS_ICVF_Anterior_limb_of_internal_capsule_R	15	0.283740719	0.136324102	0.037400171	1.328088538	IVW
2053	Knee OA (arcOGEN)	IDP_dMRI_TBSS_ISOVF_Pontine_crossing_tract	4	-0.897098021	0.418801426	0.032188608	0.40775123	IVW
2059	Knee OA (arcOGEN)	IDP_dMRI_TBSS_ISOVF_Corticospinal_tract_L	4	-1.077645475	0.332915164	0.001207946	0.340396054	IVW
2069	Knee OA (arcOGEN)	IDP_dMRI_TBSS_ISOVF_Anterior_limb_of_internal_capsule_L	7	0.575327735	0.202738305	0.004542776	1.777713049	IVW
2093	Knee OA (arcOGEN)	IDP_dMRI_TBSS_ISOVF_Superior_longitudinal_fasciculus_L	8	0.374959486	0.18062504	0.037903219	1.454932468	IVW
2114	Knee OA (arcOGEN)	IDP_dMRI_ProbtrackX_ISOVF_ilf_1	10	0.30959031	0.141694168	0.02889477	1.362866647	IVW
2122	Knee OA (arcOGEN)	IDP_dMRI_ProbtrackX_ISOVF_slf_r	18	0.288203364	0.114741868	0.012013275	1.33402857	IVW
2124	Knee OA (arcOGEN)	IDP_dMRI_ProbtrackX_ISOVF_str_r	7	0.499842719	0.229576992	0.02946315	1.648461979	IVW

BIDPs: Brain imaging-derived phenotypes; SE: standard error; N(SNPs): Number of SNPs; IVW, inverse variance weighted.

			KOA vs Control						
Exposre	Outcome BIDPs ID	IDP short name	N (SNPs)	β	SE	P value	OR	Method	
Knee OA (arcOGEN)	18	IDP_T1_FIRST_right_pallidum_volume	4	0.0807	0.0355	0.02283319	1.084071738	IVW	
Knee OA (arcOGEN)	48	IDP_T1_FAST_ROIs_L_mid_temp_gyrus_post	4	-0.0681	0.0291	0.01914813	0.934167893	IVW	
Knee OA (arcOGEN)	54	IDP_T1_FAST_ROIs_L_inf_temp_gyrus_post	4	-0.0644	0.0291	0.02670215	0.937616755	IVW	
Knee OA (arcOGEN)	70	IDP_T1_FAST_ROIs_L_latocc_cortex_inf	4	-0.0680	0.0330	0.03922326	0.934306506	IVW	
Knee OA (arcOGEN)	94	IDP_T1_FAST_ROIs_L_parahipp_gyrus_post	4	-0.0573	0.0291	0.04864192	0.944294832	IVW	
Knee OA (arcOGEN)	100	IDP_T1_FAST_ROIs_L_temp_fusif_cortex_post	4	-0.0651	0.0291	0.02518339	0.936997495	IVW	
Knee OA (arcOGEN)	120	IDP_T1_FAST_ROIs_L_occ_pole	4	0.0573	0.0291	0.0485507	1.059016069	IVW	
Knee OA (arcOGEN)	128	IDP_T1_FAST_ROIs_L_pallidum	4	0.1003	0.0301	0.000843084	1.105519765	IVW	
Knee OA (arcOGEN)	129	IDP_T1_FAST_ROIs_R_pallidum	4	0.0795	0.0291	0.006267096	1.082702077	IVW	
Knee OA (arcOGEN)	185	aseg_global_volume_CC-Mid-Anterior	4	-0.0645	0.0296	0.02933929	0.937491629	IVW	
Knee OA (arcOGEN)	387	aparc-Desikan_rh_volume_lateralorbitofrontal	4	0.0635	0.0315	0.04388895	1.065567989	IVW	
Knee OA (arcOGEN)	555	aparc-a2009s_lh_volume_S-intrapariet+P-trans	4	0.0585	0.0296	0.0483287	1.06023644	IVW	
Knee OA (arcOGEN)	625	aparc-a2009s_rh_volume_S-front-inf	4	-0.0700	0.0296	0.01813876	0.932398762	IVW	
Knee OA (arcOGEN)	663	aparc-Desikan_lh_area_parahippocampal	4	-0.0852	0.0296	0.004024795	0.918324844	IVW	
Knee OA (arcOGEN)	731	aparc-pial_lh_area_parahippocampal	4	-0.0892	0.0296	0.00260549	0.91467058	IVW	
Knee OA (arcOGEN)	794	BA-exvivo_lh_area_perirhinal	4	-0.0586	0.0296	0.04777777	0.94304927	IVW	
Knee OA (arcOGEN)	823	aparc-DKTatlas_lh_area_parahippocampal	4	-0.0856	0.0296	0.003860497	0.917967942	IVW	
Knee OA (arcOGEN)	884	aparc-a2009s_lh_area_G-front-inf-Orbital	4	0.0631	0.0296	0.03326742	1.06509774	IVW	
Knee OA (arcOGEN)	894	aparc-a2009s_lh_area_G-oc-temp-med-Parahip	4	-0.0621	0.0296	0.03618754	0.93982923	IVW	
Knee OA (arcOGEN)	897	aparc-a2009s_lh_area_G-pariet-inf-Supramar	4	-0.0677	0.0296	0.022264	0.934526458	IVW	
Knee OA (arcOGEN)	917	aparc-a2009s_lh_area_S-cingul-Marginalis	4	0.0673	0.0296	0.0231901	1.069567969	IVW	
Knee OA (arcOGEN)	1045	aparc-Desikan_lh_thickness_rostralanteriorcingulate	4	0.0597	0.0296	0.04393311	1.061501961	IVW	
Knee OA (arcOGEN)	1057	aparc-Desikan_rh_thickness_caudalmiddlefrontal	4	-0.0702	0.0296	0.01783849	0.932228577	IVW	
Knee OA (arcOGEN)	1148	aparc-DKTatlas_rh_thickness_caudalmiddlefrontal	4	-0.0736	0.0296	0.01299452	0.929059077	IVW	
Knee OA (arcOGEN)	1306	aparc-a2009s_rh_thickness_S-interm-prim-Jensen	4	-0.0629	0.0296	0.03377106	0.939046801	IVW	

