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Abstract

Prognostic models in oncology have a profound impact on personalized cancer care and patient

profiling, but tend to be heterogeneously developed and implemented in narrow patient cohorts.

Here, we develop and benchmark multiple machine learning models to predict survival in

pan-cancer and 16 single-cancer settings using a de-identified clinico-genomic database of

28,079 US patients with cancer. We identify key predictors of cancer prognosis, including 15

shared across seven or more cancer types, revealing strong consistency in cancer prognostic

factors. We demonstrate that pan-cancer models generally outperform or match single-cancer

models in predicting survival and risk stratifying patients, especially in smaller cancer cohorts,

suggesting a unique transfer learning advantage of pan-cancer models. This work demonstrates

the potential of pan-cancer approaches in enhancing the accuracy and applicability of

prognostic models in oncology, paving the way for more personalized and effective cancer care

strategies.
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Introduction
Prognostic models — models which predict a future health state, like survival — have a direct

and important impact in precision oncology. In clinical practice, prognosis informs personalized

treatment and care management by helping identify the future course of illness, appropriate

course of therapy (i.e. ranging from aggressive treatment to surveillance), and resource

allocation1. In clinical studies, stratifying patients into prognostic risk categories can aid in

patient recruitment and trial enrichment for high-risk patients2,3. And critically, prognostic models

have a profound impact on patient care, with these strategies enhancing quality of life and care

by guiding clinicians towards the best treatment options tailored to each patient’s unique health

profile. Typically, prognostic models are developed using a few disease-specific prognostic

factors collected in routine clinical practice and used to predict patient survival or risk of

death4–6.

The recent availability of large volumes of longitudinal, highly curated, and often linked

patient-level health data from digital sources such as electronic health records (EHR) and

genomic sequencing is contributing to advances in precision medicine by routinely collecting

and storing millions of data points that offer a much more comprehensive patient profile.

Machine learning models can learn from these high-dimensional datasets more effectively,

bringing an opportunity for researchers to develop prognostic models that better leverage the

myriad of prognostic factors from the patient’s health profile - not only illuminating key drivers in

patient prognosis, but also driving improved and more personalized patient care.

Separately, an emerging paradigm in oncology is that of pan-cancer (cancer agnostic) research

and treatment, in which cancer is characterized by genetic and molecular features rather than

by its site of origin in the body. Indeed, multiple therapies have been approved in the last 5

years to treat a collection of cancer types on the basis of shared genetic mutations or predictive

biomarkers that have been discovered to benefit from targeted treatment, such as tumor

mutational burden (TMB)7 and fusions on the NTRK gene8. Pan-cancer prognostic factors –-

particularly genomic or molecular in origin –- are another area of research that have shown

early promise but warrant deeper exploration9. Further, whether pan-cancer settings provide a
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unique learning opportunity for prognostic models, over those typically developed in single

cancer settings, is unknown10.

Although real-world prognostic models have been developed in the literature, a majority have

been constructed using either clinical9,11 or genomic12 data alone, or within specific disease

settings13. To advance our understanding of pan-cancer prognosis, it is essential to broaden the

scope. Here we access a large, heterogeneous, and multi-cancer clinico-genomic database that

offers a powerful tool for understanding both cancer genomics and clinical factors that impact

survival under a pan-cancer paradigm. To our knowledge, the present study is the first

large-scale analysis combining clinical and genomic data to evaluate and compare predictions

in pan-cancer and dozens of single-cancer settings.

Our contributions are as follows: we systematically build and benchmark multiple pan-cancer

and single-cancer machine learning prognostic models ranging in complexity using a large

real-world clinico-genomic database; we identify key pan-cancer and single-cancer factors both

shared and unique to each patient setting; and finally, on the basis of these factors, we risk

stratify patients into prognostic subgroups. We compare the performance of pan- and

single-cancer models to assess where pan-cancer models can provide advantage, and discuss

implications for clinical and research settings.

Results
Pan- and single-cancer systematic modeling framework
We endeavored to create a systematic, reproducible framework for the building and

benchmarking of multiple pan- and single-cancer prognostic models, outlined in Figure 1. This

framework represents an end-to-end, data-driven process governing feature engineering, model

building, model prediction, and model evaluation to enable comparisons between models and

between cancer settings.

We obtained retrospective data on 28,079 patients from 16 different cancer cohorts with a

recorded first line of therapy (1L) between January 1, 2011 and June 30, 2020 in a US

clinico-genomic database (CGDB) linking longitudinal, patient-level electronic health records

(EHRs) with patient-level tumor genomic profiling of >300 cancer-related genes14,15.
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For each patient, we derived over 2,000 features representing 5 data modalities:

clinical/demographic, laboratory/vital signs, treatment, cancer-specific (these 4 modalities

collectively referred to as “clinical”), and genomic (Table S1). For each of the hundreds of

individual lab tests in the database, we computed multiple time series summaries up until the

point of prediction (1L initiation date). Genomic data, which contributed a majority of features,

were used to characterize: (i) the alteration status (mutated or wild type) of >300 cancer-related

genes for three variant types (short variant, copy number, and rearrangement), (ii) cancer

biology pathways affected by these alterations, (iii) mutational signatures defined by the

Catalogue Of Somatic Mutations In Cancer (COSMIC), and (iv) underlying protein interaction

networks of affected genes (“node2vec”). In total, 2,059 features were derived (increasing to

2,135 model input features after one-hot encoding).

The pan-cancer cohort was highly heterogeneous with respect to cancer type and key

clinico-genomic factors (Table 1). A majority of patients had solid tumor cancer diagnoses such

as non-small cell lung cancer (NSCLC, n = 7,157, 25.4%), colorectal cancer (CRC, n = 5,059,

18.0%), and breast cancer (n = 4,801, 17.1%). Patient sample sizes for hematological (blood,

bone marrow, and lymph node) diagnoses were considerably smaller, notably for diffuse large

B-cell lymphoma (DLBCL, n = 163, 0.6%) and chronic lymphocytic leukemia (CLL, n = 109,

0.4%). Patient age ranged from 18 to 85 (median: 64 years; interquartile range, (IQR): 56, 72

years) and the median year of frontline therapy was 2017 (IQR: 2015, 2018). Approximately

42% of the pan-cancer cohort were never-smokers, though this ranged from 4% to 62% across

individual cancer cohorts. Aligning with well-studied cancer biology, the TP53 gene short variant

(SV), which encodes a tumor suppressor protein, was the most frequent alteration in the

pan-cancer cohort with 62.5% of all patients having the alteration.

Given patient heterogeneity and vast differences in sample sizes of the different cancer cohorts,

we sought to investigate whether models developed on the pan-cancer cohort could improve

survival predictions compared to those developed in single-cancer settings, by learning from all

of the available information and potential signals across cancer types. Using the full

high-dimensional, clinico-genomic feature set, we developed a series of penalized Cox

proportional hazards models (“Full” models) to predict survival from 1L initiation date in (i) the

large pan-cancer cohort (pan-cancer model) and (ii) each of the 16 cancer cohorts separately

(single-cancer models). To compare to single-cancer models, pan-cancer trained models were

evaluated on each of the 16 separate cancer cohorts in addition to the pan-cancer cohort

4

 . CC-BY-NC 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 19, 2023. ; https://doi.org/10.1101/2023.12.18.23300166doi: medRxiv preprint 

https://doi.org/10.1101/2023.12.18.23300166
http://creativecommons.org/licenses/by-nc/4.0/


(Figure 1). We benchmarked these high-dimensional prognostic models against simpler models

from clinical practice and the literature, and here we present: (1) a “benchmark” model

containing cancer type, age, gender, race, smoking status, cancer stage at diagnosis, baseline

Eastern Cooperative Oncology Group (ECOG) Performance Status, time from diagnosis to

initiation of 1L, and time from genomic test to initiation of 1L; and (2) a model adapted from

ROPRO (Real wOrld PROgnostic score) by Becker et al9, referred to as “ROPRO-like”. These

models are described in Table S2 and SI Materials & Methods.

