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Abstract 

Dissecting the genetic mechanisms underlying urinary metabolite concentrations can provide 

molecular insights into kidney function and open possibilities for causal assessment of urinary 

metabolites with risk factors and disease outcomes. Proton nuclear magnetic resonance 

metabolomics provides a high-throughput means for urinary metabolite profiling, as widely 

applied for blood biomarker studies. Here we report a genome-wide association study meta-

analysed for 3 European cohorts comprising 8,026 individuals, covering both people with type 1 

diabetes and general population settings. We identified 52 associations (p<9.3×10-10) for 19 of 54 

studied metabolite concentrations. Out of these, 32 were not reported previously for relevant 

urinary or blood metabolite traits. Subsequent two-sample Mendelian randomization analysis 

suggests that estimated glomerular filtration rate (eGFR) causally affects 13 urinary metabolite 

concentrations whereas urinary ethanolamine, an initial precursor for phosphatidylcholine and 

phosphatidylethanolamine, was associated with higher eGFR lending support for a potential 

protective role.   
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INTRODUCTION 

Urinary metabolite concentrations are read-outs of biological processes and can inform on the 

molecular basis of diseases. Automation of metabolomics technologies for urine analyses, such 

as nuclear magnetic resonance (NMR), has lacked behind blood profiling but now allows for 

accurate quantification at an entire cohort scale. This may pave way for wide-spread 

epidemiological and translational applications analogous to plasma NMR profiling (e.g. in the UK 

Biobank1). Such recent studies have, for example, highlighted 10 urinary metabolites being 

predictive of diabetic kidney disease (DKD) progression in individuals with type 1 diabetes (T1D)2 

and multiple associations between 49 clinical measures and 12 urinary metabolites in a general 

population setting3. 

 

Studying the genetic regulation of urinary metabolites can reveal novel biological pathways 

behind the identified biomarkers. Specific to the urinary biomarkers, is that they can either reflect 

the systemic (blood) biomarker levels but provide a less tightly regulated and more accessible 

source of biomarker material compared with blood; or they can reflect changes in the kidney 

function, related either to changes in the glomerular filtration rate, increased leakage of 

molecules into the urine, changes in tubular reabsorption into the blood, or originating from the 

kidney or the urinary system tissue.  

 

Previous research on the genetics of urinary metabolites has identified several hundred loci 

associated with urinary metabolites4–7. Schlosser et al. (2023) identified 622 genomic intervals 

associated with urinary metabolite concentrations across 1,399 metabolites measured in 4,912 

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 21, 2023. ; https://doi.org/10.1101/2023.12.20.23300206doi: medRxiv preprint 

https://doi.org/10.1101/2023.12.20.23300206
http://creativecommons.org/licenses/by/4.0/


individuals7. Moreover, a study in the UK Biobank identified multiple loci associated with four 

clinical urinary laboratory measurements in 363,228 individuals8. Here, balancing between large 

sample size and extensive molecular coverage, we study 54 urinary metabolites in 8,026 

individuals to further characterise genetics of urinary metabolites. 

 

If a given urinary metabolite is found to be associated with a specific disease, the information on 

the genetic variants associated with urinary metabolites can be applied to infer potential causal 

relationships between urinary metabolites and the disease in question using a Mendelian 

randomization (MR) approach. Causal analysis benefits from multiple robust genetic instruments: 

although our study includes fewer metabolites than Schlosser et al. (2023), the larger sample size 

gives us power to potentially identify more associations with urinary metabolites. 

 

This study investigated single nucleotide variants (SNVs) associated with 54 urinary metabolites 

measured by NMR in one Finnish cohort of individuals with type 1 diabetes (T1D) and two Scottish 

cohorts from a general population setting including in total 8,026 individuals. Furthermore, we 

characterized the identified associations and their molecular basis by analysing the variants’ 

effect on gene expression harnessing relevant expression quantitative trait loci (eQTL) data. 

Moreover, causal relationships were identified between the metabolites and relevant 

phenotypes using MR analysis. 
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RESULTS 

Genome-wide association study identified 52 associations with urinary metabolites 

We performed genome-wide association studies (GWAS) of 54 urinary metabolites in 3 cohorts 

followed by a meta-analysis (Methods). The analysis included in total 8,026 individuals from the 

Finnish Diabetic Nephropathy Study (FinnDiane, n= 3,244)9,10, Generation Scotland (GS, n= 

2,743)11, and the VIKING study (VIKING, n= 2,027)12 (Figure 1, Supplementary Table 1). We 

measured 54 urinary metabolites with the Nightingale Health urine NMR platform 

(Supplementary Table 2 and 3). The metabolites were quantified in absolute concentrations and 

normalized with urinary creatinine concentration prior to GWAS analysis. Here we report 

associations for variants found in at least 2 out of 3 cohorts and with a minor allele frequency 

(MAF) ≥ 1%. 

 

We identified 26 chromosomal regions harbouring associations with at least one metabolite 

amongst the 54 metabolites meta-analysed across the three cohorts (p-value < 9.3×10-10; Figure 

2, Methods). In total, the regions contained 34 associations with 19 unique urinary metabolites 

and three of the 26 regions showed evidence of pleiotropy: the loci on chromosomes 5p15.33 

and 17q12 associated with 5 and 4 amino acids respectively, and a locus on chromosome 7p21.1 

associated with quinic acid and trigonelline.  

 

The urinary metabolite heritability meta-analysis estimates ranged from 0% to 36%, being the 

highest for urinary citrate (36%), 3-aminoisobutyrate (33%), and tyrosine (29%) concentrations 

(Supplementary Table 4, Supplementary Figure 1, Methods). Altogether 27 metabolites showed 
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evidence of heritability ranging from 6% to 36% (p < 0.05). Only 2 out of the 27 metabolites, 

glycine and 2-hydroxyisobutyrate, showed evidence of between study heterogeneity in 

heritability estimates (p < 0.05). 

 

We performed conditional and joint multiple-SNV analysis13 to pinpoint independent signals 

within these loci and found 52 study-wide significant associations (p < 9.3×10-10) (Supplementary 

Figure 2 and Supplementary Table 5, Methods). In total, 6 metabolites had multiple signals in the 

same locus, notably, a region on chromosome 5p13.2 had 13 associations with 3-

aminoisobutyrate. Of the 52 associations, 31 signals were novel for urinary or blood metabolite 

traits (Table 1), whereas 21 associations were previously reported for relevant urinary and/or 

blood metabolite traits (Supplementary Table 6). The novel signals included 9 associations with 

3-aminoisobutyrate, 4 associations with glycine, 2 associations with 3-hydroxyisovalerate, 4-

deoxyeryhronic acid, threonine, and xylose, and finally, single associations with 3-

hydroxyisobutyrate, 4-deoxythreonate, citrate, ethanolamine, formate, propylene glycol, quinic 

acid, trigonelline, tryptophan, and tyrosine (Table 1).  

 

Four of the 52 lead variants were missense variants, two representing previously unknown 

metabolite associations. rs11567842 (SLC13A2 p.Ile599Leu) was associated with urinary citrate 

concentration and has previously been associated with blood urea nitrogen concentration14. 

