Characterization of parent and youth-reported eating disorder symptoms and premorbid factors in the Adolescent Brain Cognitive Development Study

Carolina Makowski1*, Margaret L. Westwater2,3, Kyung E. Rhee4, Amanda Bischoff-Grethe5, Christina E. Wierenga5

1Department of Radiology, University of California San Diego
2Department of Psychiatry, University of Oxford
3Department of Radiology and Biomedical Imaging, Yale University School of Medicine
4Department of Pediatrics, University of California San Diego
5Department of Psychiatry, University of California San Diego

*Correspondence to: cmakowski@ucsd.edu (C.M.)

Supplementary Figures: 5. Supplementary Tables: 4.

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
ABSTRACT

Objective: Eating Disorders (EDs) often start in adolescence, though the prevalence, trajectory of symptom onset and predictors of illness are poorly understood, especially across sociodemographically diverse youth. Here, we leverage data from the Adolescent Brain Cognitive Development℠ (ABCD) Study, a large demographically representative longitudinal sample of youth in the US, to characterize the prevalence of parent- and youth-reported ED symptoms and their sociodemographic characteristics at baseline (ages 9-11) and two-years later (2-year; ages 11-14). Method: A tetrachoric factor analysis summarized clusters of ED symptoms, which were compared between parent and youth reports. Cognitive, mental and physical health variables at baseline were used to predict youth-reported symptoms at 2-year using a mixed-effects logistic regression. Results: Three factors emerged reflecting “weight distress”, “weight control”, and “bingeing”, with prevalence rates ranging from 1.5 to 7.3%. All symptoms loaded on similar factors between reporters. Rates of symptom endorsement were similar for males and females, with disproportionately higher rates across factors for youth who self-identified as sexual minority, Hispanic, Black, or Mixed race participants, and those from a disadvantaged socioeconomic background, compared to the full ABCD sample. Youth and parent reports at 2-year showed ~17% overlap. A distinct pattern of cognitive variables emerged as significant predictors of later youth-reported ED concerns, whereas mental health symptoms and traits were non-specific and associated with all ED factors. Conclusion: Identifying the landscape of ED symptoms across demographic groups, reporters and their premorbid factors in late childhood is critical to inform prevention and early intervention efforts, with particularly important implications for historically understudied racial and sexual minority groups.
INTRODUCTION

Eating disorders (EDs) collectively share cardinal features, including dysregulated eating patterns and body image distortion, and too often, they are characterized by a chronic, costly, and disabling illness course (Demmler et al., 2020; Streatfeild et al., 2021). The prevalence rates of EDs, encompassing Anorexia Nervosa (AN), Bulimia Nervosa (BN), and Binge Eating Disorder (BED), range from 0.3-4% (Udo & Grilo, 2018), and they are continuing to increase (Trafford et al., 2023). EDs disproportionately impact females compared to males, with lifetime prevalence rates of AN reported to be ~4% for females and 0.3% for males, and rates of BN reported to be 3% for females and 1% for males (van Eeden et al., 2021). Given the continued increase in EDs among youth, advancing knowledge of the intersecting demographic, developmental, cognitive, and psychological risk factors will be essential in curbing the deleterious effects of these conditions on affected individuals.

EDs have been surrounded by misconceptions of their predominant impact on a narrowly defined group of individuals (i.e., affluent Caucasian women with low BMI) (Huckins et al., 2022; Sonneville & Lipson, 2018), which may contribute additional stigma for patients from underrepresented minority backgrounds (Coffino et al., 2019). Nevertheless, several lines of evidence indicate elevated rates of disordered eating behaviors in sexual and gender minority individuals compared to the general population (Nagata et al., 2020; Nagata, Smith-Russack, et al., 2023). Moreover, individuals of diverse racial and ethnic backgrounds may be at elevated risk for specific ED behaviors (e.g., binge eating) (Z. H. Cheng et al., 2019; Coffino et al., 2019; Huckins et al., 2022; Raney et al., 2023), where risk may be further compounded by social determinants of health (e.g., food insecurity, economic factors) and developmental factors (Beccia et al., 2021; Simone et al., 2022). Characterizing ED symptoms in those from historically underrepresented backgrounds is imperative to determining the sociodemographic reach of EDs, which can, in turn, inform equitable early detection and intervention efforts.

Despite the presence of distinct diagnostic categories in the Diagnostic and Statistical Manual of Mental Health Disorders, fifth edition (DSM-V), EDs share many symptoms and features. For instance, AN and BN are both characterized by restrictive eating, and recurrent, loss-of-control binge-eating episodes are hallmark symptoms of BN, BED, and the bingeing/purging diagnostic subtype of AN. It is not uncommon for affected individuals to exhibit diagnostic crossover over the course of illness, with reports that 10-54% of individuals with AN later develop BN, and 2-27% of individuals with BN develop AN (Tozzi et al., 2005; Yao et al., 2021). Investigations of EDs in youth are particularly germane given their peak onset in late adolescence (Galmiche et al., 2019; Uhlhaas et al., 2023) and the presence of premorbid traits and factors in childhood. Subthreshold presentations of EDs are also important to consider, as they oftentimes precede an ED diagnosis and contribute to similar levels of functional
impairment as those reported by individuals diagnosed with an ED (Fairweather-Schmidt et al., 2014).