The out-of-sample performance of each trained pan-cancer and single-cancer prognostic model

was evaluated on a withheld, single-cancer test dataset containing 20% of the total patient

cohort (split by stratified random sampling on cancer type), using three performance metrics to

assess the discrimination and calibration of the survival predictions: concordance index

(c-index), integrated Brier score (IBS), and the hazard ratio (HR) comparing survival between

patients in predicted low-risk and high-risk groups based upon a median split. Bias-corrected

95% confidence intervals for the c-index and IBS were obtained via 1,000 bootstrap replicates

of the train and test data16.
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Figure 1. Pan- and single-cancer modeling framework. A US nationwide clinico-genomic

database containing 28,079 patients and 16 cancer types was used to engineer over 2,000

features representing different modalities including demographics, treatment, laboratory tests

and vital signs (represented as time series summaries), and genomics (represented as binary

mutation status, affected cancer pathway, mutational signatures, and node2vec embeddings).

Data were uniformly pre-processed including steps like outlier detection and processing and

imputation. All steps are described in detail in Materials & Methods and are performed

separately in train and test data where appropriate. Following this, multiple models were

constructed with different feature sets: “benchmark” containing simple clinical features;

“ROPRO” containing clinical features validated in the literature; “full” containing all 2,135

one-hot encoded clinico-genomic features. These models were trained both in pan-cancer and

single-cancer cohorts, and evaluated in a single-cancer, out-of-sample test set for their ability to

predict survival and risk stratify patients into high- and low-risk groups.
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Model performance in pan- and single-cancer cohorts
Table 2 summarizes the out-of-sample c- index for the different comparator models evaluated

on each cancer cohort. The c-index provides a measure of how well a model can discriminate

prognosis between patients. For each model, the pan-cancer out-of-sample performance is

presented alongside that of the equivalent single-cancer model. Figure 2 visualizes trends in

pan-cancer and single-cancer c-indexes across (A) all 3 comparator models and (B) all 16

cancer cohorts for only the full high-dimensional model.

Large vs. small feature set performance: Across comparator models (benchmark, ROPRO-like,

and full), there was a consistent gain in discrimination (higher c-index) for most cancer types as

additional features were incorporated into the model, although this had diminishing returns for

cancer cohorts with fewer patients (Fig. 2A). The overall pan-cancer c-index improved slightly

from the benchmark model (0.63, 95% CI: 0.62, 0.65) to the full model (0.673, 95% CI: 0.667,

0.687) with even more modest gains over the ROPRO-like model (0.66, 95% CI: 0.65, 0.67)

(Table 2). Single-cancer models followed similar trends. The change in c-index was small

relative to the uncertainty resulting from small sample sizes in the test set, so these findings are

descriptive. However, some of the smallest cancer cohorts - with fewer than 500 patients in the

training data, e.g. small-cell lung cancer, multiple myeloma, and hepatocellular carcinoma

(HCC) - saw little or no improvement in the c-index as the number of features increased. These

findings suggest a possible performance trade-off between sample size and number of

predictors.

Pan- vs. single-cancer performance: In almost all cases, however, the pan-cancer model

performed similarly to or outperformed the equivalent single-cancer models (trained on the

same predictors) on the basis of the c-index, most substantially in the full (highest-dimensional)

model (Fig. 2B, Table 2). In particular for the full model, c-index improvements were highest

among the smallest sample sizes, ranging from 2-20% higher in cancer cohorts with less than

500 patients. Meaningful gains were not observed for cancer cohorts with large sample sizes. It

is worth noting that the uncertainty around these estimates is considerably high as a result of

very small sample sizes, so findings are descriptive and this is observed as a general trend.

To further assess the prognostic discrimination of these models, we calculated a prognostic

score for each patient using the final coefficients of each penalized Cox model, representing the
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predicted risk of death. We then stratified patients by cancer type into low- and high-risk

categories based on the median score of the training patients in each cancer cohort.

Aligning with trends in the c-index and sample size, the pan-cancer model outperformed

single-cancer models on patient risk stratification for many cancers, most prominently for

cancers with smaller sample sizes. Fig. 3A visualizes key factors driving risk stratification in the

pan-cancer model, such as lab tests, year of frontline therapy, tissue tumor mutational burden

(tTMB), ECOG score, and TP53 (SV) alteration. In Fig. 3B, the pan-cancer model yielded clear

separation of the survival curve between high- and low-risk patients in the pan-cancer cohort,

and training on the pan-cancer dataset generally yielded an improvement over single-cancer

models (Fig. 3C-F, Figs. S1-5). For 12 of the 16 cancer types, hazard ratios (HRs) comparing

the survival of high to low-risk patients were lower, many with narrower confidence intervals and

more well-separated survival curves, using pan-cancer predictions compared to cancer-specific

predictions; for example in ovarian cancer (OC), the HR was 0.48 (95% CI: 0.34, 0.66) in the

pan-cancer model (Fig. 3C) compared to 0.74 (95% CI: 0.55, 0.99) in the single-cancer model

(Fig. 3D). In small-cell lung cancer (SCLC), the pan- and single-cancer HRs were 0.48 (95% CI:

0.29, 0.78) versus 1 (95% CI: 0.62, 1.62), respectively (Fig. 3E-F).

Trends in the IBS, a measure of performance reflecting both discrimination and calibration, were

less clear and presented in Fig. S6. Taken together with the c-index results, the IBS results

suggest that single-cancer predictions tended to be slightly better calibrated than pan-cancer

predictions, in particular for the largest cancer cohorts. Similar to the c-index, the IBS improved

with additional features, where improvement is marked by decreases in the score; however, the

range of possible values of IBS was smaller than the uncertainty around each estimate, making

interpretation difficult.

Clinico-genomic factors associated with cancer survival
Our high-dimensional pan- and single-cancer models offer the opportunity to assess variables

strongly associated with cancer prognosis, out of all variables available in the clinico-genomic

database. Our penalized approach using lasso regularization provides feature selection by

shrinking the coefficients of unimportant variables to zero and retaining only the most prognostic

features in the model. Of all 2,059 predictors (2,135 after one-hot encoding), the pan-cancer full

model selected a total of 354. Figure 4 shows the coefficients of the top 25 pan-cancer

predictors, interpreted as the log hazard ratio (HR) where positive coefficients indicate worse
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prognosis (harmful association with survival) and negative coefficients indicate better prognosis

(favorable association with survival). Several of these predictors were described in the previous

section as having contributed to the effective pan-cancer risk stratification (Fig. 3A). Notably, the

clinical features associated with substantially worse survival (log HR > 0.09) were longer time

from frontline therapy to genomic test, pancreatic and gastric cancer types, higher ECOG score,

higher aspartate aminotransferase (AST) levels, and higher heart rate. Clinical features

associated with substantially better survival (log HR < -0.09) were more recent year of frontline

treatment and higher albumin levels. Indicators for cancer type suggested pronounced

differences in cancer-specific survival: gastric and pancreatic were strongly associated with

worse survival, whereas CLL, a slow-growing blood cancer, was associated with longer survival.