SLC13A2 encodes Solute Carrier Family 13 Member 2, which is a kidney sodium-coupled citrate 

transporter15. We have previously shown that urinary citrate concentration is associated with 

progression of DKD2. The citrate-associated rs11567842 was nominally associated with multiple 
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DKD phenotypes (p=0.03-0.001)16 and with eGFR in the general population (p=0.012)17, although 

these genetic associations did not remain after correction for multiple testing. At a locus on 

chromosome 5p13.2, including 13 independent signals associated with 3-aminoisobutyrate, two 

of the lead variants were missense variants but in two different genes: rs37369 (AGXT2 

p.Val140Ile) and rs2308957 RAD1 p.Gly114Asp. The rs37369 (AGXT2 p.Val140Ile) variant has 

previously been associated with urinary and plasma 3-aminoisobutyrate levels18,19 whereas 

rs2308957 (RAD1 p.Gly114Asp) is novel. Other lead variants in the region were eQTLs for AGXT2 

or both AGXT2 and RAD1 in the kidney. AGXT2 encodes alanine–glyoxylate aminotransferase 2, 

expressed in kidney and liver in the human protein atlas, and is the biologically more plausible 

gene underlying the association signal. In single-cell RNAseq of human kidneys, the gene is 

expressed specifically in the proximal convoluted tubules (Supplementary Figure 3)20. RAD1 

encodes a ubiquitously expressed component of the 9-1-1 cell-cycle checkpoint response 

complex that plays a major role in DNA repair. Finally, rs1047891 (CPS1 p.Thr1406Asn) has 

previously been associated with 266 traits including the currently observed glycine association in 

plasma21, as well as with eGFR22. 

 

Of note, all the identified missense variants were predicted to be tolerated or benign by SIFT and 

PolyPhen.2 algorithms, but they may be sufficient to cause subtle changes in the protein function 

seen as altered urinary metabolite concentrations. 
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eQTL data in kidney and whole blood highlights membrane transport proteins 

As most of the identified lead variants were non-coding, they most likely represent regulatory 

variants affecting gene expression. We utilized expression quantitative trait loci (eQTLs) data 

from kidney (tubular and glomerular tissues) and whole blood to assess whether the identified 

variants influence the expression of nearby genes (Methods). 

 

Among the identified variants, 26 were cis-eQTLs, i.e., associated with gene expression of a 

nearby gene, in either kidney tubules, glomeruli, and/or whole kidney (p<5.3×10-4). The 

associated genes included five solute carrier genes that transport solutes across cell membranes: 

SLC5A9 (Sodium/Glucose Cotransporter 4 [SGLT4]), SLC6A19 (Sodium-Dependent Neutral Amino 

Acid Transporter B(0)AT1), SLC6A18 (Sodium- And Chloride-Dependent Transporter XTRP2), 

SLC16A10, and SLC6A13 (Table 2). An intronic variant in the SLC5A9 gene, rs10788884, was 

associated with urinary xylose concentrations and represents a new metabolite association. 

Rs10788884 is a strong eQTL for SLC5A9 in the kidneys (p=3.4×10-52) as well as separately for the 

kidney tubules (p=3.4×10-33) and the glomeruli (p=4.3×10-26). The variant has previously been 

associated with serum uric acid14 and urate23, and urinary mannose7. SLC5A9 encodes a sodium-

dependent glucose transporter (SGLT4) that is expressed in the intestine and the kidneys and is 

an essential transporter for mannose, 1,5-anhydro-D-glucitol, and fructose24. 

 

In the SLC6A18 – SLC6A19 locus, the tyrosine and tryptophan-associated rs7704882 and 

rs7704058 (in full LD in the European population: r2=1), represent a novel metabolite association 

independent from a previously known intergenic metabolite locus 37 kbp away, rs11133665. Also 
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rs11133665 was associated with tryptophan and tyrosine in our data, in addition to glycine, 

histidine, and threonine. The rs11133665 variant has previously been associated with urinary 6-

bromotryptophan, kynurenine, tryptophan, phenylalanine, tyrosine, 3-hydroxykynurenine, and 

histidine/τ-methylhistidine4,25,26, as well as eGFR in the CKDGen data17 (Table 3). The rs11133665 

variant was also associated with SLC6A19 gene expression in the kidneys (Table 2). On the 

contrary, rs7704882 and rs7704058 are strong SLC6A18 eQTLs for pooled kidney (6.5×10-33), as 

well as in the kidney tubules and glomeruli. However, the association signal for tyrosine around 

rs7704882 shows evidence of colocalization with the secondary SLC6A19 eQTL signal (Figure 3 

and Supplementary Figure 4); thus, it remains unclear whether this novel association affects 

SLC6A18, SLC6A19, or both. In the human protein atlas, SLC6A18 is specifically expressed in the 

kidneys. SLC6A18 encodes a sodium cotransporter for neurotransmitters, amino acids, and 

osmolytes like betaine, taurine, and creatine. SLC6A19 is expressed especially in the kidney 

proximal tubules in the scRNAseq data20, and it encodes a sodium-dependent neutral amino acid 

transporter that mediates resorption of neutral amino acids across the apical membrane of 

kidney and intestinal epithelial cells. Of note, tyrosine was one of the amino acids associated with 

progression of DKD to kidney failure in our previous observational study2. 

 

The other kidney eQTLs for solute carrier family proteins represent previously known metabolite 

associations: rs241768 associated with tyrosine and a kidney eQTL for SLC16A10 (p=4.4×10-07); 

and rs2080403 associated with 3-aminoisobutyrate and a kidney eQTL for SLC6A13 (p=1.5×10-22). 

The 3-aminoisobutyrate signal also colocalized with the SLC6A13 blood eQTL signal (posterior 
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probability (PP)=0.82; Table 2; Supplementary Figure 5) suggesting 3-aminoisobutyrate as an 

unknown substrate of SLC6A13 as hypothesized before4,27. 

 

In addition, the three variants that associated with glycine on chromosome 5q33.1 included two 

intronic variants, rs61067578 and rs147000073, in the SLC36A2 gene encoding a proton-coupled 

amino acid transporter involved in the reabsorption of small amino acids such as glycine, proline, 

and alanine in the proximal tubules of the kidneys28. The third independent variant rs72794144 

is an intronic variant in the neighbouring GM2A (Ganglioside GM2 Activator) gene encoding a 

small glycolipid transport protein. However, we did not detect any significant kidney eQTL 

associations for these variants.  

 

Finally, rs62313082 upstream of RCC2P8 gene associated with urinary ethanolamine. This variant 

has no previously reported associations in the GWAS catalog, however, it is a kidney eQTL for 

ETNPPL (p=1.2×10-34, Table 2), which catalyses breakdown of phosphoethanolamine29, and thus, 

represents a plausible gene underlying the metabolite association. Rs2472479 on chromosome 

9 was associated with 3-hydroxyisobutyrate. The variant is located upstream of NIPSNAP3B 

(Nipsnap Homolog 3B), but was a kidney eQTL (p=9.7×10-21) for NIPSNAP3A (Nipsnap Homolog 

3A); the genes belong to a family of proteins with putative roles in vesicular transport30. 

 

We further extended the eQTL look-ups to eQTLGen whole blood data31, where we were able to 

investigate also eQTL signal colocalization with the metabolite association signals (Methods). 

Even though the eQTLGen data may not detect eQTLs for genes only expressed in specific target 
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tissues such as kidneys, with 31,684 samples it has higher power to detect also weaker signals 

for general eQTL associations. The 52 lead variants that associated with the urinary metabolites 

had altogether 106 eQTLs in whole blood (p< 5.5×10-5; Supplementary Table 7), but only 34 eQTL 

and metabolite signal pairs showed evidence of colocalization (PP>0.5) and 24 of the 34 signals 

resulted from eQTL signals for 6 genes colocalizing with 4 amino acid signals in a single region on 

chromosome 17q12 (Table 2). Altogether 9 colocalized eQTL target genes were not detected as 

eQTLs in the kidney eQTL datasets. Novel but plausible findings include, e.g., a glycine-associated 

variant rs62565993 on chromosome 9p24.1, 4kb upstream of GLDC (Glycine Decarboxylase), 

which was a strong eQTL for GLDC in whole blood (p=2.4×10-79) and the glycine signal colocalizes 

with the eQTL signal for GLDC (PP=0.98). GLDC encodes a component of the glycine cleavage 

system catalysing the degradation of glycine32, and is a potential causal gene for the urinary 

glycine association. 