Collectively, this suggests a transdiagnostic approach may be fruitful in both delineating premorbid risk and characterizing the landscape of ED concerns in youth. There is evidence for several premorbid traits that confer ED risk, some of which are shared between AN, BN and BED, including perfectionism, negative self-valuation, harm avoidance, obsessions, depression, anxiety, emotional disinhibition, and neuroticism (Balantekin et al., 2017; Bohon, 2019; Cassin & von Ranson, 2005; Fairburn et al., 1999; Kaye et al., 2013; Marzola et al., 2019). EDs are also coupled with temperament profiles linked to approach/avoidance behaviors that can be captured through measures of impulsivity, inhibition, and sensation seeking (Polivy & Herman, 2002). Understanding how these traits could interact with other cognitive factors, such as cognitive flexibility and learning, may also be informative in predicting ED risk and shaping effective treatments (Hower et al., 2021; Mora-Maltas et al., 2023; Wu et al., 2014). As previous work in this area has largely been retrospective or conducted in those who have recovered from an ED, it is unclear whether the elevated levels of certain traits in recovered individuals is a cause or consequence of the illness.

The Adolescent Brain Cognitive Development℠ Study (ABCD Study℠) is well-positioned to probe the landscape of ED-related concerns in youth and adolescents and capture prospective risk for an ED, given the study’s large and diverse sample, longitudinal design, and data collection from multiple informants. Previous studies have reported the prevalence of ED diagnoses in the ABCD sample (Murray et al., 2022; Olfson et al., 2023; Rozzell et al., 2019), with several key limitations that the current study aims to address. Firstly, these studies reported ED prevalence rates using data from ABCD release 4.0 and earlier, prior to the implementation of corrected scoring algorithms to derive ED diagnoses from the Kiddie Schedule for Affective Disorders (KSADS-5). These studies also focused on baseline data only (when the youth were 9-11 years old), for which only parent-reported data were available for the ED module of the KSADS-5. It is important to consider youth-reported ED symptoms given the hidden nature of many disordered eating behaviors (Bartholdy et al., 2017; Mariano et al., 2013). Finally, looking at individual symptoms that cut across diagnostic categories may yield premorbid profiles that have more translational potential for effective detection and intervention efforts.

The aims of the current study were thus three-fold: 1) to characterize the sociodemographic spread of ED symptoms in early adolescence across parent and youth reports in a demographically-representative sample of youth in the US; 2) to compare youth and parent-reported ED-related symptoms; and 3) to identify potential childhood premorbid risk factors in youth who later endorse ED symptoms in adolescence. We hypothesized that ED concerns would be broadly endorsed across sexes, gender identities and sexual orientations, races, ethnicities, and socioeconomic strata. Consistent with previous work (Bartholdy et al., 2017; Mariano et al.,
2013; Tanofsky-Kraff et al., 2005), we expected parent and youth reports of ED-related concerns to diverge and for higher endorsement of symptoms from youth, particularly for more hidden behaviors, such as purging/compensatory behaviors. Finally, we expected to see both unique and overlapping premorbid traits that were associated with different ED symptom clusters in adolescents.

METHODS

Participants. Data were drawn from the baseline (n=11,868) and two-year follow-up (2-year; n=10,908) timepoints included in the ABCD Study’s Curated Annual Release 5.0 (doi: 10.15154/8873-zj65). The ABCD Study is a longitudinal study tracking brain and behavioral development of ~11,880 children starting at 9-11 years of age (Garavan et al., 2018; Volkow et al., 2018). The ABCD sample was recruited through epidemiologically-informed procedures to ensure demographic variation mirroring that found in the US population of 9- and 10-year-olds. Further details can be found in Supplementary Methods and (Garavan et al., 2018). Consent (parents or guardians) and assent (children) were obtained from all participants, and the ABCD Study was approved by the appropriate institutional review boards. See Table 1 for sample descriptives for the current study.

ED symptoms and factors.
Current ED symptoms related to disordered eating behaviors and cognitions were drawn from the ED Module of the KSADS, a semi-structured, self-administered, computerized version of the KSADS-5 (Kaufman et al., 1997). Research Assistants had extensive training to support participants as they completed this assessment. Data were collected from both parent/caregivers reporting on their youth (hereafter referred to as parent-report), and youth self-reports. Parent-report data are available for both baseline and 2-year timepoints, whereas the youth completed the ED Module from 2-year follow-up onwards.

All statistical analyses were carried out with R version 4.1.3. A tetrachoric factor analysis (see details in Supplementary Material) was applied to the cognitive and behavioral symptom data listed in Supplementary Table 1, for parent baseline, parent 2-year, and youth 2-year reports. Subsequent analyses used results from the factor analysis to include individuals within a particular symptom grouping if they endorsed at least one symptom within a given factor.