Seven genomic mutations were among the top 25 pan-cancer predictors overall: KDM6A (CN),

AR (CN), KEAP1 (SV), PAX5 (RE), and TP53 (SV) (all associated with worse survival), and

FGFR4 (SV) and ALK (RE) (both associated with better survival). In addition, higher tissue

tumor mutational burden (tTMB) was associated with better survival.

Our single-cancer models, trained on the equivalent feature set of over 2,000 clinico-genomic

predictors but learning from only patients of a single cancer type, offered insights into features

important in each cancer setting independently. In contrast with the pan-cancer model, genomic

features were more commonly selected as top predictors in the single-cancer models and

revealed unique cancer-specific genomic profiles with mutations or cancer pathways not

identified as top predictors in the pan-cancer model. Figs. S7-9 show these top predictors for

each of the 16 cancer types assessed.

In addition, evaluating the clinical and genomic predictors selected by multiple single-cancer

models could reveal relationships between cancer types and corroborate findings of the

pan-cancer model. Fig. 5 shows the coefficients of (A) the top 25 pan-cancer variables and (B)

the 15 clinico-genomic variables that were selected by at least 7 pan- and single-cancer models.

Strong consistency in effect size and direction was observed across several cancers, including

for the genomic variables presence of a TP53 (SV) mutation and higher tumor purity (both

associated with worse survival); and for the clinical variables older age, higher ECOG score,

higher heart rate, and higher proportion of abnormal results for lab tests like alkaline

phosphatase (ALP), albumin, and lymphocyte count (all associated with worse survival). Across

most cancer cohorts, there was also consistency in the effects of 2 temporal variables: year of
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frontline therapy (more recent years are associated with better survival) and time from frontline

treatment to genomic test (longer interval is associated with worse survival).

Most interesting, perhaps, are the predictors selected exclusively by the pan-cancer model and

which appear in the model’s top 25 variables (Fig. 5A): the mutations in KDM6A (CN), PAX5

(RE), and FGFR4 (SV). These mutations all exhibited stronger association with survival

compared to TP53 (SV, the most frequent mutation across all patients), with log HRs between

0.07-0.14 in absolute value, yet were not selected by any cancer-specific model.

Finally, we note that the sparsity of the single-cancer models — how many variables were

selected in each cancer cohort — is related to their sample size. Because variables are

shrunken by the model to prevent overfitting, the smallest cancer subgroups are often

constrained from selecting as many variables as the larger subgroups (Fig. S10). As a result,

the present feature analysis considers a limited interpretation of variable selection: variables

selected by models are considered informative, but the absence of variables is not necessarily

informative and may be instead a consequence of sample size.
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Figure 2. The out-of-sample concordance index (c-index), where values closer to 1
indicate higher prognostic discrimination. (A) The pan-cancer (solid black line) and
single-cancer (dashed blue line) c-index for each comparator model of increasing
high-dimensionality (x-axis: Benchmark, ROPRO-like, and Full models). (B) For each
cancer cohort, we compare the pan-cancer (solid black line) and single-cancer (dashed
blue line) c-index for the Full model constructed on the full feature set of > 2,000 features.
95% bias-corrected percentile intervals (shaded) around the estimates are shown for 1,000

bootstrap replicates. In both plots, cancer types are arranged from largest to smallest sample

size.
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Figure 3. (A) Heatmap showing the normalized (z-score) value of selected pan-cancer
predictors in the highest (top 25%) and lowest (bottom 25%) risk patients in the
out-of-sample pan-cancer cohort. (B) Out-of-sample pan-cancer risk stratification. In
single-cancer cohorts, risk stratification of pan- and single-cancer models are shown for
(C-D) Ovarian Cancer and (E-F) Small Cell Lung Cancer (SCLC). In (A), from left to right,

patients are ordered from highest to lowest risk based on their risk scores, and their normalized

value for each predictor is given in shades of red (higher) or blue (lower). A vertical line

separates highest from lowest risk patients.
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Figure 4. The top 25 predictors selected by the full penalized pan-cancer model, ordered
and shaded by coefficient size (log hazard ratio, HR) and colored by predictor type (black
= clinical, green = genomics). Positive coefficients suggest a more harmful association with

survival and negative coefficients suggest a more favorable association.

  

AST: Aspartate Aminotransferase; ALP: Alkaline Phosphatase; tTMB: tissue Tumor Mutational Burden; ALT: Alanine Transaminase
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Figure 5. Heatmaps showing the coefficients, by cancer setting, of (A) the top 25
pan-cancer variables and (B) the 15 variables that were selected by at least 7
single-cancer models. In (A), variables on the y-axis are arranged by descending coefficient in

the pan-cancer model (high to low); in (B), by descending frequency of selection in the

single-cancer models (most to fewest). Variables that were not selected in a particular cancer

setting are represented as blank (white) tiles. Cancer types are arranged on the x-axis from

largest to smallest sample size.

AST: Aspartate Aminotransferase; ALP: Alkaline Phosphatase; tTMB: tissue Tumor Mutational Burden; ALT: Alanine Transaminase; Prop: Proportion
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Discussion
Our systematic analysis of prognostic pan-cancer and single-cancer models demonstrates the

value of a comprehensive framework for prognostic modeling, namely around: model

performance tradeoffs, shared cancer biologies, and novel pan-cancer predictors.

First, we observed that, compared to single-cancer models, pan-cancer models demonstrated

improved performance and risk stratification capabilities in many cancer types, specifically when

the sample size and event rate was small and the training set had a large number of predictors.

In the highest-dimensional models (the “full” model), the ability to train on an extensive number

of clinico-genomic factors across multiple cancer types was a learning advantage of the

pan-cancer model, allowing it to select a vast number of predictors compared to the equivalent

single-cancer model, which could be considered an example of transfer learning in low-data

settings17. Transfer learning assumes that predictive features learned from training in some

domain can be applied to a different domain - in this case, cancer types. This is apparent when

studying the performance differences between the pan-cancer and single-cancer models. For

the largest cancer cohorts (n > 1,000 patients) like NSCLC and breast cancer, little difference

was made because both the pan-cancer and single-cancer datasets were sufficiently large to

train on many relevant predictors. For example, in NSCLC (n > 5,000 patients), the

single-cancer model selected 115 variables compared to the pan-cancer model’s selection of

354. Moreover, the large cancer single-cancer models shared many of the same predictors

selected by the pan-cancer model, such as metastatic sites, ALK mutation (specific to NSCLC),

and estrogen receptor (ER) positive status (specific to breast cancer). However, for the smallest

cancer cohorts, the models were penalized resulting in the tendency to select fewer features.

For head and neck cancer (n = 319 patients), the single-cancer model selected only 6 variables

out of > 2,000, but its performance markedly improved with the pan-cancer model which

ultimately selected 354 variables. This learning advantage of the pan-cancer model allowed it to

capture a wide range of prognostic factors to apply to prediction and risk stratification, especially

in smaller cancer settings.