 

Gene set, pathway and tissue enrichment analyses  

To gain insight into the relevant tissues and molecular pathways underlying the urinary 

metabolite concentrations, we performed two different types of gene set enrichment analyses 

(Methods). As a first approach, we used MAGMA gene set analysis that first annotates all 

variants, without any p-value threshold, to the underlying or flanking genes and evaluates the 

gene-level significance. MAGMA tissue expression analysis identified a positive relationship 

between the highly expressed genes in adipose tissue and cis-Aconitate genetic associations 

(p=6.9×10-5); as well as between kidney and glycine (p=1.5×10-4) and pituitary gland and 

pyroglutamate (Supplementary Table 10); confirmatory with prior studies. 
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MAGMA gene set enrichment analysis identified nine significantly enriched gene sets (p-value < 

3×10-6, Supplementary Table 11). After the strongest enrichment between tyrosine and the 

positional chr5p15 breast cancer locus, the second strongest enrichment was obtained between 

threonine and tachykinin receptors bind tachykinins pathway (p=1.1×10-7). Of note, the five 

tachykinin and their receptor genes are all located in different chromosomes, thus representing 

a true genome-wide enrichment. Tachykinins are neuropeptides derived from alternate 

processing of the three tachykinin genes. They are expressed throughout the nervous and 

immunological system, participate in a variety of physiological processes, and contribute to 

multiple disease processes, including acute and chronic inflammation and pain, fibrosis, affective 

and addictive disorders, functional disorders of the intestine and urinary bladder, infection, and 

cancer33. Other significant gene sets included enrichment between 4-deoxyerythronic acid and 

pyruvate family amino acid metabolic process genes, 3-hydroxyisovalerate and uronic acid 

metabolic process genes, glycolic acid and eukaryotic translation initiation factor 3 complex 

proteins, tryptophan and genes involved in APC/C:Cdc20 mediated degradation of Cyclin B, and 

4-deoxythreonate and genes involved in neuron intrinsic apoptotic signaling pathway in response 

to oxidative stress.  

 

Since the gene potentially underlying the observed association in GWAS is not always the 

affected or closest gene, we also utilized the FUMA gene set enrichment analysis as a 

complementary approach. We included only variants reaching a p-value < 1×10-5, but utilised 

eQTL associations in addition to the positional mapping of variants to genes. Altogether 26 of the 
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54 metabolites were found to have significant (p<0.05) associations with gene set pathways 

following FUMA analysis (Supplementary Table 12). The metabolites 3-aminoisobutyrate, 

histidine, threonine, tryptophan, tyrosine and valine were associated with eGFR, and 4-

deoxyerythronic acid was associated with urate concentrations, suggesting a role in kidney 

health. 

 

Breast cancer was found to be most abundant with related pathways significantly associated with 

12 of the metabolites, followed by asthma-related pathways which were significantly associated 

with 11 metabolites. Of note, the cancer gene sets typically represent single chromosomal loci 

with a gene cluster, rather than genome-wide enrichment. The amino acid biomarkers histidine, 

threonine, tryptophan, tyrosine, and valine showed very similar results being significantly 

associated with the same pathways. These include inflammatory bowel disease, atrial fibrillation, 

rheumatoid arthritis, menopause, systemic lupus erythematosus and polycystic ovary syndrome. 

This is due to a GWAS hit on chromosome 17q12, which is present in all 5 amino acids and thus 

driving most of the associations with the gene set pathways. 

 

Kidney health causally affects urinary metabolites 

As urinary metabolites may reflect kidney health, we investigated whether the identified variants 

are also associated with kidney disease traits in the general population (CKDGen meta-analysis)17 

and in individuals with diabetes (DNCRI-SUMMIT meta-analysis)16 (Methods). Indeed, seven of 

the variants were genome-wide significantly (p<5×10-8) associated with estimated glomerular 

filtration rate (eGFR), a main measure to monitor kidney health, and 4 variants with chronic 
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kidney disease (CKD) (p<3.6×10-4) in the general population. Four variants were also nominally 

(p<0.05) associated with DKD or kidney failure in diabetes (Table 3). 

 

As multiple urinary metabolite associated variants were also associated with kidney disease traits 

we tested whether kidney health causally affects urinary metabolite concentrations. We 

performed two sample Mendelian randomization analysis using two kidney function markers, 

eGFR and urinary albumin-creatinine ratio (UACR), as the exposures, and metabolite 

concentrations as the outcomes (Supplementary Table 8, Methods). A genetic instrument for 

eGFR, composed of 150 independent genome-wide significant SNVs, identified in the CKDGen 

GWAS meta-analysis17 was associated (p<4.7×10-4) with the urinary metabolite concentrations of 

4 amino acids (alanine, glutamine, leucine, and valine), as well as 9 other metabolites: 2-

hydroxyisobutyrate, 3-hydroxyisovalerate, ethanolamine, formate, glycine, glycolic acid, 

pseudouridine, pyroglutamate, and uracil (Supplementary Table 9, Supplementary Figure 6). This 

suggests a causal association of glomerular filtration rate on these urinary metabolites. For all 

the metabolites, higher eGFR was associated with higher metabolite concentration in the urine. 

The causal effects were directionally consistent across different MR analysis methods for all 

outcomes except for pyroglutamate and glycine. Furthermore, eGFR remained associated 

(p<0.05) with glycolic acid, 3-hydroxyisovalerate, and pseudouridine even with the MR Egger 

method more robust against pleiotropic effects. As eGFR causally affected multiple metabolites 

we tested if adjusting the GWAS analysis with eGFR affected the metabolite associations in 

FinnDiane. However, adjustment with eGFR had little effect on the effect estimate for the 41 

COJO lead variants included in the FinnDiane GWAS data set (Supplementary Figure 7). 
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Urinary metabolites potentially causally linked to kidney function and body mass index 

We also performed two sample Mendelian Randomization to test whether urinary metabolites 

are causal risk factors or reflect causal biological processes leading to CKD and other chronic 

diseases (Supplementary table 8, Methods). The analysis suggested that higher urinary 3-

hydroxyhippurate, quinic acid and trigonelline concentrations are causally associated with higher 

body mass index (BMI), lower urinary creatinine concentration and higher UACR (i.e., reflecting 

worse kidney health), and contradictorily, with higher eGFR (i.e., reflecting better kidney health; 

estimated from serum creatinine; Table 4); all three metabolites are found in coffee, and the 

rs2106727 and rs6968554 variants in the AHR locus associated with the three urinary 

metabolites, are in strong LD with rs4410790, that was associated with caffeine intake (p=2.0×10-

249)34. Indeed, a previous MR study suggested that coffee consumption has a beneficial effect on 

kidney function and albuminuria35. Why the three urinary metabolites were associated with 

higher UACR in our data remains unclear. For BMI, previous MR studies have found contradictory 

evidence regarding the causality between coffee consumption and BMI or obesity36,37.  In general, 

the urinary metabolites may provide a more exact estimate of the coffee intake than self-

reported data on coffee consumption. However, we note that the AHR variants rs2106727 and 

rs6968554 are associated also with other traits such as blood lipid concentrations in the GWAS 

catalog (p<5×10-8), indicating potential pleiotropic effects. 

 

In addition, the genetic instrument for urinary ethanolamine, was associated with higher eGFR 

(p=6.1×10-8). The genetic instrument was based on the rs62313082 variant which is also a kidney 
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eQTL for ETNPPL gene (Table 2 and 4). Moreover, MR analysis suggested that genetic instruments 

for urinary 1-methylnicotinamide (p=2.3×10-5) and 4-deoxythreonate (p=7.6×10-5) were 

associated with higher body mass index (BMI; Table 4). However, all significant MR analysis 

findings were based on only one or two significant variants available for each metabolite and 

need to be interpreted with caution; the largest number - 8 genetic variants – were available for 

MR for 3-hydroxyisovalerate, which was not associated with any of the studied outcomes 

(p>0.01). 