Sociodemographic variables.
Sociodemographic variables included age, sex at birth, race, ethnicity, parental highest education and household income, as described in (Barch et al., 2018). Additionally, we incorporated gender identity and sexual health data (Potter et al., 2022) from KSADS background items on Gender Identity and Sexual Orientation (Townsend et al., 2020) to capture youth that identified as a sexual and/or gender minority. For sexual minorities, we adapted the definitions described by
Nagata and colleagues (Nagata, Lee, et al., 2023). Participants reported their sexual orientation (“Are you gay or bisexual?” yes, maybe, no, don’t understand the question, decline to answer), where participants who responded “yes” or “maybe” were considered sexual minority adolescents. Participants who reported being transgender or identified with a different gender compared to their sex assigned at birth were considered gender minority participants (Potter et al., 2022). Sexual/gender identity data and ED symptom data were matched (e.g., both parent-reported or both youth-reported). Note that for parent reports, sexual and gender identity reports were only available at baseline. For sexual orientation, youth reports at 2-year were used, whereas for gender identity, the closest timepoint (i.e., 3-year) to the youth-reported ED data at 2-year was used. Log odds ratios (LORs) with corresponding Wald’s statistics and confidence intervals were calculated for each sociodemographic categorical variable (i.e., sex, gender/sexual minority status, race, ethnicity, and socioeconomic resources) to compare the probability of being in a particular category given symptom endorsement within an ED factor to the probability of being in that same category in the entire ABCD sample.

Baseline behavioral variables used to predict youth-reported ED symptoms.
Our final analysis aimed to uncover potential childhood premorbid factors of ED symptoms in adolescence. Baseline behavioral predictors included measures across cognitive (NIH toolbox measures, verbal learning), physical (BMI z-scores, pubertal development, weekly physical activity) and mental health (internalizing/externalizing symptoms, inhibition/activation, impulsivity) domains. Please see Supplementary Table 2 and supplementary material for a full description of the included baseline variables used to predict ED symptoms at 2-year.

To classify individuals as endorsing significant ED symptoms at 2-year, we focused on three binary outcome variables based on youth-reported 2-year ED symptoms, including youth who endorsed at least one symptom within at least one of the three factors i) weight control; ii) weight distress; and iii) binge. As a ‘non-ED’ control group, we used the matchit algorithm in R to select a subset of ABCD participants (including only those with complete KSADS 2-year data and demographic data) that matched the ED group on sex, and who did not endorse any present or past symptoms within a given ED factor. We also ensured this non-ED group did not meet diagnostic criteria for major depressive disorder, an anxiety disorder, schizophrenia, or obsessive compulsive disorder, as defined by the KSADS-5. We maintained a 4:1 ratio of non-ED to ED participants for each factor to maximize statistical power (Hong & Park, 2012). After matching, the sample sizes were further reduced due to missing data for any of the baseline behavioral variables described above and in Supplementary Table 2, and/or for analyses with additional sociodemographic covariates, as described below.

A mixed effects logistic regression was applied with baseline behavioral measures predicting the ED vs non-ED group label for each of the three symptom clusters. For right-skewed/zero-inflated measures, a log transformation was applied to the data. We covaried for age, sex, site, and included a random effect of family. We also ran another set of models covarying for race,
ethnicity, parental highest education and household income, which is presented in Supplementary Materials. The False Discovery Rate (FDR) with corrected \(p < 0.05 \) was used to correct for multiple comparison testing. We focused our analyses on youth-reported ED symptoms, as opposed to parent-report, given the private nature of some of the probed behaviors.

RESULTS

Endorsement of current ED symptoms.
For baseline parent reports, individual symptom endorsement ranged from <0.1% to 5.02% (lowest for vomiting, highest for binge eating) of the ABCD baseline full sample (Supplementary Table 3). For two-year reports, estimates ranged from <0.1% to 6.16% for parent report, and <0.1% to 7.28% for youth report, where once again, vomiting had the lowest endorsement and binge eating the highest across both reporters.

Factor analysis results.
A three-factor solution emerged from the tetrachoric factor analysis carried out on the eight KSADS symptoms across timepoints and reporters, reflecting “weight distress”, “weight control”, and “bingeing”. Individual items loading onto these factors are listed in Supplementary Table 1 and displayed in Supplementary Figure 2. Symptoms loaded on similar factors between reporters, with the exception of the “vomiting” item, which loaded more onto “weight distress” for youth reports, compared to relatively equal loadings on both “weight control” and “weight distress” for 2-year parent reports (Supplementary Figure 1).

Sociodemographic spread of current ED symptoms and factors.
Sociodemographic descriptives per informant and timepoint are included in Table 1, organized by the three resultant factors, as described above. As a comparison point, the sociodemographic spread of the 11,868 and 10,908 youth with baseline and two-year data, respectively, included in release 5.0 is included in Table 1. Across timepoints and reporters, factor symptom endorsement ranged from 1.52% to 7.28%, with the lowest endorsement for the weight distress factor, and highest for youth-reported binge eating. LORs\(^1\) comparing odds of being in a particular sociodemographic category given endorsement of at least one of the ED factor indicators compared to the reference ABCD sample, 95% confidence intervals, and corresponding Wald’s statistics are listed in Table 2. Key results for the three factors are detailed below.

