
Proteomic aging clock (PAC) predicts age-related outcomes in 
middle-aged and older adults  
 

Chia-Ling Kuo, PhD1,2,3*, Zhiduo Chen, MS3, Peiran Liu, PhD2, Luke C. Pilling, PhD4, Janice L. 

Atkins, PhD4, Richard H. Fortinsky, PhD3, George A. Kuchel, MD3, Breno S. Diniz, MD, PhD1,3 

 

1Department of Public Health Sciences, University of Connecticut Health Center, Farmington 

CT, USA 

2The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut Health 

Center, Farmington, CT, USA 

3UConn Center on Aging, University of Connecticut Health Center, Farmington, CT, USA 

4Epidemiology and Public Health Group, Department of Clinical and Biomedical Sciences, 

University of Exeter, Exeter, UK 

*Corresponding author: 

Chia-Ling Kuo, PhD 

The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut  

195 Farmington Ave, Suite 2080 

Connecticut, CT 06032 

 

 

 

 

 

 . CC-BY-NC 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 20, 2023. ; https://doi.org/10.1101/2023.12.19.23300228doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2023.12.19.23300228
http://creativecommons.org/licenses/by-nc/4.0/


Summary 

Background 

Beyond mere prognostication, optimal biomarkers of aging provide insights into 

qualitative and quantitative features of biological aging and might therefore offer useful 

information for the testing and ultimately clinical use of gerotherapeutics. Using a large 

proteomic cohort in the UK Biobank (UKB), we aimed to develop a proteomic aging clock for 

all-cause mortality risk as a proxy of biological age (BA). 

Methods 

Participants in the UK Biobank Pharma Proteomics Project (UKB PPP) were included 

with ages between 39 and 70 years (n=53,021). Data were split into a training (70%, n=37,115) 

and a test set (30%, n=15,906), including 2,923 plasma proteins assessed using the Olink 

Explore 3072 assay®. We developed a proteomic aging clock (PAC) for all-cause mortality risk 

as a surrogate of BA using a combination of Least Absolute Shrinkage and Selection Operator 

(LASSO) penalized Cox regression and Gompertz proportional hazards models. The validation 

for PAC included assessing its age-adjusted associations with, and predictions for all-cause 

mortality and 18 incident diseases, and head-to-head comparisons with two biological age 

measures (PhenoAge and BioAge) and leukocyte telomere length (LTL). Additionally, a 

functional analysis was performed to identify gene sets and tissues enriched with genes 

associated with BA deviation, based on different BA measures. 

Findings 
 

The Spearman correlation between PAC proteomic age and chronological age was 0.76. 

10.9% of the combined training and test samples died during a mean follow-up of 13.3 years 

(SD=2.2), with the mean age at death 70.1 years (SD=8.1). PAC proteomic age, after controlling 
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for age and other covariates, showed stronger associations than PhenoAge, BioAge, and LTL, 

with mortality and multiple incident diseases in the test set sample and in disease-free 

participants, such as mortality, heart failure, pneumonia, delirium, Chronic Obstructive 

Pulmonary Disease (COPD), and dementia. Additionally, PAC proteomic age showed higher 

predictive power for the conditions above compared to chronological age, PhenoAge, and 

BioAge, based on Harrell’s C-statistics. Proteins associated with PAC proteomic age deviation 

(from chronological age) are enriched in various hallmarks of biological aging, including 

immunoinflammatory responses, cellular senescence, extracellular matrix remodeling, cellular 

response to stressors, and vascular biology.  

Interpretation 
 

PAC showed robust age-adjusted associations and predictions for all-cause mortality and 

the onset of various diseases. The diverse hallmark gene sets linked with PAC proteomic age 

deviation highlight the potential efficacy of geroscience-guided interventions. Further validation 

is essential to ascertain the use of PAC across different settings. 
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Research in context 

Proteomic aging clocks have been developed using the BA surrogate of chronological 

age, but their validation remains limited. None had been developed using the surrogate of all-

cause mortality risk, which is believed more sensitive to changes in biological aging processes. 

We relied on two recent comprehensive review papers1,2 and expanded our search on PubMed 

and Google Scholar for English articles, using keywords including “biomarkers of aging”, 

“biological age predictors”, “biological age deviation”, “accelerated biological aging”, 

“methylation clocks”, “proteomic clocks”, “UK Biobank biomarkers”, “UK Biobank Pharma 

Proteomics Project”, “PhenoAge”, “BioAge”, “telomere length”, “SASP index”, and “composite 

aging biomarkers”.  

Added value of this study 

To the best of our knowledge, PAC is the first proteomic aging clock developed for all-

cause mortality risk as a surrogate of BA, using the largest dataset of proteins and individuals in 

the world. Our results expand previous findings by showing that PAC age acceleration strongly 

predicts not only all-cause mortality but also several incident disease outcomes, with a follow-up 

exceeding a decade and a substantial sample size to ensure adequate statistical power. 