 

DISCUSSION 

To our knowledge this meta-analysis of three large cohorts represents the largest GWAS on 

urinary NMR metabolomics to date, enabling us to detect previously unidentified associations 

with urinary metabolites. We identified 52 genetic associations with urinary metabolites, of 

which 31 were novel. In line with the notion that GWAS findings for complex diseases are 

enriched for regulatory variants38, many of the metabolite associations were outside genes, but 

were strongly associated with gene expression in the whole kidney, tubules and glomeruli, for 

example, solute carriers SLC6A18 and SLC6A19. While it is overall not surprising to find kidney 

associations for urinary metabolites, our findings may help to further describe how the kidneys 

regulate systemic metabolism by filtration and reabsorption. 

 

Additionally, we observed 4 amino acids and 9 additional metabolites whose urinary 

concentrations were causally influenced by the glomerular filtration rate in the kidneys. This 

finding suggests that the glomerular filtration rate needs to be considered when investigating 
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these metabolites as potential biomarkers of disease risk. On the other hand, MR analysis 

suggested that urinary ethanolamine was associated with higher eGFR lending support for a 

potential causal protective role. The association was based on the rs62313082 variant which is 

associated with higher urinary ethanolamine concentration, higher eGFR, and lower ETNPPL gene 

expression in the kidneys. The ETNPPL gene encodes for Ethanolamine-Phosphate Phospho-

Lyase that catalyses the breakdown of phosphoethanolamine. Ethanolamine is an initial 

precursor for phosphoethanolamine and for the biosynthesis of two primary phospholipid 

classes, phosphatidylcholine (PC) and phosphatidylethanolamine (PE), as well as 

sphingophospholipid and a variety of N-acylethanolamines. The ETNPPL gene was recently 

implicated also in hyperinsulinemia-induced insulin resistance39.  

 

Furthermore, MR analysis suggested 1-methylnicotinamide as a causal risk factor for BMI. 

Indeed, serum levels of 1-methylnicotinamide were positively correlated with BMI in 

observational setting40, and a caloric restriction and exercise intervention suggested that 1-

methylnicotinamide enhances the utilization of energy stores in response to low muscle energy 

availability41. Thus, our findings support the previous suggestion of 1-methylnicotinamide as an 

early marker for metabolic disease41. Altogether, our findings, and the genome-wide metabolite 

results could be utilized to test and support biological hypotheses originating from observational 

studies. 

 

Our study included individuals with reduced glomerular filtration rate potentially enhancing our 

power to detect associations as previous studies have shown that genetic studies on urinary 
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metabolites in individuals with CKD can detect signals that would be harder to detect in the 

general population alone25. It is however important to note, that adding eGFR as a kidney 

filtration covariate in the GWAS did not have a significant impact on our genetic association 

results. As a limitation, the study participants were mostly of European origin and further studies 

are required to investigate generalizability of our findings to other populations. 

 

Altogether, we provide a catalogue of genetic associations for 53 metabolites, which can be 

utilized, for example, to investigate how urinary metabolites are linked to human health and 

disease risk. 
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TABLES AND FIGURES 
 
Table 1 
 
Table 1. Variants associated with metabolites (p < 9.3×10-10) with no previously reported associations in the GWAS catalogue with 
the same metabolite in blood or urine (window size=-/+500kb, r2 > 0.8, and p < 5×10-8). 

CHR:POS:EA:NEA Rsid Gene Variant type Metabolite EAF Beta (SE) P N 
Prev. 

Associations 

1:6334301:A:G rs114200864 ACOT7 intron 3-Hydroxyisovalerate 0.041 -0.28 (0.05) 2.9×10-10 6862 No 

1:11940483:T:C rs4846068 SBF1P2 / 1p36.22 downstream (0.02kb) Formate 0.585 0.13 (0.02) 2.2×10-15 8193 Yes 

1:48690229:A:C rs10788884 SLC5A9 intron Xylose 0.674 0.11 (0.02) 1.1×10-10 7696 Yes 

2:241813788:T:C rs10933641 AGXT intron 4-Deoxyerythronic acid 0.277 0.19 (0.02) 2.6×10-20 7714 Yes* 

3:182758040:T:C rs4859267 MCCC1 intron 3-Hydroxyisovalerate 0.294 0.13 (0.02) 1.3×10-12 8276 Yes 

4:88213884:T:C rs6811902 MIR5705 / 4q22.1 downstream (8kb) Propylene Glycol 0.601 -0.16 (0.02) 2.8×10-20 5357 Yes 

4:109716840:A:T rs62313082 RCC2P8 / 4q25 upstream (6kb) Ethanolamine 0.379 0.14 (0.02) 7.7×10-16 7164 No 

5:1188285:A:G rs11133665 TERLR1 / 5p15.33 upstream (10kb) Glycine 0.261 -0.13 (0.02) 1.6×10-13 8232 Yes 

5:1188285:A:G rs11133665 TERLR1 / 5p15.33 upstream (10kb) Threonine 0.259 -0.15 (0.02) 1.3×10-16 8417 Yes 

5:1225434:T:C rs7704882 SLC6A18 / 5p15.33 upstream (0.06kb) Tyrosine 0.794 -0.20 (0.02) 4.6×10-24 8344 No* 

5:1225613:A:G rs7704058 SLC6A18 synonymous Tryptophan 0.796 -0.15 (0.02) 5.1×10-14 8213 No* 

5:34584621:A:C rs16903139 RAI14-DT / 5p13.2  downstream (70kb) 3-Aminoisobutyrate 0.914 0.23 (0.03) 5.0×10-14 6256 No* 

5:34853162:T:C rs338296 TTC23L intron 3-Aminoisobutyrate 0.428 0.12 (0.02) 8.0×10-11 6368 No* 

5:34868497:A:T rs72732827 TTC23L 3′-UTR 3-Aminoisobutyrate 0.987 -0.60 (0.08) 1.2×10-13 5463 No* 

5:34896132:A:G rs138425947 TTC23L intron 3-Aminoisobutyrate 0.978 -0.51 (0.07) 5.4×10-14 4682 No* 

5:34899723:T:C rs56007938 TTC23L 3′-UTR 3-Aminoisobutyrate 0.015 0.66 (0.08) 1.1×10-17 5419 No* 

5:34911884:T:C rs2308957 RAD1 missense: p.Gly114Asp 3-Aminoisobutyrate 0.015 -0.78 (0.09) 3.2×10-18 4407 No* 

5:34982167:T:C rs116116288 AGXT2 / 5p13.2 downstream (20kb) 3-Aminoisobutyrate 0.012 0.88 (0.09) 8.2×10-25 5377 No* 

5:35000653:T:C rs7737763 AGXT2 intron 3-Aminoisobutyrate 0.434 -0.44 (0.03) 2.5×10-67 6312 No* 

5:35152241:T:C rs954286 PRLR intron 3-Aminoisobutyrate 0.939 0.26 (0.04) 2.1×10-12 6489 No* 

5:150624099:T:C rs72794144 GM2A intron Glycine 0.028 0.38 (0.06) 2.5×10-11 7282 No* 

5:150702299:A:G rs61067578 SLC36A2 intron Glycine 0.842 0.24 (0.02) 1.1×10-24 8306 Yes* 

7:17287998:A:G rs2106727 AHR intron Quinic acid 0.353 -0.12 (0.02) 3.1×10-13 8295 Yes 

7:17287998:A:G rs2106727 AHR intron Trigonelline 0.355 -0.10 (0.02) 6.5×10-11 8640 Yes 