However, pan-cancer models did not show a learning advantage in simpler, lower-dimensional

settings. In our comparator models (benchmark and ROPRO-like models) which contained a

considerably smaller number (< 30) of features, performance was more similar between pan-

and single-cancer models. In these scenarios, data from multiple cancer types may not provide

substantial additional information or predictive power over what is available in the single cancer
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setting, particularly since these models already include a small number of known highly

prognostic factors such as age, ECOG score, and lab tests. Further, these simple models still

perform quite well thanks to the inclusion of ECOG, which was identified by the full

(highest-dimensional) model as a top 10 predictor out of > 2,000 features: even the simplest

pan-cancer benchmark model, which included ECOG, achieved a c-index of 0.63 (95% CI: 0.62,

0.65) compared to the full model’s c-index of 0.673 (95% CI: 0.667, 0.687). These results

suggest that prognostic models developed using a handful of variables collected in routine

clinical practice may be sufficient for certain applications, with the benefit of being easier to

implement. Indeed, smaller cancer cohorts did not see much performance improvement moving

from simple to complex models; however, larger cancer cohorts with > 500 patients like

colorectal, prostate, and melanoma saw marked improvements with the inclusion of additional

predictors. Here, the decision to use high-dimensional models should consider the disease

setting and weigh tradeoffs including: the impact of the performance increase, the feasibility of

collecting more data, the desire to include additional clinico-genomic information, and the need

for more computationally intensive processes.

Second, our study revealed strong consistency in the predictors identified by both pan-cancer

and single-cancer models, underscoring the presence of common clinical and genomic features

that contribute to cancer prognosis and corroborating known disease biology. Across all

comparator models and across pan-cancer and single-cancer settings, demographic and clinical

features like age, ECOG score, and cancer stage at diagnosis were found to be highly

prognostic, with older age, higher ECOG score, higher proportion of abnormal lab results, higher

AST, and higher heart rate all associated with worse survival outcomes, echoing what is

extensively published in the literature and aligning with the findings of the ROPRO model 9,18–22.

Other lab tests like higher albumin levels, higher lymphocyte count, and higher hemoglobin

(non-anemic status) were consistently associated with better survival, also aligning with

literature and the ROPRO model23–26. Briefly, low hemoglobin is a marker of anemia, indicating

insufficient oxygen transport to tissues, compromising immune response27; low albumin reflects

poor nutritional status, impairing the body's ability to fight cancer and recover from treatment23;

and low lymphocyte count signifies weakened immune surveillance, reducing the body's

capacity to detect and destroy cancer cells26. Certain factors related to care were also

associated with better survival outcomes across many cancer types including receiving a higher

number of drugs in frontline therapy and being treated in more recent years.
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Several genomic factors also exhibited strong consistency across cancer types. Higher tumor

purity was consistently associated with worse survival in 7 cancer types. The concept of tumor

purity refers to the extent to which the tumor tissue consists of cancer cells versus other types of

cells present in the tumor microenvironment; a higher tumor purity indicates a larger proportion

of cancer cells relative to non-cancerous cells, and here is measured in silico (using

epigenomic, genomic, or transcriptomic profiles)28. Multiple factors contribute to the tumor purity

estimate, including ease of sampling and specific tissue of origin, but an intriguing hypothesis

that could explain the effect observed in these data is immune infiltration. The immune system

plays a crucial role in recognizing and eliminating abnormal or cancerous cells, but when tumor

purity is high, this functionality is inhibited. Another possibility is that samples with higher tumor

purity are representative of larger or more aggressive tumors with poor survival. Thus, the

finding that high tumor purity is a strong predictor of worse survival is likely aligned with our

understanding of cancer biology29. Moreover, the TP53 (SV) mutation was associated with

worse survival in 5 cancer settings, consistent with the well-established role of TP53 in tumor

suppression and its implications in cancer progression30.

A new finding was the strong effect of time from frontline therapy to genomic test, across

cancers. The left truncation-adjusted models adjusted for this variable to achieve

quasi-independence between database entry time (marked by receiving a genomic test) and

survival time, described in Materials & Methods. This feature is an important phenomenon in the

data, where many patients receive genomic tests long after frontline treatment, and could have

implications for patient outcomes. One hypothesis to explain its strong association is that

patients who receive genomic tests later in their treatment course may have exhausted standard

treatment options. As a result, they may be considered high-risk with limited therapeutic options.

This finding raises some considerations for clinical practice: earlier genomic testing in the

treatment course may provide more personalized treatment options (e.g. biomarker targeted

therapy) for patients, potentially leading to better outcomes. Further, the time interval between

diagnosis and genomic test is shrinking over time thanks to the increased availability and

access to genomic testing in recent years, so this association may weaken in the future.

Finally, our analysis uncovered potentially unique pan-cancer variables. The somatic mutations

in KDM6A (CN), PAX5 (RE), and FGFR4 (SV), identified among the top 25 features of the

pan-cancer model, had similar prevalence across multiple cancer types but were not selected

by any of the single-cancer models and thus warrant further research. PAX5 may be implicated
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in metastasis31, KDM6A in DNA damage repair, and the FGFR family of proteins in a number of

cell proliferation pathways32. The predominant rearrangement involving PAX5 was truncation,

with a minority of cases being intra-gene rearrangements - no recurrent rearrangements

involving non-PAX5 partner genes were observed. Copy number variants of KDM6A were

predominantly deletions, except for cases in breast cancer and ovarian cancer, where a range

of amplifications was observed. Previously, loss of KDM6A has been associated with poor

prognosis in pancreatic cancer 33.

While not the focus of this paper, our study also reveals the unique clinico-genomic profile of

each cancer type by showcasing the top 25 features of each single-cancer model, which can be

explored in Figs. S7-9.

Prognostic models hold significant utility in oncology research and clinical practice. Better risk

stratification on the basis of prognosis can help physicians and clinical trials identify high-risk

patients who may benefit from more intensive interventions or personalized treatment

strategies; conversely, they can also spare low-risk patients from unnecessary interventions and

thus help optimize resource allocation. In many cancer settings, we observed that pan-cancer

models improved risk stratification because of their training advantages discussed previously.

Separately, our models also corroborate the good discriminative ability of the ROPRO

prognostic model in both pan- and single-cancer settings, which has demonstrated clinical utility

in several applications 9,34.

Our prognostic modeling framework is a strength of this work that enables a consistent

evaluation of multiple models in diverse pan- and single-cancer settings. It can be used as a

template to extend this study to future research areas, including: further work on the theory

behind “low information” transfer learning approaches like the one demonstrated in this study;

the concept of “pre-training” to give advantage in low information settings; and exploring cancer

subgroups (such as hematological or hormone-dependent) within which similarities can be

further exploited by this “pan” training approach.