Implications of all the available evidence 

Due to its associations and predictive value for all-cause mortality and multiple incident 

diseases, PAC has the potential to serve as a valuable tool for assessing the effects of geoscience-

guided interventions. It facilitates the evaluation of risk for multiple conditions in a disease-free 

population; thereby, contributing to the prevention of initial diseases, which vary among 

individuals and may subsequently lead to additional comorbidities. 
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Introduction 

Aging-related outcomes often require years to observe, posing challenges for short-term 

studies. Biomarkers of aging facilitate the testing of geroscience-guided interventions. The 

geroscience hypothesis3 posits that  targeting aging may prevent or delay the onset of multiple 

diseases, where chronological age is a major risk factor.  

BA acceleration, indicated by BA surpassing chronological age, has been linked with 

various adverse health outcomes1,2. Several biomarkers have been developed to fulfill such goals 

using various data such as biochemistry markers, omics data (transcriptomics, proteomics, 

methylome), and electronic health records1,2. Due to its prognostic value in predicting age-related 

conditions and sensitivity to interventions, BA measures have become increasingly popular as an 

intermediate phenotype in randomized controlled trials4,5. 

First-generation BA measures6–9 were initially developed using chronological age as a 

surrogate of BA. These measures are now being surpassed by second-generation BA measures, 

which use an age-related outcome or the pace of aging to improve predictions of morbidity and 

mortality10–13. While epigenetic clocks are widely recognized, DNA methylation itself does not 

contain downstream biological information. In contrast, proteins provide direct links to aging-

related pathology, making them more relevant for disease prognosis in the clinical context14. 

Previous studies have identified circulating proteins associated with chronological age14 

and chronic diseases15. A protein-based score has shown significant improvements in risk 

classification even after accounting for common risk factors. Several proteomic clocks have been 

developed for chronological age9,16,17. Recently, a proteomic composite, known as the 

senescence-associated secretory phenotype (SASP) index18, was developed incorporating 22 pre-

selected SASP proteins and indicates a phenotypic manifestation of cellular senescence, a 
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hallmark of biological aging19. Elevated SASP index levels have been associated with aging 

outcomes in older adults with major depression, such as cognitive impairment, increased medical 

burden–particularly in cardiovascular disease–and compromised brain health (including 

neuroinflammation and cortical atrophy)20. Consistently, other composite SASP biomarkers have 

shown high predictive value for all-cause mortality in healthy older adults21. 

Despite their relevance, these proteomic clocks exhibit significant limitations. They were 

mostly trained to predict chronological age (i.e., first-generation clocks) and trained in a small 

sample with a small set of proteins, which may be pre-selected to reflect a specific biological 

aging process (e.g., cellular senescence). In this study, we aimed to develop a proteomic clock, 

referred to as the proteomic aging clock (PAC) to predict all-cause mortality. Data included 

2,923 plasma proteins, assessed using the Olink Explore 3072 assay®, from a UK Biobank 

(UKB) cohort of 53,021 participants aged between 39 and 70 years. PAC underwent validation 

for both its associations and predictions of all-cause mortality and age-related conditions, during 

a follow-up exceeding a decade. Biological insights into PAC proteomic age acceleration were 

revealed through gene set analysis and gene property analysis for tissue specificity. 

Methods 

UK Biobank Pharma Proteomics Project 

The UK Biobank (UKB) recruited more than 500,000 participants with ages between 40 

and 70 years during 2006 and 201022. At recruitment (baseline), participants completed online 

questionnaires, cognitive function tests, verbal interviews, and physical measurements. 

Additionally, blood samples were collected for future biological assays. Disease diagnoses and 

death status since then have been updated through linkages to electronic health records. 

Participants who supplied blood samples at baseline were selected for inclusion in the 

UK Biobank Pharma Proteomics Project (UKB-PPP)23. Of the included samples (n=53,021), the 

 . CC-BY-NC 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 20, 2023. ; https://doi.org/10.1101/2023.12.19.23300228doi: medRxiv preprint 

https://doi.org/10.1101/2023.12.19.23300228
http://creativecommons.org/licenses/by-nc/4.0/


majority (n=46,792, 88.3%) were a random sample from the UKB baseline cohort. Others 

(n=6,229, 11.7%) included participants who attended the first imaging visit and COVID-19 

repeat imaging study and/or those selected by the consortium of 13 biopharmaceutical companies 

for research interests.  

Data 

All-cause mortality risk was used as an indicator for BA. Death data were provided by 

the UK National Health Service (NHS) England, NHS Central Register, and National Records of 

Scotland. Participants with no recorded date of death were assumed to remain alive until the 

censoring date 11/30/2022.  