8:74868909:A:G rs72661850 ELOC intron 4-Deoxyerythronic acid 0.691 -0.12 (0.02) 1.5×10-11 7976 Yes 

9:6649491:T:C rs62565993 GLDC / 9p24.1 upstream (4kb) Glycine 0.124 0.20 (0.03) 3.4×10-14 7119 No 

9:107525165:T:G rs2472479 NIPSNAP3B / 9q31.1 upstream (1kb) 3-Hydroxyisobutyrate 0.565 -0.16 (0.02) 5.0×10-22 8108 No 
9:136146597:T:C rs550057 ABO intron Xylose 0.244 0.20 (0.02) 8.9×10-26 7450 Yes 

12:4521511:A:T rs78470967 FGF6 / 12p13.32 downstream (20kb) 4-Deoxythreonate 0.043 0.34 (0.04) 2.0×10-14 6377 Yes 

17:26824156:A:G rs11567842 SLC13A2 missense: p.Ile599Leu Citrate 0.642 -0.11 (0.02) 3.0×10-13 8209 Yes 

17:37631883:C:G rs11078902 CDK12 intron Threonine 0.241 -0.12 (0.02) 3.7×10-10 7570 Yes 
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CHR:POS:EA:NEA: Chromosome position (GRCh37), effect allele, and non-effect allele. Rsid: variant rs-identifier. Gene: Closest gene. 
Variant type: consequence of the variant on the protein sequence. Closest genes and variant types found using Ensembl VEP 
(GRCh38 v110). Metabolite: the associated urinary metabolite. EAF: effect allele frequency. Beta (SE): effect estimate for the effect 
allele (effect estimate standard deviation). P: p-value of the association. N: number of individuals in the analysis. Prev. Associations: 
previous associations found in GWAS catalog. *: novel independent signal in a previously reported locus for the same metabolite.  
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Table 2 
 
Table 2. Expression quantitative trait loci (eQTL) target genes in kidney, glomeruli and tubule (p < 5.3× 10-4) for the COJO lead 
signals, and target genes of whole blood eQTL signals colocalizing (PP > 0.5) with COJO lead signals. 

   eQTL Colocalization 

Chr:pos Rsid Metabolite Kidney Glomeruli Tubule Blood 

1:11940483 rs4846068 Formate PLOD1 (1.8×10-05)p    

1:48690229 rs10788884 Xylose SLC5A9 (3.4×10-52) SLC5A9 (4.3×10-26) SLC5A9 (3.4×10-33)  

1:151904146 rs2999545 3-Hydroxyisovalerate THEM4 (5.8×10-25) 
S100A10 (1.8×10-05)p 

THEM4 (1.6×10-17) 
S100A10 (1.7×10-06) 

THEM4 (4.0×10-18) THEM4 (0.97) 

2:135598913 rs17322446 1-Methylnicotinamide TMEM163 (3.7×10-14) TMEM163 (5.5×10-09) 
AC016725.4 (3.0×10-06) 

TMEM163 (7.6×10-10) AC016725.4 (0.84) 
CCNT2 (0.54) 

2:241793545 rs55649245 4-Deoxyerythronic acid  AGXT (6.8×10-07)   

2:241813788 rs10933641 4-Deoxyerythronic acid MAB21L4 (3.2×10-32) 
AGXT (1.6×10-25) 

AGXT (6.9×10-17) 
C2orf54 (1.4×10-16) 

C2orf54 (8.4×10-19) 
AGXT (1.1×10-15) 

 

3:182758040 rs4859267 3-Hydroxyisovalerate MCCC1 (7.3×10-06)p   MCCC1-AS1 (0.7) 

4:88213884 rs6811902 Propylene Glycol HSD17B11 (2.1×10-09) HSD17B11 (1.9×10-06)p HSD17B11 (8.6×10-07)  

4:109716840 rs62313082 Ethanolamine ETNPPL (1.2×10-34) ETNPPL (2.9×10-19) ETNPPL (1.6×10-29)  

5:1188285 rs11133665 Glycine, Histidine, Threonine, Tryptophan, 
Tyrosine 

SLC6A19 (3.0×10-15) SLC6A19 (1.8×10-11) SLC6A19 (1.1×10-11)  

5:1225434 rs7704882 Tyrosine SLC6A18 (6.5×10-33) SLC6A18 (1.2×10-14) SLC6A18 (5.4×10-18)  

5:1225613 rs7704058 Tryptophan SLC6A18 (1.3×10-32) SLC6A18 (1.3×10-14) SLC6A18 (5.1×10-18)  

5:34993215 rs11744796 3-Aminoisobutyrate AGXT2 (4.3×10-11) 
DNAJC21 (4.4×10-10)p 
RAD1 (6.5×10-05) 

AGXT2 (1.8×10-10) 
DNAJC21 (4.2×10-08) 

AGXT2 (1.2×10-11) 
DNAJC21 (4.2×10-07)p 

 

5:35039437 rs2279651 3-Aminoisobutyrate AGXT2 (6.3×10-07)  AGXT2 (5.8×10-07)  

5:35152241 rs954286 3-Aminoisobutyrate PRLR (5.2×10-06)p PRLR (1.1×10-06)   

6:111492119 rs241768 Tyrosine SLC16A10 (4.4×10-07)  SLC16A10 (2.5×10-08)  

9:6649491 rs62565993 Glycine    GLDC (0.98) 

9:107525165 rs2472479 3-Hydroxyisobutyrate NIPSNAP3A (9.7×10-21) NIPSNAP3A (9.4×10-15) NIPSNAP3A (1.3×10-13)  

9:136146597 rs550057 Xylose ABO (4.5×10-60)   ABO (0.87) 

12:345369 rs2080403 3-Aminoisobutyrate SLC6A13 (1.5×10-22) 
CCDC77 (3.3×10-14) 
AC007406.2 (2.5×10-08) 

SLC6A13 (5.7×10-16) SLC6A13 (9.9×10-22) 
CCDC77 (1.3×10-10) 
RP11-283I3.4 (8.7×10-

09) 

SLC6A13 (0.82) 
NINJ2 (0.61) 
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12:122344302 rs1795967 2-Hydroxyisobutyrate CFAP251 (5.3×10-05)  WDR66 (7.2×10-07)p RSRC2 (0.64) 

16:20557634 rs7499358 3-Hydroxyisovalerate  ACSM2B (1.3×10-14) ACSM2B (3.2×10-11) 
ACSM1 (5.7×10-08)p 

 

16:20608891 rs540815683 3-Hydroxyisovalerate    U6 (0.5) 

17:37631883 rs11078902 Threonine PGAP3 (6.1×10-30) 
FBXL20 (2.3×10-10) 
MED1 (3.4×10-06) 

PGAP3 (4.1×10-16) 
FBXL20 (1.3×10-07)p 

PGAP3 (1.3×10-18) 
FBXL20 (7.7×10-08) 
MED1 (2.6×10-07)p 
RP11-690G19.3 
(1.7×10-06) 

FBXL20 (0.85) 
MED1 (0.81) 
CTB-131K11.1 (0.79) 
NR1D1 (0.77) 
PSMD3 (0.72) 
PCGF2 (0.61) 

17:37633970 rs12453397 Tryptophan, Tyrosine PGAP3 (6.7×10-33) 
FBXL20 (3.7×10-10) 
MED1 (8.0×10-07) 

PGAP3 (1.0×10-16) 
FBXL20 (1.3×10-07)p 

PGAP3 (3.4×10-20) 
FBXL20 (9.2×10-08) 
MED1 (9.5×10-07) 
RP11-690G19.3 
(1.4×10-06) 