Sex, gender identity, and sexual orientation. Across both reporters and timepoints, rates of symptom endorsement for all three factors were generally similar between males and females,

\(^1\) Positive LORs indicate that participants with ED symptoms have higher odds of being in a given sociodemographic group compared to the reference ABCD population, whereas negative LORs indicate ED participants are less likely to be in a given sociodemographic category.
with the exception of more female-at-birth youth endorsing higher weight distress at 2-year
(65.6%, LOR=0.72, \(p=1.16\times10^{-7}\)) compared to the full ABCD sample proportion of females
(47.5%). The most striking differences in gender and sexual minority youth proportions
endorsing ED symptoms compared to the full sample emerged for 2-year youth reports, where i)
disproportionately more gender minority youth endorsed weight distress (9.42%, LOR=1.07,
\(p=5.57\times10^{-6}\)) and binge symptoms (5.56%, LOR=0.49, \(p=4.37\times10^{-3}\)) compared to the 3.43% of
gender minority youth in the full 2-year sample; and ii) disproportionately more sexual minority
youth endorsed weight distress (23.21%, LOR=1.23, \(p=1.91\times10^{-14}\)) and binge symptoms (17.24%,
LOR=0.85, \(p=2.22\times10^{-16}\)), compared to the 7.99% of sexual minority youth in the full sample.
With the exception of 2-year parent-reported gender minority status and binge eating (0.89%,
LOR=1.29, \(p=1.87\times10^{-3}\)), parent reports did not reveal significant differences in proportions of
gender (baseline, 2-year) or sexual minority (baseline) youth endorsing ED symptoms compared
to the full ABCD sample.

Race and ethnicity. Across reporters and timepoints, a pattern emerged of disproportionately
higher rates of all three symptom factors among participants who self-identified as Black,
Other/Mixed race, and Hispanic compared to the full ABCD sample (15-16%, 17%, 20-21% respectively). The largest differences emerged in higher proportions of i) Black youth with
weight control symptoms (baseline parent report: 27.62%, LOR=0.66, \(p=6.16\times10^{-8}\); youth report:
20.66%, LOR=0.37, \(p=7.63\times10^{-5}\)), ii) Mixed race youth with 2-year parent reported binge
symptoms (23.72%, LOR=0.4 , \(p=2.54\times10^{-5}\)); and iii) Hispanic-identifying youth with baseline
parent-reported binge symptoms (33.71%, LOR=0.53, \(p=8.92\times10^{-9}\)) and with 2-year youth
reported weight control symptoms (28.33%, LOR=0.46, \(p=4.77\times10^{-8}\)).

Socioeconomic resources. Across reporters and timepoints, an overall trend emerged of
disproportionately higher rates of ED symptoms in youth coming from households with lower
levels of parental education and lower income (comprising ~15% and 25-30%, respectively, in
the full ABCD sample). Notable differences uncovered included higher proportions of i) parent-
reported weight control symptoms in youth having a parent without a high school diploma
(baseline: 10.67%, LOR=0.82, \(p=3.72\times10^{-6}\); 2-year: 8.11%, LOR=0.63, \(p=3.94\times10^{-4}\)), compared to
~5% of participants with a similar parental education level in the full ABCD sample; ii) baseline
parent-reported binge symptoms (14.31%, LOR=0.46, \(p=1.7\times10^{-3}\), and 2-year youth-reported
weight control (14.14%, LOR=0.47, \(p=1.6\times10^{-5}\)) and weight distress (15.35%, LOR=0.57,
\(p=1.85\times10^{-3}\)) symptoms were higher in youth with parents with a high school diploma/GED,
compared to ~9% of participants in this parental education category in the full ABCD sample;
and iii) for participants coming from a household income of <$50,000 annually,
disproportionately higher weight distress, weight control and binge symptoms (32.7-49.9%,
\(p’s<1.65\times10^{-3}\)) for both baseline and 2-year parent reports, as well as disproportionately higher
youth-reported weight control (33.67%, LOR=0.38, \(p=2.64\times10^{-6}\)) and weight distress (38.14%,
LOR=0.54, \(p=7.46e-5 \) symptoms, compared to \(\sim 30 \) and \(25\% \) of baseline and 2-year ABCD samples, respectively, in this household income category.

Comparing symptoms between informants and across time.
The proportion of overlap between youth and parent report at 2-year was on average only 16.21\% across individual items, ranging from 9.8\% overlap for “binge eating characteristics”, and 30\% for vomiting (Figure 1). Higher rates of symptom endorsement were found for 2-year data compared to baseline for parent reports. Youth reported higher rates of individual symptom endorsement compared to parent 2-year reports. Proportion of overlap between baseline and 2-year parent reports was on average 20.33\%, ranging from 10\% for vomiting and 33.39\% for binge eating (Supplementary Figure 3). For the symptom factors, parents generally reported higher ED symptoms for their youth from baseline to 2-year across all three factors.

Premorbid baseline factors predicting 2-year youth reported ED symptoms.
The final analyses focused on baseline variables (Supplementary Table 2) predicting endorsement of the three symptoms factors extracted from 2-year youth reported data, given previous research suggesting that youth reports may be more reliable for ED-related symptoms in the early adolescent time period (Bartholdy et al., 2017; Mariano et al., 2013). Results and sample sizes are shown in Figure 2. General trends across all three factors included higher BMI, more advanced pubertal developmental stage, and more mental health symptoms and certain traits (e.g., behavioral activation, behavioral inhibition) increasing odds of ED symptoms. By contrast, cognitive variables had a more specific pattern of associations with each factor, with higher scores, particularly for fluid cognitive measures, decreasing odds of ED symptom endorsement at 2-year follow-up (or conversely, lower cognitive scores increasing odds of ED symptoms). ORs were slightly attenuated when adding covariates for race, ethnicity and socioeconomic status (i.e., household income, highest parental education; Supplementary Figure 4), with some significant associations only emerging after adding these covariates, such as higher reading ability increasing odds (OR=1.31 [1.08, 1.58], \(p=0.0051 \)) for weight distress symptoms.