Our study has several limitations that should be considered when interpreting the results. The

sample sizes and number of events in many cancer types were relatively small, which can lead

to model instability and imprecise estimates, as indicated by the wide confidence intervals for

the smallest cancer cohorts like DLBCL (n = 122) and CLL (n = 83) as well as unstable
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coefficient sizes and very sparse models. As a result, findings that compare model performance

remain trends and are descriptive. Additionally, the analysis used penalized linear Cox models,

which assume a linear relationship between predictors and the log-hazard ratio. While this is a

commonly used approach, it may not capture potential non-linear associations between

predictors and outcomes nor complex interactions between variables. To investigate whether

the ability to model complex and nonlinear associations and interactions would improve

performance, we implemented a tree-based approach in the form of random survival forests

adjusted for left truncation35 and found no difference in performance compared to our linear

models (Fig. S11, SI Materials & Methods), which suggests the data may be adequately

modeled using linearity assumptions, which also yield more interpretable results (hazard ratios)

for clinical audiences. Our models adjusted for left truncation, a feature of the clinico-genomic

database, but this could introduce bias if the truncation is dependent on the outcome. Further,

high levels of missingness in the clinico-genomic database led us to omit potential prognostic

factors like lactate dehydrogenase (LDH), preventing us from perfectly replicating the ROPRO

model9 and potentially impacting the comprehensiveness of the models.

It is also important to note that our models did not include interaction effects of mutations with

treatment and so did not explicitly model predictive biomarkers36. For example, in the case of

NSCLC, ALK mutations were shown to be protective, likely due to the availability of ALK

inhibitors as approved treatments. The absence of such interaction effects in our models limits

the interpretation of the predictive value of specific mutations in the context of treatment

response, and this is explored in other studies37.

Despite these limitations, our study offers a comprehensive, large-scale, and data-driven

assessment of cancer that may be valuable for hypothesis generation, prognostic modeling, and

risk stratification in oncology.
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Materials & Methods

Data

Patient-level data and outcomes were derived from the pan-tumor CGDB offered jointly by

Flatiron Health and Foundation Medicine. The CGDB is a US nationwide, longitudinal,

de-identified oncology database that combines real-world, patient-level clinical data and

outcomes with patient-level genomic data from over 280 US cancer clinics (approximately 800

sites of care). Comprehensive genomic profiling of >300 cancer-related genes on Foundation

Medicine next-generation sequencing tests (including both current solid and liquid assays and

legacy assays: FoundationOne CDx, FoundationOne Liquid CDx, FoundationOne Heme,

FoundationOne, FoundationOne Liquid, FoundationACT) were linked to Flatiron EHR patient

data via de-identified, deterministic matching38–40. To date, over 400,000 samples have been

sequenced from patients across the US. The data are de-identified and subject to obligations to

prevent reidentification and protect patient confidentiality. Altogether, the CGDB contains a rich

set of thousands of potentially important prognostic factors for survival, including demographic

characteristics, treatment regimens, disease and diagnosis profiles, mutational status of

cancer-related genes, and longitudinal records of laboratory tests.

Patients from 16 cancer cohorts with a recorded oncology clinician-defined, rule-based, first line

of therapy (1L) between January 1, 2011 through June 30, 2020 were pooled into a single,

pan-cancer cohort containing 28,079 patients. The pan-cancer cohort comprised the following

16 cancer types: breast, chronic lymphocytic leukemia (CLL), colorectal, diffuse large B-cell

lymphoma (DLBCL), gastric, head and neck, hepatocellular carcinoma (HCC), melanoma,

multiple myeloma, non-small cell lung cancer (NSCLC), ovarian, pancreatic, prostate, renal,

smal-cell lung cancer (SCLC), and urothelial. Patients were split into a train set (80%) and test

set (20%) using stratified random sampling by cancer type.

Feature engineering and preprocessing

All available data from the CGDB were used to derive a suite of features for each patient

corresponding to 5 data modalities: clinical/demographic, laboratory/vital signs, treatment,

cancer-specific (these 4 collectively referred to as “clinical”), and genomic. These features are

summarized at a high level in Table S1. Features were eliminated in a data-driven way if they

were zero-variance, near-zero-variance (dummy variables with fewer than 20 counts), or

missing in over 30% of the pan-cancer cohort. Multiple imputation by chained equations (MICE)
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was used to impute clinical features and a k-nearest neighbors (kNN) approach41 was used to

impute genomic features incorporating 2,566 samples from The Cancer Genome Atlas (TCGA)

that had information on mutations of all three relevant types available: short variants (SNVs,

indels), copy number alterations (CN), and rearrangements (fusions, RE)42. Since the TCGA

data were derived from whole genome sequencing, we filtered the data to only those genes

measured on Foundation Medicine panels. All imputation was performed in the train set

separately from the test set to generate m=5 imputed datasets. Because of complex pooling, the

results are presented for the first imputed dataset (m=1) and results were subjectively similar

across imputed datasets. Specific feature engineering efforts are described below.

Clinical-demographic information included information on patient age, gender, race, smoking

status, body mass index (BMI), cancer type, cancer stage at diagnosis, advanced or metastatic

status of the cancer at baseline, Eastern Cooperative Oncology Group (ECOG) Performance

Status, and a composite measure of comorbidity (the Elixhauser comorbidity index43,44) derived

from structured EHR diagnosis code data. Treatment was represented in the form of indicators

for the unique drug category (e.g. chemotherapy, immunotherapy, targeted/biologic,

targeted/nonbiologic) received during the first line of therapy (1L). The number of unique drugs

received in 1L, year of frontline therapy, time from diagnosis to first treatment, and treatment at

an academic center (vs. community center) were also included.

Time series summaries of over 100 longitudinal laboratory tests and vital signs were computed

within 2 time windows prior to the patient’s first line of therapy initiation date: 60 days (~2

months) and 720 days (~2 years). The following metrics were computed within each window:

mean, median, variance, max, min, approximate entropy, difference between the last 2 values,

slope of the last 2 values, total number of tests, ratio of number of tests to the available window

of data observed for each patient, and, for lab tests, the proportion of labs that were abnormal.

For comparability across patients and testing devices, lab values were normalized to their upper

and lower limits of normal. Clinical input was obtained to assign thresholds of plausible lab and

vital sign values; outlying values were set to missing and imputed.

Genomic features were generated from a single specimen per patient, choosing the specimen

collected closest to index date if multiple were available. Binary indicator variables were

populated from the mutations assessed by the specimen’s Foundation Medicine panel, coding

each gene’s short variant, copy number, and rearrangement status separately. Gene-variant
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combinations that were not measured on a panel were coded as “NA” and were later imputed in

the k nearest neighbors step. To summarize the alterations on a pathway level, we used a

literature-derived list of gene sets and coded a pathway as impacted if any of its constituent

genes had a reported mutation. Another feature type that introduced external information was

the node2vec derived values, which were derived by averaging the node2vec45 embeddings

vector of all affected genes in a specimen. The embeddings themselves were computed by

running the reference implementation of the node2vec algorithm

(https://github.com/aditya-grover/node2vec) with default settings using as input the human

protein-protein interaction network available from the HitPredict effort46,47. For interpretability,

Fig. S12 presents the genomic variable contributions to the key protein interaction networks

(“node2vec”) selected in the pan- and single-tumor models. A final set of features incorporating

the observed mutation statuses and external data were the computed exposures to previously

published mutational signatures48. These exposures were inferred via the SigsPack R

package49. While the majority of specimen-derived features harnessed the Foundation Medicine

mutation readout, a handful of standalone scores were also incorporated - tumor mutational

burden, tumor purity, PDL1 status, estimated percentage of genome loss of heterozygosity, and

microsatellite instability status.

Finally, cancer-specific features were obtained from records unique to each of the 16 cancer

cohorts. These were included for their potential importance in predicting cancer-specific survival.