MED1 (0.86, 0.86)* 
NR1D1 (0.77, 0.78)* 
PSMD3 (0.76, 0.72)* 
FBXL20 (0.76, 0.8)* 
CTB-131K11.1 (0.75, 0.78)* 
PCGF2 (0.68, 0.64) * 

17:37636695 rs4795371 Histidine PGAP3 (1.2×10-29) 
FBXL20 (8.4×10-10) 
MED1 (7.5×10-06) 

PGAP3 (4.1×10-16) 
FBXL20 (1.3×10-07)p 

PGAP3 (1.3×10-18) 
FBXL20 (7.7×10-08) 
MED1 (2.6×10-07)p 
RP11-690G19.3 
(1.7×10-06) 

CTB-131K11.1 (0.85) 
MED1 (0.82) 
NR1D1 (0.79) 
FBXL20 (0.77) 
PSMD3 (0.76) 
PCGF2 (0.67) 

p = The eQTL is a proxy variant of the lead signal with r2 > 0.8. 
PP = Posterior probability of colocalization. 
* = The PP for tryptophan and tyrosine respectively.  
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Table 3 
 
Table 3: Metabolite lead variant associations with eGFR and CKD in the CKDGen meta-analysis17, and DKD phenotypes in DNCRI-
SUMMIT16 meta-analysis. All nominally significant associations (p<0.05) are shown for variants with at least one significant 
association (p < 3.6×10-04, i.e., p < 0.05 / 3 phenotypes / 46 SNPs). 

Urinary metabolite eGFR CKD DKD 

Chr:Pos:EA:NEA Rsid Metabolite Effect Effect P-value  Effect P-value Effect  P-value Phenotype 

1:151904146:A:T rs2999545 3-Hydroxyisovalerate -0.11 -0.00089 1.3×10-02 0.035 3.5×10-04 0.046 2.2×10-02 Any DKD 

2:211540507:A:C rs1047891 Glycine 0.23 -0.0065 3.6×10-64 0.055 2.3×10-07    

4:109716840:A:T rs62313082 Ethanolamine 0.14 0.0019 6.1×10-08      

5:1188285:A:G rs11133665 Glycine -0.13 -0.0016 8.6×10-05      

5:1188285:A:G rs11133665 Histidine -0.31 -0.0016 8.6×10-05      

5:1188285:A:G rs11133665 Threonine -0.15 -0.0016 8.6×10-05      

5:1188285:A:G rs11133665 Tryptophan -0.17 -0.0016 8.6×10-05      

5:1188285:A:G rs11133665 Tyrosine -0.3 -0.0016 8.6×10-05      

5:150708711:C:G rs147000073 Glycine -1.1 -0.0071 1.1×10-04 0.12 1.2×10-02    

7:17287998:A:G rs2106727 Quinic acid -0.12 -0.0022 3.5×10-10 0.032 9.1×10-04 0.096 3.4×10-02 ESRD vs. 
macroalb. 

7:17287998:A:G rs2106727 Trigonelline -0.1 -0.0022 3.5×10-10 0.032 9.1×10-04 0.096 3.4×10-02 ESRD vs. 
macroalb. 

9:136146597:T:C rs550057 Xylose 0.2 0.0019 9.2×10-07   0.19 1.1×10-04 ESRD vs. 
macroalb.  

12:345369:C:G rs2080403 3-Aminoisobutyrate -0.16 0.004 8.5×10-30   0.058 5.1×10-03 Any DKD 

12:4521511:A:T rs78470967 4-Deoxythreonate 0.34 0.0036 1.8×10-04      

12:122344302:A:G rs1795967 2-Hydroxyisobutyrate -0.51 0.0019 1.9×10-04      

17:37631883:C:G rs11078902 Threonine -0.12 0.0058 2.1×10-47 -0.041 1.3×10-04    

17:37633970:A:C rs12453397 Tryptophan 0.16 -0.0057 4.9×10-46 0.041 1.3×10-04    

17:37633970:A:C rs12453397 Tyrosine 0.25 -0.0057 4.9×10-46 0.041 1.3×10-04    

17:37636695:T:G rs4795371 Histidine -0.22 0.0057 1.8×10-46 -0.041 1.3×10-04    

 
Chr:Pos:EA:NEA: Chromosome position, effect allele, and non-effect allele. Rsid: variant rs-identifier. Metabolite: The associated 
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urinary metabolite. Effect: effect estimate. P-value: p-value of the association. Phenotype: the DKD phenotype. eGFR: estimated 
glomerular filtration rate. CKD: chronic kidney disease. DKD: diabetic kidney disease.
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Table 4 
 
Table 4. Two sample Mendelian randomization analysis results with p < 0.05 / 496 = 1.0×10-

4 using urinary metabolites as the exposures for outcomes from IEU GWAS database, CKDGen 
meta-GWAS, DNCRI meta-GWAS, and DIAMANTE meta-GWAS. 

Outcome Exposure Rsid Beta (SE) P 

Body mass index 
(BMI) 

1-Methylnicotinamide rs17322446 0.08 (0.02) 2.3×10-05 

3-hydroxyhippurate rs6968554 0.10 (0.02) 2.5×10-06 

4-Deoxythreonate rs181558, rs78470967 0.05 (0.01) 7.6×10-05 

Quinic acid rs2106727 0.08 (0.02) 2.5×10-06 

Trigonelline rs2106727 0.10 (0.02) 2.5×10-06 

Creatinine 
(enzymatic) in 
urine 

3-hydroxyhippurate rs6968554 -0.22 (0.03) 3.4×10-18 

Quinic acid rs2106727 -0.17 (0.02) 5.1×10-18 

Trigonelline rs2106727 -0.20 (0.02) 5.1×10-18 

eGFR 3-hydroxyhippurate rs6968554 0.02 (0.00) 3.7×10-10 

Ethanolamine rs62313082 0.01 (0.00) 6.1×10-08 

Quinic acid rs2106727 0.02 (0.00) 3.5×10-10 

Trigonelline rs2106727 0.02 (0.00) 3.5×10-10 

UACR 3-hydroxyhippurate rs6968554 0.23 (0.02) 3.5×10-25 

Quinic acid rs2106727 0.18 (0.02) 7.6×10-25 

Trigonelline rs2106727 0.21 (0.02) 7.6×10-25 

 
Results involving one variant were obtained using Wald ratio and two variants with inverse 
variance weighting. UACR = urinary albumin to creatinine ratio. eGFR = estimated glomerular 
filtration rate. 
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Figure 1 
Study design overview. An overview of the genome-wide characterization of the urinary 
metabolites. Created with BioRender.com. 

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 21, 2023. ; https://doi.org/10.1101/2023.12.20.23300206doi: medRxiv preprint 

https://doi.org/10.1101/2023.12.20.23300206
http://creativecommons.org/licenses/by/4.0/


   
 

   
 

 
Figure 2 
Manhattan plot of signals with p < 5.0×10-5 for the metabolites. Signals from different metabolites are clumped together if they are 
within 50kb from another signal. Pruned genome-wide significant signals with p < 5×10-8/54=9.3×10-10 and variants 1Mb around 
them are highlighted. Note: y-axis clipped at 60. 
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Figure 3 
Regional association with tyrosine for lead variants rs11133665 and rs7704882 on 
chromosome 5. Upper panel shows LocusZoom plot centred around the previously known 
rs11133665 variant, and the novel signal at rs7704882 independently associated with tyrosine. 
The middle panel shows kidney eQTL associations for SLC6A18 and SLC6A19 overlaid on top of 
the tyrosine association signals, highlighting lead variants rs11133665 (eQTL for SLC6A19 in 
kidney) and rs7704882 (eQTL for SLC6A18 in kidney)42. The R2 values with rs11133665 are 
calculated based on 1000 Genomes phase 3 European population. Variants with no R2 
information are not shown. 
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METHODS 
 
Study cohorts 
Generation Scotland (GS) is a family-based population study of around 20,000 individuals from 
across Scotland11. Individuals aged between 35 and 65 years were recruited at random from 2006 
to 2010 from collaborating medical practices. These participants then identified ≥first degree 
relatives who would also be able to participate, resulting in a final age range of 18 to 98 years. 
Participants attended a staffed research clinic where they completed a health questionnaire, had 
physical and clinical characteristics measured and fasting blood and urine samples collected 
according to standard operating procedures. Serum and urine aliquots were stored at -80°C for 
future analyses. 
 