The normalized proteomic expression (NPX) data encompassed 2,923 proteins 

(Supplementary Table 1). Three proteins with high rates of missing data were removed from 

the analysis: GLIPR1 (99.7%), NPM1 (74.0%), and PCOLCE (63.6%). For the remaining 

proteins, we applied a k-nearest neighbors approach to impute missing proteomic data (k=10). 

Participants with complete NPX, chronological age, and mortality data were included in the PAC 

development.  

Data splitting 

The included samples (n=53,021) were split into a training set (70%, n=37,115) and a test 

set (30%, n=15,906). In the training set, 4,034 participants (10.9%) died at the mean age of 70.1 

years (SD=8.1) over a mean follow-up of 13.3 years (SD=2.2). Within the test set, 1,731 

participants (10.9%) died, with the mean age at death 70.1 years (SD=8.1) during a mean follow-

up of 13.3 years (SD=2.2). 

A baseline summary for participants in the training and test sets versus others in the UKB 

baseline cohort is presented in Supplementary Table 2. Data were extracted using the field IDs 

in Supplementary Table 3. The training and test samples showed comparable baseline 

 . CC-BY-NC 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 20, 2023. ; https://doi.org/10.1101/2023.12.19.23300228doi: medRxiv preprint 

https://doi.org/10.1101/2023.12.19.23300228
http://creativecommons.org/licenses/by-nc/4.0/


characteristics to the rest of the UKB baseline cohort. The disease prevalence was slightly higher 

within the UKB PPP than the rest of the baseline cohort, which is expected, due to the 

enrichment of diseases in the UKB-PPP samples23. 

PAC development 

The NPX data and chronological age at baseline in the training set were used to train a 

Least Absolute Shrinkage and Selection Operator (LASSO) penalized Cox regression model for 

the risk of all-cause mortality. The selected proteomic signatures and chronological age were 

used to fit Gompertz proportional hazards models and formulate PAC to estimate the proteomic 

age based on the input data (Supplementary Methods). 

PAC validation 

We evaluated PAC proteomic age for correlations with chronological age, BioAge, 

PhenoAge, short LTL, physiological or cognitive measures (Supplementary Table 3), a 49-item 

frailty25, and disease-associated biomarkers (Supplementary Table 3) – all measured at baseline 

– using the test set data. Next, we tested if PAC proteomic age deviation was linked with 

mortality and incident diseases (hypertension, myocardial infarction, heart failure, stroke, type 2 

diabetes, COPD, pneumonia, chronic kidney disease, dementia, delirium, Parkinson’s disease, 

any cancer excluding non-melanoma skin cancer, and common cancers including breast cancer 

[females only], prostate cancer [males only], lung cancer, and colorectal cancer).  

Participants free of the disease at baseline (2006-2010) were followed up until the first 

disease diagnosis, death (censoring date 11/30/2022), or the last follow-up date (censoring dates: 

11/30/2022 [England], 7/31/2021 [Scotland], 2/28/2018 [Wales]) depending on which occurred 

first. First diagnosis dates were identified using the UKB cancer registries data and first 

occurrence data, which linked data from different sources based on 3-character ICD-10 codes: 

longitudinal primary care (45% of the UK Biobank cohort), hospital inpatient, death registry 
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data, and self-reported medical conditions at baseline (Supplementary Table S3). Data on the 

covariates were collected by UKB through online surveys, physical measurements, and linkages 

to electronic health records (Supplementary Table 3). 

Associations of PAC proteomic age deviation with all-cause mortality and incident diseases  

Using the test set data, Cox regression models for all-cause mortality and Fine-Gray 

subdistribution hazard models to account for the effect of death on the risk of incident diseases 

were fitted adjusting for different sets of covariates at baseline: 1) age-adjusted: age only, 2) 

partially adjusted: sociodemographic factors (age, self-reported sex, ethnicity [White, Black, 

Asian, Other], and education [from none to college or university degree], Townsend deprivation 

index [higher values indicating higher levels of material deprivation]) and lifestyle factors 

(smoking status [current, former, never], body mass index [BMI]), and 3) fully adjusted models: 

covariates in the partially adjusted model and pre-existing diseases (hypertension, myocardial 

infarction, heart failure, stroke, type 2 diabetes, COPD, pneumonia, chronic kidney disease, 

dementia, delirium, Parkinson’s disease, any cancer excluding non-melanoma skin cancer).   

The p-values from the age-adjusted, partially adjusted, and fully adjusted models for all-

cause mortality and incident diseases were adjusted for multiple testing using the Benjamini-

Hochberg false discovery rate (FDR) method.  

PAC versus other BA measures in associations of biological age deviation with all-cause 
mortality and incident diseases 

Using the test set data, the associations of PAC proteomic age with all-cause mortality 

and incident diseases were compared with those of other BA measures, namely BioAge, 

PhenoAge, and leukocyte telomere length (LTL), adjusting for the full set of covariates. BioAge8 

was trained for chronological age, while PhenoAge10 was trained for all-cause mortality, both 

using routine clinical biomarkers from blood samples in the National Health and Nutrition 

Survey (NHANES) III (detailed in Supplementary Methods). Further validation of both 
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measures was performed in additional cohorts, including UKB26,27, confirming their robustness. 