Finally, there was some overlap in subjects classified as endorsing each symptom factor (“Endorsed” group), as well as overlapping participants in the “Control” groups selected for each factor. The highest overlap in participants was found between the weight distress and weight control groups (Supplementary Table 4). To ensure that the uncovered premorbid associations were specific to a given symptom cluster for these two factors with high participant overlap (~64\%) in the Endorsed groups, we ran a supplementary analyses dropping all participants in the weight control group who also endorsed weight distress symptoms (Supplementary Fig 5a) and vice versa (Supplementary Fig 5b), finding very similar results as those presented in Figure 2a and 2b, respectively.
DISCUSSION

Our results depict the sociodemographic breadth of disordered eating behaviors in a large diverse sample of American youth, and they uncover premorbid factors in late childhood that may be important prospective predictors of EDs emerging in adolescence. Across both parent and youth reports, ED concerns are relatively equally distributed across sexes, with disproportionately higher endorsement in sexual and/or gender minority groups, Black, Mixed race and Hispanic-identifying youth, and youth with lower socioeconomic resources. As expected, parent-reported ED symptoms generally increased from baseline to two-year (Breton et al., 2022); however, concordance on symptom endorsement between youth and parents/caregivers in early adolescence was low, consistent with previous reports (Bartholdy et al., 2017; Mariano et al., 2013). These results motivated our focus on youth reports for potential premorbid trait identification given that many of these behaviors may be hidden or undetected by family members of affected youth. Our final set of analyses revealed both shared and distinct patterns of premorbid factors two years prior to ED symptom endorsement across cognitive, physical and mental health domains. Specifically, many significant physical, temperament, and mental health measures were found to be non-specifically associated with weight distress, weight control and bingeing, whereas distinct patterns of lower fluid cognition (e.g., working memory for weight control, vs. long-delay memory recall for weight distress) increasing ED risk emerged. These patterns hold important implications for early detection and intervention efforts in adolescent EDs.

The ABCD Study has previously been leveraged to map the sociodemographic spread of binge eating disorders and binge-related behaviors using parent report and baseline sexual identity data (Nagata, Smith-Russack, et al., 2023). We complement and extend these results to youth reports and sexual identity data collected in adolescence, and importantly, we map sociodemographic and behavioral variables to symptom factors that underlie restrictive EDs as well. Many ED symptoms overlap across diagnostic categories; thus our symptom factor approach provides a transdiagnostic perspective that may aid in risk and biomarker discovery compared to traditional diagnostic approaches.

Taking into consideration the diverse sociodemographic landscape of disordered eating behaviors is imperative to ensure access to care is equitable across the sexes, and racial, ethnic and socioeconomic groups. It has been found that healthcare resources are underutilized by men and racial/ethnic minorities (Coffino et al., 2019), as well as sexual minority youth (Parmar et al., 2021). Intersectionality is also important to consider as many of the sociodemographic variables included in our analyses are intrinsically intertwined. For instance, disproportionately high levels of disordered eating behavior have been found in individuals identifying with both a sexual and racial minority group (Beccia et al., 2021).
The search for premorbid factors is a key objective for early intervention and prevention efforts in psychiatry. Profiles of temperament traits and risk factors for EDs have been investigated, but oftentimes limited by retrospective reports and underpowered samples. We uncovered a broad array of mental health symptoms during childhood to increase odds for ED-related symptoms, regardless of the symptom factor. This encompassed symptoms related to harm avoidant, anxious, depressed, and impulsive behaviors, which are consistently implicated in EDs (Bohon, 2019; Cassin & von Ranson, 2005; Kaye et al., 2013; Marzola et al., 2019). We also extended the work of Rozzell-Voss and colleagues (2023), which reported executive functioning deficits in youth at baseline with parent-reported binge eating. Here we further show that these executive functioning deficits extend to adolescent youth-reported ED symptoms of not only binge eating and distress, but also weight control symptoms. Moreover, our findings indicate some specificity of baseline cognitive performance; for instance, long-term rather than short-term/working memory deficits were associated with weight distress symptomatology, but not for binge eating or weight control symptoms. As others have reported (Z. H. Cheng et al., 2019), patterns of associations remained largely similar, albeit with attenuated effect sizes, after controlling for race/ethnicity and socioeconomic resources. However, we also highlight a novel association that only emerged with the addition of these sociodemographic covariates, namely an increased risk of weight distress symptoms with higher reading ability at baseline, in line with reports of higher intelligence quotient scores/educational attainment in adolescents with EDs (Schilder et al., 2021).