VIKING is a family-based population study of over 2,000 individuals from the population isolate 
of the Shetland Isles in northern Scotland12. Recruitment ran from 2013 to 2015 with the 
selection criteria requiring individuals to be ≥18 years and have two or more grandparents born 
in the Shetland Isles. Over 90% of resulting participants had three or four grandparents from 
Shetland and most were related individuals from large kindreds. Participants attended clinics 
where physical characteristics were measured and fasting blood and urine samples were 
collected according to standard operating procedures. Plasma, serum, whole blood and urine 
aliquots were stored at -80°C for future analyses. 
 
Finnish diabetic nephropathy study (FinnDiane) is an ongoing (1997->) nation-wide multicentre 
study focusing on diabetic complications and currently comprises of over 5,000 adults with type 
1 diabetes9,10. In this study we included individuals with genotype data and urinary metabolite 
data measured from 24h urine collection, except one overnight urine collection, stored at -20C°. 
In addition, to assure correct diagnosis of T1D, we required age at onset of diabetes < 40 years 
and insulin treatment initiated within one year from diabetes diagnosis. Moreover, since kidney 
function may affect the urinary metabolite levels, we excluded Individuals with prevalent end-
stage kidney disease (ESKD), defined as kidney transplantation or dialysis treatment, and 
individuals with eGFR < 10 mL/min/1.73m2, at urine collection day. Finally, 3,244 individuals were 
included in the analysis. 
 
Metabolite quantification by NMR 
The urinary metabolite quantification has been described previously2. Briefly, metabolite 
quantification of the urine samples was performed using a proprietary NMR metabolite profiling 
service (Nightingale Health, Helsinki, Finland). The NMR-based measurements were conducted 
from 500 μl of stored samples using a 600 MHz Bruker AVANCE III HD NMR spectrometer (Bruker 
BioSpin, Switzerland) with automated sample changer and cryoprobe. The spectral data were 
acquired using standard water-suppressed acquisition settings. The sample preparation and NMR 
acquisition parameters were designed for high-throughput initially selecting metabolites based 
on feasibility for automated quantification. This approach emphasises metabolites at high 
abundance in urine, and those which generate minimal signal overlap in the proton NMR 
spectrum. As such, the metabolite selection was not based on prior biological relevance of the 
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selected metabolites or emphasis of certain metabolic pathways. The urinary metabolite 
concentrations were divided by urinary creatinine concentration to normalise for urine volume.  
 
Genotyping and imputation 
GS and VIKING samples were genotyped using the Illumina HumanOmniExpressExome-8v1-2 chip 
(Illumina, San Diego, CA) and individuals with a call rate of ≤ 98% and SNPs with a call rate of ≤ 
98%, HWE of ≤ 1x10-06 and a MAF of ≤ 1% were excluded during quality control. Phasing was 
carried out using SHAPEIT (v2 r837) and imputation was performed using the Haplotype 
Reference Consortium reference panel (HRC.r1-1) on the Sanger Imputation Server with the 
PBWT software. Post imputation quality control excluded duplicate and monomorphic variants 
and SNPs with an imputation quality score of < 0.4. 
 
FinnDiane samples was genotyped using the HumanCoreExome-12 v1.0, -12 v1.1, and -24 v1.0 
BeadChips (Illumina, San Diego, CA). The quality control and data processing has been described 
in more detail before43,44. In short, SNVs with call rate of ≤ 95% or excessive deviation from Hardy-
Weinberg equilibrium were excluded, Haplotypes were phased with SHAPEIT (v2 r837) and 
genotypes imputed with Minimac3 (v1.0.14) using 1000 Genomes phase 3 version 5 as the 
reference panel. 
 

GWAS analysis, meta-analysis with Metal, and GCTA-COJO 
Study-level GWAS analysis was conducted separately for each cohort and the results were first 
quality controlled and harmonized before meta-analysis, and finally, a conditional joint analysis 
was performed to identify SNVs independently associated with urinary metabolites. Before 
GWAS analysis urinary metabolite to creatinine ratios and creatinine values were regressed on 
the covariates and the residuals were inverse normal transformed. 
 
GS and VIKING GWAS were performed using RegScan accounting for relatedness within each 
cohort45. The analysis model included age and sex as covariates. FinnDiane GWAS was executed 
with SNPTest (v2.5.2). Before the analysis, first-degree relatives were removed preferring 
individuals with most complete metabolite data until no first-degree relative pairs were left in 
the data set. Two models were fitted: minimal model included age, sex, genotyping batch and 
two first genetic principal components as covariates; full model included minimal model and 
eGFR.  The association of genetic variants with urinary metabolites was tested using a frequentist 
test and an additive model applying the score method to account for genotype uncertainty. 
 
Before the meta-analysis study-level quality control was performed with EasyQC R-package (v9.2, 
www.genepi-regensburg.de/easyqc)46. First, any association results with missing or implausible 
data, monomorphic variants, and variants with imputation quality < 0.4 were removed, second, 
allele coding and marker names were harmonized and possible duplicates were removed, finally, 
variants were checked against the appropriate reference data and any variants with mismatching 
alleles or allele frequency difference >0.2 compared to the reference were removed. 
 
Meta-analysis of the individual GWAS was performed using METAL software (version 2011-03-
25) applying inverse variance weighted method and genomic control correction47.The results 
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were filtered to include variants with MAF ≥ 0.01 and found at least in 2 out of 3 studies. Signals 
for the same metabolite were considered distinct if they were at least 3Mbp apart. 
 
Approximate conditional and joint GWAS analysis was performed to identify SNVs independently 
associated with urinary metabolites applying the GTCA-COJO software (v1.93.2beta)13,48. The 
filtered METAL results were used as the input and whole FinnDiane cohort (n=6019) was used as 
the reference population to estimate LD. Default options were used to perform stepwise model 
selection to select independently associated SNVs. Association results for glucose were spurious 
and are not reported. 
 
The regional association signal around the COJO lead variants was visualized using LocusZoom 
stand-alone software (v1.4, http://genome.sph.umich.edu/wiki/LocusZoom_Standalone). The 
LD information was calculated using the 1000 Genomes phase 3 European population. 
 
Annotation of the COJO lead variants 
The lead SNPs from COJO analysis were annotated with genes and variant effects with Ensembl 
Variant Effect Predictor (VEP) web tool (Assembly GRCh38.14 version 110). The SNPs were 
queried for all consequences. The most severe consequence per SNP and gene was selected 
based on the severity as estimated by Ensembl 
(www.ensembl.org/info/genome/variation/prediction/predicted_data.html accessed 2023-11-
14). If the variant was not located in a transcript the closest gene was selected. 
 
Heritability analysis 
The heritability of the urinary metabolites was analysed in each cohort. In FinnDiane GTCA tool 
(v1.93.2beta) was utilized to estimate the genetic relationship matrix which was filtered to not 
include any individuals with relatedness greater than 0.025. The variance explained by all the 
SNVs was estimated by restricted maximum likelihood (REML) analysis (GTCA-GREML) using the 
default options and adjusting for age, sex, eGFR, genotyping batch, and two first genetic principal 
components48,49. In GS and VIKING heritability was estimated using a variance component model 
available within the RegScan GWAS pipeline. The heritability estimates were meta-analysed with 
random-effects model utilizing the inverse variance method and between study variance τ2 was 
estimated with restricted maximum-likelihood estimator. The between study heterogeneity was 
tested with Q-test. Analysis was performed with R-package meta (v.6.5-0). 
 