Examples include the Gleason Score (a prognostic grading score for patients with prostate

cancer), metastatic sites (for metastatic cancers such as breast cancer and non-small cell lung

cancer), and transformation status (denoting transformation from follicular lymphoma to diffuse

large b-cell lymphoma). These cancer-specific features exhibit “structured missingness50” in the

pan-cancer cohort: available for one or few cancer types, and missing for the rest. As a result,

they were not imputed outside of the relevant cancer cohort(s) and instead were set to 0.

Categorical variables were one-hot encoded with the reference level set to the majority level. All

variables were normalized and outliers were truncated at +/- 3 z-scores for model stability.

Model development

A penalized Cox proportional hazards model with lasso regularization was used to predict

overall survival (OS) in the pan-cancer cohort using 2,059 (2,135 after one-hot encoding)

CGDB-derived features. Survival time was calculated from 1L initiation date to death or last
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activity record in the EHR. Note that Flatiron EHR mortality records are validated against the

National Death Index (NDI), widely considered a gold standard death dataset in the US, and

shown to have high sensitivity, specificity, and date accuracy. A risk set adjustment was used to

adjust for left truncation (see McGough et al.51 for a discussion on left truncation in this data

source), and the model was adjusted for entry time to achieve quasi-independence between

entry time and survival time52. Additionally, the model was adjusted for cancer type and

compared to a stratified Cox model to account for potentially different baseline hazards by

cancer type. Stratified Cox models were similar to but slightly outperformed by the non-stratified

models (Fig. S13) and so are not described in the main text. Thus the main text describes

pan-cancer models adjusted for cancer type. All models were fit using glmnet v. 4.053,54 which

handles left-truncated and right-censored survival data.

Patients were split into a train set (80%) and test set (20%) using stratified random sampling by

cancer type. Five-fold cross-validation was used to tune the penalized model and the value of

the lasso penalty, 𝜆, that maximized the concordance index was selected to give the final model.

Out-of-sample pan-cancer predictions were made on the withheld test set comprising (i) the

overall pan-cancer cohort and (ii) each single-cancer cohort.

To compare predictions and insights gained from pan-cancer settings to those gained from

single-cancer settings, a series of equivalent single-cancer models were developed dynamically

using the original feature set. Feature normalization, detection and removal of zero- and

near-zero-variance predictors, and truncation of outliers were performed separately in each

single-cancer cohort, driven by the available data for that cancer type to simulate a real-world

single-cancer setting.

Pan- and single-cancer models constructed on the full CGDB data were benchmarked against

simpler models from clinical practice and the literature: (1) a benchmark model containing

cancer type, age, gender, race, smoking status, cancer stage at diagnosis, baseline Eastern

Cooperative Oncology Group (ECOG) Performance Status, time from diagnosis to initiation of

1L, and time from genomic test to initiation of 1L; and (2) a model adapted from ROPRO (Real

wOrld PROgnostic score) by Becker et al9. These models are described in Table S2 and SI

Materials & Methods.

Model evaluation
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Pan- and single-cancer models were evaluated using the out-of-sample concordance index

(c-index) and integrated Brier score (IBS). Additionally, predicted risk scores were calculated for

each patient as the exponential of the linear predictors from the penalized Cox model. Predicted

risk scores were then used to stratify test set patients into high- and low-risk categories in each

cancer cohort based on the median risk score of the training patients in the cohort.

Bias-corrected bootstrap percentile intervals16 were used to quantify uncertainty in model

performance metrics using B=1,000 bootstraps of the train and test data.

Software

All analyses were performed using R v. 4.1.1 (R Core Team 2021)55.

Data ingestion, manipulation, and preprocessing was performed using the R packages dplyr

(v1.0.7)56, dbplyr (v2.1.1)57, rlang (v1.1.0)58, data.table (v1.14.0)59, tidyr (v1.1.3)60, stats55, purrr

(v1.0.1)61, wrapr (v2.0.8)62, stringr (v1.4.0)63, hashmap (v0.2.2)64, pracma (v2.3.3)65, rsample

(v0.1.0)66, fastDummies (v1.6.3)67, and coder (v0.13.5)68. Data imputation was performed using

mice (v3.13.0)69 and impute (v1.65.0)70, and models were run using glmnet (v4.1-3)53, survival

(v3.2-13)71, caret (v6.0-88)72, and LTRCforests (v0.5.5)73,74. Code parallelization and execution

was performed using doParallel (v1.0.16)75, foreach (v1.5.1)76, doFuture (v0.12.0)77, parallel55,

rngtools (v1.5)78, and doRNG (v1.8.2)79 and logged using logger (v0.2.1)80. Finally, figures were

rendered using ggplot2 (v3.3.5)81.
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SI Tables & Figures:

Table S1. Summary of features included in prognostic models.

Table S2. Summary of prognostic model feature sets.

Figure S1-S5. Pan-cancer and single-cancer risk stratification plots for all cancer types.

Figure S6. Integrated Brier Score (IBS) for pan-cancer and single-cancer (A) Benchmark, (B)
ROPRO-like, and (C) Full models.

Figures S7-9. Top 25 clinico-genomic predictors in each single-cancer model.

Figure S10. Number of variables selected by each cancer model as a function of sample size.

Figure S11. Comparison of left-truncated right-censored forest (LTRCF) model performance for
single-cancer and pan-cancer training cohorts with respect to the (A) c-index and (B) integrated
brier score (IBS).

Figure S12. Top 15 variants associated with node2vec dimensions.

Figure S13. Comparison of model performance between the stratified and non-stratified Cox
models with respect to (A) c-index and (B) integrated Brier score (IBS).
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Table 1. Cohort characteristics. 
Pan cancer
(N=28,079)

Breast
(N=4,801)

CLL
(N=109)

Colorectal
(N=5,059)

DLBCL
(N=163)

Gastric
(N=1,712)

Head and Neck
(N=385)

Hepatocellular Carcinoma
(N=183)

Melanoma
(N=717)

Multiple Myeloma
(N=325)

Non-Small Cell
(N=7,157)

Ovarian
(N=2,338)

Pancreatic
(N=1,918)

Prostate
(N=1,235)

Renal
(N=648)

Small Cell
(N=446)

Urothelial
(N=883)