Table 2. The results of Reverse MR (BIDPs were used as outcomes).

Knee OA (arcOGEN)	1369	wg_lh_intensity-contrast_caudalanteriorcingulate	4	0.0709	0.0296	0.0166977	1.073473852	IVW
Knee OA (arcOGEN)	1392	wg_lh_intensity-contrast_rostralanteriorcingulate	4	0.1038	0.0296	0.000459863	1.109349492	IVW
Knee OA (arcOGEN)	1404	wg_rh_intensity-contrast_caudalanteriorcingulate	4	0.0753	0.0296	0.01108	1.078154766	IVW
Knee OA (arcOGEN)	1436	wg_rh_intensity-contrast_insula	4	0.0715	0.0296	0.01574411	1.074156369	IVW
Knee OA (arcOGEN)	1504	IDP_dMRI_ProbtrackX_FA_cgc_l	4	-0.0704	0.0299	0.0186896	0.932053046	IVW
Knee OA (arcOGEN)	1508	IDP_dMRI_ProbtrackX_FA_cst_l	4	-0.0646	0.0299	0.0308279	0.9374333	IVW
Knee OA (arcOGEN)	1538	IDP_dMRI_TBSS_MO_Inferior_cerebellar_peduncle_L	4	0.0690	0.0299	0.0210732	1.071457049	IVW
Knee OA (arcOGEN)	1551	IDP_dMRI_TBSS_MO_Superior_corona_radiata_R	4	-0.0756	0.0299	0.01155813	0.927222306	IVW
Knee OA (arcOGEN)	1552	IDP_dMRI_TBSS_MO_Superior_corona_radiata_L	4	-0.0718	0.0299	0.01642042	0.930722233	IVW
Knee OA (arcOGEN)	1723	IDP_dMRI_TBSS_L2_Superior_corona_radiata_L	4	0.0705	0.0299	0.01838723	1.073094253	IVW
Knee OA (arcOGEN)	1879	IDP_dMRI_ProbtrackX_L3_cgc_l	4	0.0794	0.0375	0.03446909	1.082627189	IVW
Knee OA (arcOGEN)	2001	IDP_dMRI_TBSS_OD_Superior_corona_radiata_R	4	0.0653	0.0299	0.0289965	1.067518184	IVW
Knee OA (arcOGEN)	2002	IDP_dMRI_TBSS_OD_Superior_corona_radiata_L	4	0.0715	0.0299	0.01689801	1.07409916	IVW
Knee OA (arcOGEN)	2060	IDP_dMRI_TBSS_ISOVF_Medial_lemniscus_R	4	-0.0639	0.0299	0.03268759	0.938088298	IVW
Knee OA (arcOGEN)	2061	IDP_dMRI_TBSS_ISOVF_Medial_lemniscus_L	4	-0.0626	0.0299	0.0364241	0.939316581	IVW
Knee OA (arcOGEN)	2125	IDP_dMRI_ProbtrackX_ISOVF_unc_1	4	0.0639	0.0299	0.0327	1.0660	IVW

BIDPs: Brain imaging-derived phenotypes; SE: standard error; N(SNPs): Number of SNPs; IVW, inverse variance weighted.