LTL was assessed using a multiplex qPCR technique as T/S ratio, which compares the telomere 

amplification product (T) to that of a single-copy gene (S), adjusting for technical parameters28. 

The rank-based inverse normal transformation was applied to each BA measure to convert the 

data to z-scores to standardize the scales of different BA measures. Short LTL by reversing the 

signs of LTL was compared with other BA measures so the expected association direction was 

consistent across measures. 

For sensitivity analysis, the associations above were investigated in participants without 

any pre-existing diseases at baseline. Due to a significant number of participants having one or 

more pre-existing diseases at baseline and disease-free participants having lower incidence of 

chronic diseases, we included both training and test samples to maintain necessary power. The 

primary fully adjusted models were simplified to the partially adjusted models as none of the 

included participants had developed any of the diseases.   

PAC versus other BA measures in predictions for all-cause mortality and incident diseases 

Harrell’s C-statistic, a concordance probability within the range from 0.5 to 1, compares 

individuals in a pair that the individual who has a shorter time to a disease also has higher risk 

for the disease based on the model. Harrell’s C-statistic serves as a standard output to quantify 

discriminative power for Cox regression models, yet it demands an extended computation time 

for Fine-Gray subdistribution hazard models. Although we used Fine-Gray subdistribution 

hazard models to link BA deviation with incident diseases to account for the competing event of 

death, corresponding Cox regression models, which censored individuals who died before 

disease diagnosis yielded similar associations (results not shown). Without losing the 

generalization of our findings, we opted for Cox regression models to assess the predictions of 
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PAC proteomic age against other BA estimates for all-cause mortality and incident diseases 

using the test set data.  

Functional analysis 

To unravel the biological processes underlying BA deviation, proteins after the inverse 

normal transformation were associated with PAC proteomic age, BioAge, PhenoAge or short 

LTL in the fully adjusted linear regression models using the test set data. Significant proteins 

(Bonferron-corrected p<0.05) were carried forward to perform a gene set analysis and a gene 

property analysis for tissue specificity using the Functional Mapping and Annotation of Genome-

Wide Association Studies (FUMA version 1.6.0)29. Similar analyses were conducted for BioAge, 

PhenoAge, and short LTL.  

In the gene set analysis, genes associated with BA deviation were compared with the 

background genes (20,260 protein-coding genes) for the presence in a hallmark gene set using a 

hypergeometric test. Enriched hallmark gene sets with at least five genes overlapped with the 

input genes were identified at the Bonferroni-corrected level of 5% (50 hallmark gene sets in 

total).  

In the gene property analysis for tissue specificity, the input genes were compared with 

the background genes (protein-coding genes with mean normalized log2 expression value > 1 in 

at least one of 30 general tissues) using a hypergeometric test for the presence in a tissue-specific 

differentially expressed gene set (genes with p-value ≤ 0.05 after Bonferroni correction and 

absolute log fold change ≥ 0.58 in GTEx v8). Bonferroni-corrected p-values smaller than 5% 

were considered statistically significant. 

Results 

Development of the proteomic aging clock (PAC) 
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Using the training set data, a Least Absolute Shrinkage and Selection Operator (LASSO) 

penalized Cox regression model was applied to 2,920 proteins and chronological age at baseline 

to predict the time-to-event outcome of death. Chronological age and 128 proteins remained 

(lambda 0.004543) and were carried forward to fit a Gompertz model (Supplementary Table 4). 

Additionally, another Gompertz model was fitted to predict death solely using chronological age. 

We calculated the PAC proteomic age based on the shape and rate parameters, and the regression 

coefficients associated with individual proteins from the models above (Supplementary Table 

5). The mean PAC proteomic age was 53.4 years, 3.4 years younger than the mean chronological 

age in the training set. In the test set sample, the mean PAC proteomic age and chronological age 

were 53.4 and 56.9 years, respectively.  

Correlations between chronological age, PAC proteomic age, PhenoAge, 
BioAge, LTL, plus a selection of aging phenotypes at baseline  

10,451 participants had complete data for chronological age, PAC proteomic age, 

BioAge, PhenoAge, and LTL in the test set. The Spearman correlation (�) between PAC 

proteomic age and chronological age was 0.77, lower than the correlations of BioAge (�=0.98) 

and PhenoAge (�=0.87) with chronological age (Supplementary Figure 1). Consistently, short 

LTL demonstrated weak correlations with chronological age and other BA measures (�≈0.2) 

(Supplementary Figure 1). Single physiological or cognitive measures, frailty, and disease-

associated biomarkers showed a weak to moderate association with chronological age, similarly 

with PAC proteomic age, BioAge, and PhenoAge (Supplementary Figures 1 and 2).  