Additional phenotypic data  
Kidney function was quantified by eGFR calculated with the CKD-EPI formula50 from serum and 
plasma creatinine values, and, in addition, by urinary albumin excretion rate (AER) in the 
FinnDiane cohort: normal AER (AER ≤ 30mg/24h), moderate albuminuria (30mg/24h < AER ≤ 
300mg/24h), and severe albuminuria (AER > 300mg/24h). Albuminuria category was determined 
as the highest category in at least 2 out of 3 consecutive determinations. 
 
eQTL analysis in kidney and whole blood 
Expression quantitative trait locus (eQTL) associations in cis were queried for the variants 
associated with urinary metabolites. We utilized kidney eQTL data from microdissected human 
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kidney tubule (N=356) and glomeruli (N=303) samples51, and meta-analysis of 686 kidney 
samples42 downloaded from https://susztaklab.com/Kidney_eQTL/download.php.  Cis-eQTL 
associations in whole blood were queried from eQTLGen data set31 (https://eqtlgen.org/cis-
eqtls.html and IEU GWAS database). 
 
In the kidney data sets we identified eQTLs and their target genes at the urinary metabolite lead 
variants and any additional eQTLs at proxies of the lead variants (R2 > 0.8) using R-package 
LDlinkR (v.1.2.3). In total, we found 95 candidate eQTL target genes and selected eQTLs with p < 
0.05 / 95 = 5.35×10-4. However, we only had access to kidney eQTL data sets pre-filtered to 
include signals with FDR < 0.05 (tubule and glomeruli) and FDR < 0.01 (kidney meta-analysis) and 
consequently all candidate eQTLs were significant. 
 
In the whole blood cis-eQTL data we identified 911 eQTLs at the lead variants and selected eQTLs 
with p < 0.05 / 911 = 5.5×10-5 as significant. Furthermore, we tested for colocalization of cis-eQTL 
signal for gene expression in blood with urinary metabolite signals. First, we identified genes with 
cis-eQTLs at the lead loci, if no genes were found we selected all genes with cis-eQTLs within 
100kbp from the lead locus. Second, we tested colocalization between the genes eQTL signal and 
the urinary metabolite signal in a region extending 250kbp from the lead locus with R-package 
coloc (v.5.1.0.1). More specifically, we used the Bayesian colocalization analysis assuming one 
causal variant for each trait implemented in coloc.abf function, and calculated a posterior 
probability (PP) for one common causal variant52. Signals were considered colocalized if PP > 0.5. 
 
GWAS look-ups: GWAS catalog, CKDGen, and DNCRI-SUMMIT 
Lead variant associations were queried (2023-09-21) for previously reported associations from 
the GWAS catalog using R packages LDlinkR (v.1.2.3) and gwasrapidd (v.0.99.14). We included 
previous associations with r2 > 0.8 within -/+500,000 bp from the lead variant and with p < 5×10-

8 using the 1000 Genomes European population as the reference. The previously reported traits 
were classified as urinary metabolite, blood metabolite or other trait by searching for key words 
in the phenotype description and p-value annotation. Urinary metabolite traits were matched 
with regular expression “urinary metabolite”, and blood metabolites with “serum 
metabolite|blood metabolite|serum uric acid levels|blood urea nitrogen levels”. Furthermore, 
targeted lookups were performed for kidney related traits from the CKDGen consortium meta-
analyses on CKD and eGFR in individuals with European ancestry from the general population17 
available from https://ckdgen.imbi.uni-freiburg.de; and for DKD phenotypes from the DNCRI-
SUMMIT meta-analysis16 available from https://t2d.hugeamp.org/downloads.html. 
 
FUMA 
FUMA v.1.3.754 web interface was used to perform MAGMA v1.08 tissue specificity (GTEx v8) and 
gene set enrichment analysis. SNPs were mapped to the protein coding genes within 10kb 
windows (with unique Ensembl ID). For the gene set enrichment analysis, 15,496 gene sets (5,500 
curated gene sets (9 data resources including KEGG, Reactome and BioCarta), 9996 GO terms 
(biological processes (bp), cellular components (cc) and molecular functions (mf))) from MsigDB 
v7.0 were included and run with default parameters. Gene-sets with p-value < 3×10-6 were 
defined as significant by MAGMA Bonferroni correction. For tissue expression analysis, gene 
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expression data sets were obtained from GTEx v8. MAGMA gene-property test was performed 
for average gene-expression per category (e.g. tissue type) conditioning on average expression 
across all categories (one-side) to test the positive relationship between gene expression in a 
specific tissue and genetic associations. 
 
In addition, gene set enrichment was performed using the GENE2FUNC tool in FUMA v.1.3.754. 
Genes annotated to SNPs with a p-value of < 1×10-5 were used as input. The list of genes was 
compared to a set of 19,283 background genes using hypergeometric tests to determine 
overrepresentation of biological functions. A minimum number of two genes per gene set and an 
FDR Benjamini-Hochberg adjusted p-value of < 0.05 were required for gene sets to be reported. 
 
Mendelian randomization analysis 
We performed two sample Mendelian randomization analysis to test if kidney function, 
measured by estimated glomerular filtration rate (eGFR) or urinary albumin creatine ratio 
(UACR), causally affects urinary metabolite concentrations, and conversely, if urinary metabolite 
levels causally affect kidney function or other traits including type 2 diabetes (T2D), BMI, and 
kidney disease (Supplementary table 8). 
 
In the first analysis we used two kidney function markers, eGFR and UACR, as the exposures and 
urinary metabolites as the outcomes. As the instrumental variables (IV) for eGFR we used 225 
variants associated with eGFR (150 independent variants after clumping) in a European ancestry 
sub-analysis with  567,460 individuals (p < 5×10-8) from the CKDGen consortium17, and as the IV 
for UACR we used 61 variants associated with UACR (51 independent variants after clumping) in 
the European ancestry analysis with 547,361 individuals (p < 5×10-8) from the CKDGen 
consortium53. We utilized only genome-wide significantly associated variants to ensure that the 
IVs are strongly associated with the exposures. 
 
In the second analysis, we employed urinary metabolites as the exposures. We selected IVs to be 
the variants associated with urinary metabolites in the COJO analysis with p < 5×10-8 
(Supplementary Table 14). As outcomes we used 10 DKD traits from the JDRF DNCRI GWAS43 
(downloaded from https://t2d.hugeamp.org/downloads.html), 3 traits from CKDGen consortium 
related to kidney function (downloaded from https://ckdgen.imbi.uni-freiburg.de), T2D from the 
DIAMANTE consortium (https://t2d.hugeamp.org/downloads.html), and 6 traits from the IEU 
GWAS database (Supplementary Table 8). 
 
Both analyses were performed with TwoSampleMR R package (v.0.5.6). Shortly, the genetic 
variants for the exposures were first clumped using a 10,000kb window, a clumping R-square cut-
off of 0.001, and 1000 Genomes European samples to estimate LD. Second, the effect alleles 
were harmonized between the exposure and outcome GWASes, and finally MR analysis was 
performed with default MR methods in the TwoSampleMR package: We used inverse variance-
weighted (IVW) regression if at least 2 variants remained as valid IVs for the exposure, or Wald’s 
ratio test if only one variant was available. For exposures with 3 or more IVs, causality was further 
assessed using methods less sensitive to pleiotropy/heterogeneity (weighted median, simple and 
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weighted mode, and MR-Egger regression). All the steps were performed using the default 
options.  
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