Accurate detection of disordered eating behaviors in childhood and adolescence can be challenging due to their private and oftentimes egosyntonic nature, warranting the inclusion of multiple reporters to gather additional perspectives on ED-related psychopathology. In the current investigation, there was a high degree of discordance between parent and youth reports at the late childhood/early adolescent time period for which data from both reporters were available. Previous work in this area has suggested that some symptoms may be endorsed at higher rates by youth (e.g., bingeing and/or purging) (Bartholdy et al., 2017; Mariano et al., 2013; Tanofsky-Kraff et al., 2005), but there are other constructs where the youth may lack insight (e.g., denial of being ill, particularly in restrictive EDs such as AN) and parent/caregiver reports may be more elucidating (Bartholdy et al., 2017). Concordance between parent and youth reports may also differ by age of the affected youth, where reliability of youth reports with respect to psychiatric symptoms may be less reliable in children (6-9 years) (Edelbrock et al., 1985) but may increase from 13 years of age onward (Bryant-Waugh et al., 1996). Given the age range at which youth began to report ED-related symptoms in the ABCD Study (i.e., early adolescence when youth ED-related reports may become more reliable) and the nature of symptoms included in the current study, we focused our premorbid factor analyses on youth reports. However, we acknowledge that as more longitudinal data are collected, future investigations would benefit from continuing to compare correspondence between parent and youth reports and apply methods that merge information across informants to increase
confidence in the measured construct of disordered eating behaviors in ABCD. It may also be fruitful to incorporate objective measures of physical health that may complement and lend increased confidence of the symptom endorsement data collected.

Additional considerations and limitations should be acknowledged in the current work. The ABCD Study provides a rich data resource to explore risk factors for psychopathology, but readers should keep in mind that psychiatric symptoms in this study are not assessed by a clinician. As noted, there was some overlap in the “Endorsed” groups of each of the three factors, which may explain some of the overlap in significant baseline predictors. However, our supplementary sensitivity analyses of the two symptom factors exhibiting the highest sample overlap, weight distress and weight control, suggests that our uncovered associations are indeed specific to the symptom construct of interest. Other genetic and environmental risk factors not investigated in this manuscript may also play an important role in the manifestation of ED symptoms, such as adverse childhood events, bullying (C. M. Cheng et al., 2023), and/or familial history. Inclusion of more longitudinal data from ABCD will be imperative, especially as more youth meet full-threshold criteria for an ED.

Our work leverages the longitudinal and prospective study design of the ABCD Study to map the landscape of ED symptoms in early adolescence across reporters and timepoints. We showcase both overlapping and distinct premorbid factors in late childhood, as well as shed a spotlight on the prevalence of ED symptoms in historically understudied minority and under-resourced groups, that may help shape early detection and intervention efforts that are urgently needed to shape better outcomes for ED patients.
ACKNOWLEDGMENTS/FUNDING

The authors would like to thank the research participants and staff involved in data collection of the Adolescent Brain Cognitive Development (ABCD) Study data. The ABCD Study is a multisite, longitudinal study designed to recruit more than 10,000 children ages 9 and 10 and follow them over 10 years into early adulthood. The ABCD Study is supported by the National Institutes of Health (NIH) and additional federal partners under award numbers U01DA041048, U01DA050989, U01DA051016, U01DA041022, U01DA051018, U01DA051037, U01DA050987, U01DA041174, U01DA041106, U01DA041117, U01DA041028, U01DA041134, U01DA050988, U01DA051039, U01DA041156, U01DA041025, U01DA041120, U01DA051038, U01DA041148, U01DA041093, U01DA041089, U24DA041123, and U24DA041147. A full list of supporters is available at https://abcdstudy.org/federal-partners.html. A listing of participating sites and a complete listing of the study investigators can be found at https://abcdstudy.org/study-sites/. ABCD consortium investigators designed and implemented the study and/or provided data but did not necessarily all participate in analysis or writing of this report. This manuscript reflects the views of the authors and may not reflect the opinions or views of the NIH or ABCD consortium investigators. The ABCD data repository grows and changes over time. Data were drawn from the NIMH Data Archive ABCD Collection Release 5.0 (DOI: 10.15154/8873-zj65).

This work was supported by the National Institutes of Mental Health, K99MH132886, awarded to CM. MLW is supported by a Wellcome Trust Sir Henry Wellcome Postdoctoral Fellowship (224107/Z/21/Z).

COMPETING INTERESTS
The authors have no competing interests to disclose.
REFERENCES

Neurosciences, 36(2), 110–120.