Age
Mean (SD) 63.2 (11.8) 58.1 (12.2) 65.1 (9.79) 59.9 (12.2) 61.7 (14.9) 63.4 (11.6) 63.7 (9.68) 62.4 (12.5) 63.2 (13.4) 61.5 (10.1) 67.2 (10.4) 62.9 (11.1) 64.9 (9.75) 68.9 (8.31) 61.2 (11.6) 64.9 (9.51) 68.3 (9.91)
Median (Q1, Q3) 64.0 (56.0, 72.0) 59.0 (49.0, 67.0) 66.0 (58.0, 72.0) 60.0 (52.0, 69.0) 64.0 (53.5, 72.0) 65.0 (56.0, 71.0) 64.0 (57.0, 70.0) 63.0 (57.0, 71.0) 65.0 (55.0, 73.0) 62.0 (55.0, 69.0) 68.0 (60.0, 75.0) 64.0 (56.0, 71.0) 66.0 (58.3, 72.0) 69.0 (63.0, 75.0) 62.0 (55.0, 70.0) 65.0 (58.0, 71.0) 69.0 (62.0, 76.0)
Index Year (Year at First 
Line of Therapy)
Mean (SD) 2016 (2.86) 2016 (2.47) 2016 (2.26) 2015 (3.38) 2015 (3.38) 2017 (1.95) 2017 (1.92) 2016 (2.30) 2017 (1.94) 2014 (3.16) 2017 (2.09) 2016 (2.52) 2017 (1.86) 2017 (2.04) 2016 (2.51) 2016 (2.02) 2017 (2.04)
Median (Q1, Q3) 2017 (2015, 2018) 2016 (2014, 2018) 2016 (2014, 2018) 2017 (2015, 2018) 2016 (2014, 2017) 2017 (2016, 2018) 2017 (2016, 2018) 2016 (2015, 2018) 2017 (2016, 2019) 2015 (2012, 2017) 2017 (2016, 2018) 2016 (2014, 2018) 2017 (2016, 2019) 2017 (2015, 2018) 2016 (2014, 2018) 2017 (2015, 2018) 2017 (2015, 2019)
Time from diagnosis to 
frontline therapy (days)
Mean (SD) 740 (1340) 1690 (2000) 1910 (2100) 551 (836) 114 (718) 214 (417) 660 (770) 357 (598) 1220 (1720) 865 (1560) 318 (644) 658 (1340) 262 (465) 1890 (1940) 904 (1480) 81.4 (274) 634 (1050)
Median (Q1, Q3) 157 (33.0, 836) 999 (257, 2390) 1290 (311, 2640) 161 (38.0, 778) 18.0 (8.00, 33.0) 42.0 (25.0, 233) 447 (69.0, 897) 140 (41.0, 421) 611 (86.0, 1530) 118 (33.0, 872) 54.0 (29.0, 327) 49.0 (25.0, 789) 65.0 (20.0, 367) 1140 (447, 2830) 265 (56.0, 1060) 20.0 (12.0, 32.0) 261 (61.5, 674)
Gender
F 15548 (55.4%) 4750 (98.9%) 34 (31.2%) 2307 (45.6%) 62 (38.0%) 423 (24.7%) 70 (18.2%) 46 (25.1%) 237 (33.1%) 135 (41.5%) 3601 (50.3%) 2338 (100%) 878 (45.8%) 0 (0%) 181 (27.9%) 220 (49.3%) 266 (30.1%)
M 12531 (44.6%) 51 (1.1%) 75 (68.8%) 2752 (54.4%) 101 (62.0%) 1289 (75.3%) 315 (81.8%) 137 (74.9%) 480 (66.9%) 190 (58.5%) 3556 (49.7%) 0 (0%) 1040 (54.2%) 1235 (100%) 467 (72.1%) 226 (50.7%) 617 (69.9%)
Race
White 20532 (73.1%) 3407 (71.0%) 67 (61.5%) 3579 (70.7%) 119 (73.0%) 1235 (72.1%) 302 (78.4%) 107 (58.5%) 613 (85.5%) 244 (75.1%) 5215 (72.9%) 1765 (75.5%) 1447 (75.4%) 896 (72.6%) 498 (76.9%) 358 (80.3%) 680 (77.0%)
Nonwhite 7547 (26.9%) 1394 (29.0%) 42 (38.5%) 1480 (29.3%) 44 (27.0%) 477 (27.9%) 83 (21.6%) 76 (41.5%) 104 (14.5%) 81 (24.9%) 1942 (27.1%) 573 (24.5%) 471 (24.6%) 339 (27.4%) 150 (23.1%) 88 (19.7%) 203 (23.0%)
BMI
Normal and underweight 11286 (40.2%) 1722 (35.9%) 34 (31.2%) 1793 (35.4%) 56 (34.4%) 817 (47.7%) 198 (51.4%) 60 (32.8%) 195 (27.2%) 114 (35.1%) 3288 (45.9%) 1090 (46.6%) 956 (49.8%) 268 (21.7%) 202 (31.2%) 163 (36.5%) 330 (37.4%)
Overweight 9330 (33.2%) 1514 (31.5%) 44 (40.4%) 1679 (33.2%) 62 (38.0%) 547 (32.0%) 127 (33.0%) 61 (33.3%) 293 (40.9%) 115 (35.4%) 2353 (32.9%) 661 (28.3%) 636 (33.2%) 502 (40.6%) 240 (37.0%) 166 (37.2%) 330 (37.4%)
Obese 7463 (26.6%) 1565 (32.6%) 31 (28.4%) 1587 (31.4%) 45 (27.6%) 348 (20.3%) 60 (15.6%) 62 (33.9%) 229 (31.9%) 96 (29.5%) 1516 (21.2%) 587 (25.1%) 326 (17.0%) 465 (37.7%) 206 (31.8%) 117 (26.2%) 223 (25.3%)
Smoking status
History of smoking 16313 (58.1%) 1919 (40.0%) 51 (46.8%) 2449 (48.4%) 62 (38.0%) 1127 (65.8%) 274 (71.2%) 125 (68.3%) 358 (49.9%) 126 (38.8%) 5842 (81.6%) 969 (41.4%) 991 (51.7%) 652 (52.8%) 328 (50.6%) 429 (96.2%) 611 (69.2%)
No history of smoking 11766 (41.9%) 2882 (60.0%) 58 (53.2%) 2610 (51.6%) 101 (62.0%) 585 (34.2%) 111 (28.8%) 58 (31.7%) 359 (50.1%) 199 (61.2%) 1315 (18.4%) 1369 (58.6%) 927 (48.3%) 583 (47.2%) 320 (49.4%) 17 (3.8%) 272 (30.8%)
TP53 (Short Variant) status
0 10521 (37.5%) 2452 (51.1%) 73 (67.0%) 1216 (24.0%) 97 (59.5%) 401 (23.4%) 198 (51.4%) 118 (64.5%) 533 (74.3%) 278 (85.5%) 2571 (35.9%) 450 (19.2%) 488 (25.4%) 688 (55.7%) 552 (85.2%) 36 (8.1%) 370 (41.9%)
1 17558 (62.5%) 2349 (48.9%) 36 (33.0%) 3843 (76.0%) 66 (40.5%) 1311 (76.6%) 187 (48.6%) 65 (35.5%) 184 (25.7%) 47 (14.5%) 4586 (64.1%) 1888 (80.8%) 1430 (74.6%) 547 (44.3%) 96 (14.8%) 410 (91.9%) 513 (58.1%)
Tissue TMB score
Mean (SD) 6.98 (13.7) 4.85 (8.53) 2.31 (4.47) 6.04 (13.3) 11.9 (10.2) 6.13 (7.94) 6.10 (8.41) 4.72 (9.48) 27.9 (36.5) 4.96 (7.70) 9.47 (15.0) 3.75 (11.8) 4.04 (7.69) 4.92 (11.4) 3.44 (3.71) 8.83 (6.86) 9.17 (13.8)
Median (Q1, Q3) 3.75 (1.74, 7.50) 2.61 (1.25, 5.22) 1.61 (0.807, 2.42) 3.48 (2.40, 5.22) 8.88 (4.84, 15.3) 4.35 (2.50, 6.96) 3.75 (2.40, 7.50) 3.48 (1.74, 5.22) 15.6 (5.22, 34.8) 3.23 (1.25, 6.46) 6.25 (2.61, 11.3) 2.61 (1.25, 4.35) 2.50 (1.25, 3.75) 2.50 (1.25, 4.35) 2.61 (1.25, 4.35) 7.50 (4.85, 11.3) 6.25 (3.48, 11.3)
PDL1 status
0 25913 (92.3%) 4639 (96.6%) 99 (90.8%) 4690 (92.7%) 148 (90.8%) 1395 (81.5%) 322 (83.6%) 168 (91.8%) 644 (89.8%) 297 (91.4%) 6673 (93.2%) 2240 (95.8%) 1789 (93.3%) 1112 (90.0%) 601 (92.7%) 418 (93.7%) 678 (76.8%)
1 2166 (7.7%) 162 (3.4%) 10 (9.2%) 369 (7.3%) 15 (9.2%) 317 (18.5%) 63 (16.4%) 15 (8.2%) 73 (10.2%) 28 (8.6%) 484 (6.8%) 98 (4.2%) 129 (6.7%) 123 (10.0%) 47 (7.3%) 28 (6.3%) 205 (23.2%)
Last Albumin, Abnormal
no 24245 (86.3%) 4479 (93.3%) 104 (95.4%) 4392 (86.8%) 144 (88.3%) 1379 (80.5%) 335 (87.0%) 134 (73.2%) 649 (90.5%) 280 (86.2%) 5928 (82.8%) 1985 (84.9%) 1539 (80.2%) 1179 (95.5%) 567 (87.5%) 389 (87.2%) 762 (86.3%)
yes 3834 (13.7%) 322 (6.7%) 5 (4.6%) 667 (13.2%) 19 (11.7%) 333 (19.5%) 50 (13.0%) 49 (26.8%) 68 (9.5%) 45 (13.8%) 1229 (17.2%) 353 (15.1%) 379 (19.8%) 56 (4.5%) 81 (12.5%) 57 (12.8%) 121 (13.7%)
Last Absolute Lymphocyte 
Count, Abnormal
no 20421 (72.7%) 3645 (75.9%) 37 (33.9%) 3969 (78.5%) 103 (63.2%) 1186 (69.3%) 209 (54.3%) 130 (71.0%) 552 (77.0%) 214 (65.8%) 4827 (67.4%) 1752 (74.9%) 1405 (73.3%) 893 (72.3%) 498 (76.9%) 363 (81.4%) 638 (72.3%)
yes 7658 (27.3%) 1156 (24.1%) 72 (66.1%) 1090 (21.5%) 60 (36.8%) 526 (30.7%) 176 (45.7%) 53 (29.0%) 165 (23.0%) 111 (34.2%) 2330 (32.6%) 586 (25.1%) 513 (26.7%) 342 (27.7%) 150 (23.1%) 83 (18.6%) 245 (27.7%)
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Table 2. C-index performance measures for single-cancer (SC) and pan-cancer (PC) models of increasing number of predictors ('p').
Comparator models