Associations of PAC proteomic age acceleration with all-cause mortality and incident 
diseases 

The PAC proteomic age acceleration showed significant associations with all-cause 

mortality and various incident diseases in the test set sample adjusting for chronological age only 

(age adjusted model). These associations were attenuated in the partially adjusted and fully 
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adjusted models, though remaining statistically significant (Fig. 1; Supplementary Table 6). 

For instance, the HR for all-cause mortality was 1.097 per year increase in PAC proteomic age 

(95% CI 1.091 to 1.103, padj=3.83×10-232) in the fully adjusted model, versus 1.104 in the age-

adjusted model, and 1.102 in the partially adjusted model. For sensitivity analysis, we included 

an indicator for participants selected by the UKB-PPP consortium in the fully adjusted models. 

The results were very similar to the fully adjusted model results, likely attributable to the overlap 

in effects between the selection and baseline disease states. 

PAC versus other BA measures in associations with all-cause mortality and incident 
diseases 

PAC outperformed PhenoAge, BioAge, and short LTL for most outcomes, showing the 

strongest associations with all-cause mortality, heart failure, pneumonia, delirium, COPD, 

dementia, lung cancer, myocardial infarction, osteoporosis, Parkinson’s disease, any cancer, and 

colorectal cancer (Fig. 2). In contrast, the associations with type 2 diabetes and chronic kidney 

disease were strongest with PhenoAge. BioAge showed the strongest associations with stroke 

and hypertension (Fig. 2). Similar associations were observed in the age-adjusted and partially 

adjusted models (Supplementary Figures 3 and 4). Sensitivity analyses, including only disease-

free participants at baseline (n=18,882), showed similar associations of BA acceleration with all-

cause mortality and incident diseases, highlighting the robustness of our findings (Fig. 3). 

Interestingly, the associations of PAC proteomic age acceleration with lung cancer and dementia 

were stronger in the disease-free participants than in the test set sample. 

PAC versus other BA measures in predictions for all-cause mortality and incident 
diseases 

Using the test set data only, we compared the C-statistics for all-cause mortality and 

incident diseases of four models: 1) chronological age only (M-Age), 2) PAC proteomic age 

only (M-PAC), 3) BioAge only (M-BioAge), and 4) PhenoAge only (M-PhenoAge). M-PAC 
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outperformed other models based on C-statistics, particularly all-cause mortality, COPD, 

pneumonia, and heart failure (Fig. 4). The M-PAC C-statistics for dementia and delirium were 

the highest across diseases and models but not significantly different from those of M-Age (Fig. 

4). Models with multiple BA measures showed minimally improved C statistics 

(Supplementary Fig. 5). 

Functional analysis 

1,001 significant proteins coded by 1,008 genes were selected for significant associations 

with PAC proteomic age deviation to initiate a functional analysis by FUMA (Supplementary 

Table 7). Genes associated with PAC proteomic age deviation were enriched in 25 hallmark 

gene sets (Bonferroni-corrected p<0.05) (Fig. 5, Supplementary Table 11).  

The hallmark gene sets associated with PAC proteomic age deviation include a wide range of 

biological processes and signaling pathways, particularly epithelial-mesenchymal transition, 

coagulation, inflammatory response, allograft rejection, IL-6-JAK-STAT3 signaling, 

complement, and IL2-STAT5 signaling (Fig. 5). Additionally, genes associated with PAC 

proteomic age deviation were overrepresented in the differentially expressed genes in multiple 

tissues, topped by lung and adipose tissues (Supplementary Figure 6). The findings above were 

consistent across BA measures (Supplementary Figures 6 and 7), suggesting the presence of 

conserved biology underlying the aging processes.  

Discussion 

We developed a proteomic clock (PAC) for all-cause mortality as a surrogate of BA. 

PAC proteomic age acceleration was robustly associated with all-cause mortality and age-related 

diseases after controlling for sociodemographic, lifestyle factors, and pre-existing diseases, in the 

test set sample and disease-free participants. PAC proteomic age showed, in general, better 

performance in predicting all-cause mortality and incident diseases than chronological age and 
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other BA measures. Proteins associated with PAC proteomic age deviation were enriched in 

various hallmarks of biological aging, including immunoinflammatory responses, cellular 

senescence, extracellular matrix remodeling, cellular response to stressors, and vascular biology. 

These findings demonstrate the robustness of this proteomic aging clock to predict different 

adverse health outcomes and reflect the current understanding of the perturbations in multiple 

biological pathways in the aging process.    