TABLES & FIGURES

Table 1. Sample descriptives.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Baseline</td>
<td>2-year</td>
<td>Weight Control</td>
<td>Weight Distress</td>
</tr>
<tr>
<td>N endorsed (% full sample)</td>
<td>11,866¹</td>
<td>10,908¹</td>
<td>3 (0.01)</td>
<td>1.52</td>
</tr>
<tr>
<td>Years (Range)</td>
<td>11.08</td>
<td>(10.58-14.0)</td>
<td>8.92</td>
<td>11</td>
</tr>
<tr>
<td>Sex, gender identity and sexual orientation²</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sex at birth (F, %)</td>
<td>5677</td>
<td>5181</td>
<td>171</td>
<td>96</td>
</tr>
<tr>
<td>Gender Minority (Yes/Maybe, %)</td>
<td>135 (1.14)</td>
<td>344 (3.43)</td>
<td>2 (0.56)</td>
<td>2.12</td>
</tr>
<tr>
<td>Sexual Minority (Yes/Maybe, %)</td>
<td>904 (7.63)</td>
<td>804 (7.99)</td>
<td>27.58</td>
<td>17.95</td>
</tr>
<tr>
<td>Race (%)</td>
<td>AIAN/NHPI</td>
<td>78 (0.67)</td>
<td>66 (0.61)</td>
<td>2 (0.58)</td>
</tr>
<tr>
<td>Asian</td>
<td>275 (2.35)</td>
<td>250 (2.32)</td>
<td>8 (2.33)</td>
<td>3.16</td>
</tr>
<tr>
<td>Black</td>
<td>15.08</td>
<td>15.09</td>
<td>27.62</td>
<td>21.91</td>
</tr>
<tr>
<td>Mixed</td>
<td>12.26</td>
<td>12.27</td>
<td>16.57</td>
<td>18.54</td>
</tr>
<tr>
<td>Other</td>
<td>525 (4.49)</td>
<td>464 (4.31)</td>
<td>21.61</td>
<td>14.87</td>
</tr>
<tr>
<td>White</td>
<td>64.26</td>
<td>65.39</td>
<td>46.8</td>
<td>89 (50)</td>
</tr>
<tr>
<td>Ethnicity Hispanic (Yes, %)</td>
<td>20.57</td>
<td>19.93</td>
<td>112 (32)</td>
<td>33.71</td>
</tr>
<tr>
<td>Parental highest education (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><HS Diploma</td>
<td>593 (5)</td>
<td>488 (4.48)</td>
<td>10.67</td>
<td>16.94</td>
</tr>
<tr>
<td>HS Diploma/GED</td>
<td>313 (9.55)</td>
<td>9.27</td>
<td>14.33</td>
<td>11.17</td>
</tr>
<tr>
<td>Some College</td>
<td>25.93</td>
<td>24.3</td>
<td>33.71</td>
<td>36 (34.34)</td>
</tr>
<tr>
<td>Bachelor</td>
<td>25.42</td>
<td>25.83</td>
<td>22.47</td>
<td>21.79</td>
</tr>
<tr>
<td>Postgrad degree</td>
<td>4042 (54.13)</td>
<td>36.12</td>
<td>18.83</td>
<td>21.39</td>
</tr>
<tr>
<td>Income (%)</td>
<td><50K</td>
<td>29.68</td>
<td>24.85</td>
<td>49.85</td>
</tr>
<tr>
<td>≥50K & <100K</td>
<td>28.27</td>
<td>26.86</td>
<td>83 (25.7)</td>
<td>28.75</td>
</tr>
<tr>
<td>≥100K</td>
<td>42.03</td>
<td>48.3</td>
<td>24.46</td>
<td>28.75</td>
</tr>
</tbody>
</table>

¹This reflects the total sample size of ABCD included in release 5.0, but each variable within the table may have missing data
²All percentages from the current row onwards are in relation to totals listed in the "N endorsed" row
³Baseline gender identity and sexual health measures were taken from baseline parent reports, whereas 2-year eating symptoms were matched to 3-year youth report.

Abbreviations: F, Female; AIAN/NHPI, American Indian American Native/Native Hawaiian and Pacific Islander; HS, High school; GED, general education development.
Table 2. Log Odds Ratios & corresponding statistics comparing ED groups to full ABCD sample.