Benchmark (p = 9) RoPro-like (p = 29) Full Model (p = 2,109)
Indication Number of events (%) SC PC SC PC SC PC
Pan cancer (n = 28,079) N/A 0.63 (0.62,0.65) N/A 0.66 (0.65,0.67) N/A 0.673 (0.667,0.687)
Non-Small Cell Lung Cancer (n = 7,157) 4,137 (57.8%) 0.62 (0.6,0.64) 0.62 (0.6,0.65) 0.66 (0.64,0.69) 0.66 (0.64,0.68) 0.67 (0.66,0.7) 0.67 (0.66,0.7)
Colorectal (n = 5,059) 2,751 (54.4%) 0.57 (0.54,0.6) 0.58 (0.55,0.61) 0.61 (0.58,0.64) 0.62 (0.59,0.64) 0.64 (0.62,0.68) 0.63 (0.61,0.67)
Breast (n = 4,801) 2,412 (50.2%) 0.6 (0.57,0.64) 0.59 (0.56,0.63) 0.58 (0.56,0.63) 0.61 (0.58,0.64) 0.66 (0.64,0.7) 0.66 (0.64,0.7)
Ovarian (n = 2,338) 1,063 (45.5%) 0.55 (0.51,0.61) 0.56 (0.51,0.61) 0.6 (0.56,0.66) 0.62 (0.57,0.66) 0.57 (0.52,0.63) 0.62 (0.57,0.67)
Pancreatic (n = 1,918) 1,349 (70.3%) 0.59 (0.54,0.64) 0.59 (0.55,0.63) 0.62 (0.57,0.68) 0.65 (0.61,0.69) 0.62 (0.58,0.67) 0.61 (0.57,0.65)
Gastric (n = 1,712) 1,131 (66.1%) 0.57 (0.53,0.62) 0.55 (0.51,0.6) 0.56 (0.51,0.62) 0.57 (0.53,0.62) 0.57 (0.54,0.63) 0.58 (0.54,0.63)
Prostate (n = 1,235) 633 (51.3%) 0.56 (0.51,0.62) 0.57 (0.51,0.62) 0.62 (0.56,0.69) 0.58 (0.52,0.64) 0.65 (0.62,0.72) 0.63 (0.57,0.69)
Urothelial (n = 883) 527 (59.7%) 0.55 (0.46,0.63) 0.58 (0.51,0.65) 0.63 (0.56,0.7) 0.65 (0.59,0.7) 0.6 (0.52,0.67) 0.62 (0.55,0.68)
Melanoma (n = 717) 315 (43.9%) 0.58 (0.5,0.7) 0.62 (0.53,0.7) 0.64 (0.57,0.75) 0.64 (0.55,0.72) 0.66 (0.58,0.77) 0.72 (0.65,0.8)
Renal (n = 648) 332 (51.2%) 0.67 (0.61,0.77) 0.66 (0.58,0.72) 0.6 (0.52,0.71) 0.63 (0.56,0.71) 0.48 (0.36,0.57) 0.55 (0.44,0.64)
Small Cell Lung Cancer (n = 446) 321 (72.0%) 0.57 (0.48,0.67) 0.56 (0.47,0.65) 0.53 (0.41,0.62) 0.58 (0.48,0.67) 0.51 (0.39,0.59) 0.63 (0.53,0.71)
Head and Neck (n = 385) 237 (61.6%) 0.56 (0.43,0.7) 0.63 (0.52,0.73) 0.61 (0.54,0.77) 0.62 (0.53,0.71) 0.58 (0.45,0.73) 0.66 (0.57,0.76)
Multiple Myeloma (n = 325) 138 (42.5%) 0.59 (0.42,0.73) 0.7 (0.56,0.84) 0.58 (0.42,0.75) 0.58 (0.43,0.73) 0.58 (0.43,0.77) 0.63 (0.44,0.75)
Hepatocellular Carcinoma (n = 183) 112 (61.2%) 0.66 (0.47,0.86) 0.65 (0.42,0.84) 0.52 (0.23,0.69) 0.65 (0.4,0.81) 0.6 (0.32,0.82) 0.59 (0.36,0.75)
DLBCL (n = 163) 70 (42.9%) 0.44 (0.22,0.64) 0.43 (0.25,0.62) 0.42 (0.23,0.65) 0.41 (0.27,0.59) 0.54 (0.32,0.79) 0.57 (0.43,0.88)
CLL (n = 109) 24 (22.0%) 0.65 (0.47,1) 0.42 (0.16,0.67) 0.52 (0.24,0.86) 0.42 (0.19,0.72) 0.69 (0.5,1) 0.66 (0.36,1)
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