Previous studies evaluated the proteomic correlates of chronological aging using different 

proteomic platforms and assays (e.g., SOMAscan assays® or mass spectrometry)9,16,17. Proteins 

associated with chronological age showed significant associations with age-related clinical 

outcomes: walking speed, grip strength, frailty, multimorbidity, and all-cause mortality. A recent 

preprint30 used 1,459 proteins from the initial release of UKB PPP (n=31,581) and data from 

China Kadoorie Biobank (n=1,418) to train a proteomic clock (ProtAge) to predict chronological 

age. The trained ProtAge was associated with all-cause mortality and several diseases, e.g., 

Alzheimer’s disease. However, there are marked differences between the two studies. First, we 

used a larger set of proteins to train a proteomic clock (2,920 vs. 1,459 proteins), providing a 

broader coverage of the human proteome. Second, we trained a proteomic clock to predict 

mortality instead of chronological age –a shift from a “first-generation” to a “second-generation” 

clock. Lastly, we went beyond the ProtAge analyses and also reported C-statistics to show the 

predictive power of PAC versus other BA measures. Although the PAC and ProtAge are not 

directly comparable, PAC consistently showed high predictive power for multiple aging 

outcomes.   

PAC proteomic age acceleration showed the strongest associations with mortality risk 

and several diseases outcomes (e.g., heart failure, pneumonia, delirium, COPD, and dementia). 
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On the other hand, BioAge showed the strongest association with hypertension and stroke, 

whereas PhenoAge showed the strongest associations with type 2 diabetes and chronic kidney 

disease. This pattern of associations remained similar among individuals who had no medical 

comorbidity at baseline, except the associations of PAC proteomic age acceleration with lung 

cancer and dementia became stronger. Different BA measures may be implemented depending 

on the study context or the outcomes of interest. Notably, PAC is particularly valuable in 

identifying high-risk individuals years before the earliest manifestations of chronic conditions. 

 PAC proteomic age acceleration showed the strongest associations with dementia and 

delirium compared to other BA measures, although the gains in predictive power for these 

conditions were significantly diminished. A parallel pattern was observed for BioAge with 

hypertension and stroke, as well as for PhenoAge with type 2 diabetes and chronic kidney 

disease.  Incorporating proteins into PAC that are associated with the variation in mortality risk 

after controlling for covariates, may improve disease prediction. Further investigation is needed 

to test this hypothesis rigorously. 

We found that genes associated with proteomic age deviation are enriched in various 

hallmarks of biological aging, including immunoinflammatory responses, cellular senescence, 

extracellular matrix remodeling, cellular response to stressors, and vascular biology. 

Additionally, several hallmark gene sets are conserved across BA measures, including 

inflammatory response, allograft rejection, IL-6-JAK-STAT3 signaling, IL2-STAT5 signaling, 

TNG alpha signaling via NF-κB, and apoptosis. Our findings suggest that regardless of the BA 

measures used, our findings indicate consistent manifestations of biological processes and 

pathways in BA acceleration. The multifaced biological influence on aging phenotypes 
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reinforces the potential for geroscience-guided interventions to target multiple age-related 

outcomes.  

This study has limitations that need to be considered when interpreting our findings. 

First, we did not exclude deaths unrelated to biological aging, such as those resulting from 

accidents. However, such incidents are rare in the UKB cohort and unlikely to impact our 

findings significantly. Second, we could not compare PAC with commonly used epigenetic 

clocks since UKB does not have data on DNA methylation. However, PhenoAge was used to 

train DNAm PhenoAge, thus providing an indirect comparison between PAC and DNAm 

PhenoAge clock. Third, although we used independent samples for PAC development and its 

validation, the test set shares substantial homogeneity with the training set. Although our 

findings are robust to disease states, additional validation is needed in other populations and 

using proteomic data from alternative platforms.  

In conclusion, we have developed a novel proteomic aging clock termed PAC, which 

demonstrated robust associations and predictions for mortality and the onset of various diseases. 

The diverse hallmark gene sets linked with PAC proteomic age deviation highlight the potential 

efficacy of geroscience-guided interventions. Further validation is essential to ascertain the use 