<table>
<thead>
<tr>
<th>Sex, gender identity, and sexual orientation</th>
<th>Log Odds Ratio (95% CI)</th>
<th>P-value</th>
<th>Log Odds Ratio (95% CI)</th>
<th>P-value</th>
<th>Log Odds Ratio (95% CI)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>0.71 (0.21-2.38)</td>
<td>0.66</td>
<td>0.23 (0.05-1.15)</td>
<td>0.15</td>
<td>0.13 (0.02-0.78)</td>
<td>0.04</td>
</tr>
<tr>
<td>Female</td>
<td>0.71 (0.21-2.38)</td>
<td>0.66</td>
<td>0.23 (0.05-1.15)</td>
<td>0.15</td>
<td>0.13 (0.02-0.78)</td>
<td>0.04</td>
</tr>
<tr>
<td>Gender Minority†</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>0.20 (0.01-1.36)</td>
<td>0.82</td>
<td>0.03 (0.00-0.47)</td>
<td>0.23</td>
<td>0.03 (0.00-0.47)</td>
<td>0.23</td>
</tr>
<tr>
<td>Female</td>
<td>0.20 (0.01-1.36)</td>
<td>0.82</td>
<td>0.03 (0.00-0.47)</td>
<td>0.23</td>
<td>0.03 (0.00-0.47)</td>
<td>0.23</td>
</tr>
<tr>
<td>Sexually Minority†</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>0.23 (0.08-0.69)</td>
<td>0.16</td>
<td>0.03 (0.00-0.53)</td>
<td>0.25</td>
<td>0.03 (0.00-0.53)</td>
<td>0.25</td>
</tr>
<tr>
<td>Female</td>
<td>0.23 (0.08-0.69)</td>
<td>0.16</td>
<td>0.03 (0.00-0.53)</td>
<td>0.25</td>
<td>0.03 (0.00-0.53)</td>
<td>0.25</td>
</tr>
<tr>
<td>Race</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>African-American</td>
<td>0.38 (0.15-0.95)</td>
<td>0.05</td>
<td>0.27 (0.09-0.82)</td>
<td>0.03</td>
<td>0.27 (0.09-0.82)</td>
<td>0.03</td>
</tr>
<tr>
<td>Asian</td>
<td>0.38 (0.15-0.95)</td>
<td>0.05</td>
<td>0.27 (0.09-0.82)</td>
<td>0.03</td>
<td>0.27 (0.09-0.82)</td>
<td>0.03</td>
</tr>
<tr>
<td>Black</td>
<td>0.17 (0.05-0.55)</td>
<td>0.00</td>
<td>0.09 (0.02-0.37)</td>
<td>0.00</td>
<td>0.09 (0.02-0.37)</td>
<td>0.00</td>
</tr>
<tr>
<td>White</td>
<td>0.17 (0.05-0.55)</td>
<td>0.00</td>
<td>0.09 (0.02-0.37)</td>
<td>0.00</td>
<td>0.09 (0.02-0.37)</td>
<td>0.00</td>
</tr>
<tr>
<td>Other</td>
<td>0.38 (0.17-0.84)</td>
<td>0.05</td>
<td>0.27 (0.09-0.82)</td>
<td>0.03</td>
<td>0.27 (0.09-0.82)</td>
<td>0.03</td>
</tr>
<tr>
<td>Education</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Less than high school</td>
<td>0.38 (0.17-0.84)</td>
<td>0.05</td>
<td>0.27 (0.09-0.82)</td>
<td>0.03</td>
<td>0.27 (0.09-0.82)</td>
<td>0.03</td>
</tr>
<tr>
<td>High school</td>
<td>0.38 (0.17-0.84)</td>
<td>0.05</td>
<td>0.27 (0.09-0.82)</td>
<td>0.03</td>
<td>0.27 (0.09-0.82)</td>
<td>0.03</td>
</tr>
<tr>
<td>Postgraduate degree</td>
<td>0.38 (0.17-0.84)</td>
<td>0.05</td>
<td>0.27 (0.09-0.82)</td>
<td>0.03</td>
<td>0.27 (0.09-0.82)</td>
<td>0.03</td>
</tr>
<tr>
<td>Income</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><$20K</td>
<td>0.38 (0.17-0.84)</td>
<td>0.05</td>
<td>0.27 (0.09-0.82)</td>
<td>0.03</td>
<td>0.27 (0.09-0.82)</td>
<td>0.03</td>
</tr>
<tr>
<td>$20K - <$40K</td>
<td>0.38 (0.17-0.84)</td>
<td>0.05</td>
<td>0.27 (0.09-0.82)</td>
<td>0.03</td>
<td>0.27 (0.09-0.82)</td>
<td>0.03</td>
</tr>
<tr>
<td>$40K - <$60K</td>
<td>0.38 (0.17-0.84)</td>
<td>0.05</td>
<td>0.27 (0.09-0.82)</td>
<td>0.03</td>
<td>0.27 (0.09-0.82)</td>
<td>0.03</td>
</tr>
<tr>
<td>$60K - <$80K</td>
<td>0.38 (0.17-0.84)</td>
<td>0.05</td>
<td>0.27 (0.09-0.82)</td>
<td>0.03</td>
<td>0.27 (0.09-0.82)</td>
<td>0.03</td>
</tr>
<tr>
<td>$80K - <$100K</td>
<td>0.38 (0.17-0.84)</td>
<td>0.05</td>
<td>0.27 (0.09-0.82)</td>
<td>0.03</td>
<td>0.27 (0.09-0.82)</td>
<td>0.03</td>
</tr>
<tr>
<td>$100K +</td>
<td>0.38 (0.17-0.84)</td>
<td>0.05</td>
<td>0.27 (0.09-0.82)</td>
<td>0.03</td>
<td>0.27 (0.09-0.82)</td>
<td>0.03</td>
</tr>
</tbody>
</table>

Positive log odds ratios reflect that participants endorsing a given ED symptom have higher odds of being in a given sociodemographic group compared to the reference ABCD population, whereas negative ratios indicate that participants with ED symptoms are less likely to be in a given sociodemographic category. Bolded cells reflect significantly different proportions at p<0.01.

Abbreviations: F, Female; AIAN/NHPI, American Indian American Native/Native Hawaiian and Pacific Islander; HS, High school; GED, general education development.
Figure 1. Venn Diagrams comparing the number of participants endorsing the listed symptom at 2-year between youth (purple) and parent-reports (blue). Percent overlap between youth and parents is included in each of the item headers in parentheses. On average, parents and youth showed 16.21% overlap across these items.
Figure 2. Mixed effects logistic regression results of baseline behavioral variables predicting youth endorsement of ED symptoms at 2-year, covarying for age, sex, and site. Statistics are represented as Odds ratios with 95% confidence intervals. Sample sizes for both groups (‘Endorsed’ ED symptoms group vs. ‘Control’ group without ED symptoms or other comorbid mental health diagnoses) are listed under each symptom heading. The Control group reflects a subset of ABCD participants that were randomly selected to follow a 4:1 ‘control:case’ ratio, matched the ED group on sex, did not endorse any symptoms within a given ED factor and did not meet criteria for an ED. Sample size in the “Endorsed” group is lower than presented in Table 1, due to missing data in the baseline behavioral predictors.