of PAC across different settings.  
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Figure 1. Associations of PAC proteomic age acceleration with all-cause mortality and 
incident diseases in the test set sample. MI: myocardial infarction; T2D: type 2 diabetes; 
COPD: chronic obstructive pulmonary disease; CKD: chronic kidney disease; HF: heart failure. 
N (Full): sample size with complete data for the fully adjusted model, after excluding 
participants diagnosed with the disease at or prior to baseline. iCases (Full): number of incident 
cases of N samples. Cox regression model for all-cause mortality and Fine-Gray sub-distribution 
hazard models to account for the effect of death on the risk for incident diseases, adjusting for 
different sets of covariates at baseline (age adjusted, partially adjusted, and fully adjusted 
models). AgeAdj: chronological age; Partial: chronological age, sex, ethnicity, education, 
Townsend deprivation index, smoking status, and body mass index; Full: covariates in the 
partially adjusted model, and pre-existing diseases (hypertension, myocardial infarction, heart 
failure, stroke, type 2 diabetes, COPD, pneumonia, chronic kidney disease, any cancer excluding 
non-melanoma skin cancer, dementia, and Parkinson’s disease, without delirium as there were 
only 2 samples with a history of delirium at baseline in the test set sample). Padj (Full): p-values 
adjusted for multiple testing (tests based on age adjusted, partially adjusted, and fully adjusted 
models for all-cause mortality and incident diseases). Disease/all-cause mortality highlighted 
with asterisk (*) if padj <0.05. 
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Figure 2. Associations of biological age acceleration based on different biological age 
measures with all-cause mortality and incident diseases in the test set sample using the fully 
adjusted models. MI: myocardial infarction; T2D: type 2 diabetes; COPD: chronic obstructive 
pulmonary disease; CKD: chronic kidney disease; HF: heart failure. N: sample size with 
complete data for the fully adjusted models of PAC, BioAge, PhenoAge, and short LTL, after 
excluding participants diagnosed with the disease at or prior to baseline. iCases: number of 
incident cases of N samples. Cox regression model for all-cause mortality and Fine-Gray 
subdistribution hazard models to account for the effect of death for the risk of incident diseases. 
The full covariate adjustment included chronological age, sex, ethnicity, education, Townsend 
deprivation index, smoking status, body mass index, and pre-existing diseases (hypertension, 
myocardial infarction, heart failure, stroke, type 2 diabetes, COPD, pneumonia, chronic kidney 
disease, any cancer excluding non-melanoma skin cancer, dementia, and Parkinson’s disease). 
Delirium was not included as there were only two samples with a history of delirium at baseline. 
Padj: p-values adjusted for multiple testing per BA measure (tests based on age-adjusted, partially 
adjusted, and fully adjusted models for all-cause mortality and incident diseases) 
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Figure 3. Associations of biological age acceleration based on different biological age 
measures with all-cause mortality and incident diseases using disease-free participants in 
the combined training and test set, and fully adjusted models. MI: myocardial infarction; 
T2D: type 2 diabetes; COPD: chronic obstructive pulmonary disease; CKD: chronic kidney 
disease; HF: heart failure. N: sample size with complete data for partially adjusted models of 
PAC, BioAge, PhenoAge, and short LTL, after excluding participants diagnosed with any of the 
diseases at or prior to baseline. iCases: number of incident cases of N samples. Cox regression 
model for all-cause mortality and Fine-Gray subdistribution hazard models to account for the 
effect of death on the risk for incident diseases. The partial covariate adjustment included 
chronological age, sex, ethnicity, education, Townsend deprivation index, smoking status, and 
body mass index. Padj: p-values adjusted for multiple testing per biological age measure (n=19) 
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Figure 4. Discriminative power of biological age based on different measures for all-cause 
mortality and incident diseases using Cox models and the test set data: 1) model with 
chronological age only (M-Age), 2) model with PAC proteomic age only (M-PAC), 3) model 
with BioAge only (M-BioAge), and 4) model with PhenoAge only (M-PhenoAge). MI: 
myocardial infarction; T2D: type 2 diabetes; COPD: chronic obstructive pulmonary disease; 
CKD: chronic kidney disease; HF: heart failure. N: sample size with complete data for 
chronological age, PAC proteomic age, BioAge, and PhenoAge, after excluding participants 
diagnosed with the disease at or prior to baseline. iCases: number of incident cases of N samples.  
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Figure 5. Hallmark gene sets enriched with genes associated with BA deviation based on 
different BA measures. The colored bars represent -log10(p) for different biological age 
measures after Bonferroni correction (n=50) and those greater than 15 are truncated at 15. 
 

 

 

 

 

 . CC-BY-NC 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 20, 2023. ; https://doi.org/10.1101/2023.12.19.23300228doi: medRxiv preprint 

https://doi.org/10.1101/2023.12.19.23300228
http://creativecommons.org/licenses/by-nc/4.0/


References 

1. Rutledge, J., Oh, H. & Wyss-Coray, T. Measuring biological age using omics data. Nat Rev 

Genet 23, 715–727 (2022). 

2. Moqri, M. et al. Biomarkers of aging for the identification and evaluation of longevity 

interventions. Cell 186, 3758–3775 (2023). 

3. Kennedy, B. K. et al. Geroscience: linking aging to chronic disease. Cell 159, 709–713 

(2014). 

4. Waziry, R. et al. Effect of long-term caloric restriction on DNA methylation measures of 

biological aging in healthy adults from the CALERIE trial. Nat Aging 3, 248–257 (2023). 

5. Lohman, T. et al. HIGH�INTENSITY interval training reduces transcriptomic age: A 

randomized controlled trial. Aging Cell 22, e13841 (2023). 

6. Hannum, G. et al. Genome-wide Methylation Profiles Reveal Quantitative Views of Human 

Aging Rates. Molecular Cell 49, 359–367 (2013). 

7. Horvath, S. DNA methylation age of human tissues and cell types. Genome Biology 14, R115 

(2013). 

8. Levine, M. E. Modeling the rate of senescence: can estimated biological age predict mortality 

more accurately than chronological age? J Gerontol A Biol Sci Med Sci 68, 667–674 (2013). 

9. Tanaka, T. et al. Plasma proteomic signature of age in healthy humans. Aging Cell 17, e12799 

(2018). 

10. Levine, M. E. et al. An epigenetic biomarker of aging for lifespan and healthspan. Aging 

(Albany NY) 10, 573–591 (2018). 

11. Lu, A. T. et al. DNA methylation GrimAge strongly predicts lifespan and healthspan. 

Aging 11, 303–327 (2019). 

 . CC-BY-NC 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 20, 2023. ; https://doi.org/10.1101/2023.12.19.23300228doi: medRxiv preprint 

https://doi.org/10.1101/2023.12.19.23300228
http://creativecommons.org/licenses/by-nc/4.0/


12. McGreevy, K. M. et al. DNAmFitAge: biological age indicator incorporating physical 

fitness. Aging 15, 3904–3938 (2023). 

13. Belsky, D. W. et al. DunedinPACE, a DNA methylation biomarker of the pace of aging. 

eLife 11, e73420 (2022). 

14. Moaddel, R. et al. Proteomics in aging research: A roadmap to clinical, translational 

research. Aging Cell 20, e13325 (2021). 

15. Gadd, D. A. et al. Blood protein levels predict leading incident diseases and mortality in 

UK Biobank. http://medrxiv.org/lookup/doi/10.1101/2023.05.01.23288879 (2023) 

doi:10.1101/2023.05.01.23288879. 

16. Sayed, N. et al. An inflammatory aging clock (iAge) based on deep learning tracks 

multimorbidity, immunosenescence, frailty and cardiovascular aging. Nat Aging 1, 598–615 

(2021). 

17. Sathyan, S. et al. Plasma proteomic profile of age, health span, and all-cause mortality in 

older adults. Aging Cell 19, e13250 (2020). 

18. Diniz, B. S. et al. Enhanced Molecular Aging in Late-Life Depression: the Senescent-

Associated Secretory Phenotype. Am J Geriatr Psychiatry 25, 64–72 (2017). 

19. López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. The hallmarks 

of aging. Cell 153, 1194–1217 (2013). 

20. Seitz-Holland, J. et al. Major depression, physical health and molecular senescence 

markers abnormalities. Nat. Mental Health 1, 200–209 (2023). 

21. St Sauver, J. L. et al. Biomarkers of cellular senescence and risk of death in humans. 

Aging Cell e14006 (2023) doi:10.1111/acel.14006. 

 . CC-BY-NC 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 20, 2023. ; https://doi.org/10.1101/2023.12.19.23300228doi: medRxiv preprint 

https://doi.org/10.1101/2023.12.19.23300228
http://creativecommons.org/licenses/by-nc/4.0/


22. Sudlow, C. et al. UK biobank: an open access resource for identifying the causes of a 

wide range of complex diseases of middle and old age. PLoS Med 12, e1001779 (2015). 

23. Sun, B. B. et al. Plasma proteomic associations with genetics and health in the UK 

Biobank. Nature 622, 329–338 (2023). 

24. UK Biobank Showcase. UK Biobank Showcase https://biobank.ndph.ox.ac.uk/showcase/. 

25. Williams, D. M., Jylhävä, J., Pedersen, N. L. & Hägg, S. A Frailty Index for UK Biobank 

Participants. J Gerontol A Biol Sci Med Sci 74, 582–587 (2019). 

26. Liu, Z. et al. A new aging measure captures morbidity and mortality risk across diverse 

subpopulations from NHANES IV: A cohort study. PLoS Med 15, e1002718 (2018). 

27. Kuo, C.-L., Pilling, L. C., Liu, Z., Atkins, J. L. & Levine, M. E. Genetic associations for 

two biological age measures point to distinct aging phenotypes. Aging Cell 20, e13376 (2021). 

28. Codd, V. et al. Measurement and initial characterization of leukocyte telomere length in 

474,074 participants in UK Biobank. Nat Aging 2, 170–179 (2022). 

29. Watanabe, K., Taskesen, E., Van Bochoven, A. & Posthuma, D. Functional mapping and 

annotation of genetic associations with FUMA. Nat Commun 8, 1826 (2017). 

30. Argentieri, M. A. et al. Proteomic aging clock predicts mortality and risk of common 

age-related diseases in diverse populations. 

http://medrxiv.org/lookup/doi/10.1101/2023.09.13.23295486 (2023) 

doi:10.1101/2023.09.13.23295486. 

 

 . CC-BY-NC 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 20, 2023. ; https://doi.org/10.1101/2023.12.19.23300228doi: medRxiv preprint 

https://doi.org/10.1101/2023.12.19.23300228
http://creativecommons.org/licenses/by-nc/4.0/

