The gut-microbiome in adult Attention-deficit/hyperactivity disorder

- A Meta-analysis

Running title: The gut-microbiome in adult ADHD

Babette Jakobi, MSc.1,3, Priscilla Vlaming, MSc.1,2,3, Danique Mulder, MSc.1,3, Marta Ribases, PhD4,7,8,9, Vanesa Richarte, PhD4, Josep Antoni Ramos-Quiroga, PhD4, Indira Tendolkar, Prof.3, Philip van Eijndhoven, PhD5, Janna N. Vrijsen, PhD5, Jan Buitelaar, Prof.6, Barbara Franke, Prof.1,3, Martine Hoogman, PhD1,3, Mirjam Bloemendaal, PhD1,3, Alejandro Arias-Vasquez, PhD1,3*

Affiliations
1Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
2Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
3Department of Psychiatry, Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
4Department of Mental Health, Hospital Universitari Vall d’Hebron
5Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
6Karakter Child and Adolescent Psychiatry University Centre, Nijmegen, The Netherlands
7Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d’Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.
8Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain.
9Department of Genetics, Microbiology, and Statistics, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain.

*Corresponding Author
Alejandro Arias-Vasquez, email: Alejandro.AriasVasquez@radboudumc.nl, phone: (024) 36116722
Postal address:
Radboud university medical center
Genetics Department
P.O. Box 9101, 6500 HB
Nijmegen, The Netherlands
Internal postal code 200

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract

Attention-deficit/hyperactivity disorder (ADHD) is a common neurodevelopmental condition that persists into adulthood in the majority of individuals. While the gut-microbiome seems to be relevant for ADHD, the few publications on gut-microbial alterations in ADHD are inconsistent, in the investigated phenotypes, sequencing method/region, preprocessing, statistical approaches, and findings. To identify gut-microbiome alterations in adult ADHD, robust across studies and statistical approaches, we harmonized bioinformatic pipelines and analyses of raw 16S rRNA sequencing data from four adult ADHD case-control studies (N_{ADHD}=312, N_{NoADHD}=305). We investigated diversity and differential abundance of selected genera (logistic regression and ANOVA-like Differential Expression tool), corrected for age and sex, and meta-analyzed the study results. Converging results were investigated for association with hyperactive/impulsive and inattentive symptoms across all participants. Beta diversity was associated with ADHD diagnosis but showed significant heterogeneity between cohorts, despite harmonized analyses. Several genera were robustly associated with adult ADHD; e.g., *Ruminococcus_torques_group* (LogOdds=0.17, p_{fdr}=4.42x10^{-2}), which was more abundant in adults with ADHD, and *Eubacterium_xylanophilum_group* (LogOdds=-0.12, p_{fdr}=6.9 x 10^{-3}), which was less abundant in ADHD. *Ruminococcus_torques_group* was further associated with hyperactivity/impulsivity symptoms and *Eisenbergiella* with inattention and hyperactivity/impulsivity (p_{fdr}<0.05). The literature points towards a role of these genera in inflammatory processes. Irreproducible results in the field of gut-microbiota research, due to between study heterogeneity and small sample sizes, stress the need for meta-analytic approaches and large sample sizes. While we robustly identified genera associated with adult ADHD, that might overall be considered beneficial or risk-conferring, functional studies are needed to shed light on these properties.
Introduction

Attention-deficit/hyperactivity disorder (ADHD) is a common neurodevelopmental condition\(^1\), characterized by symptoms of inattention and hyperactivity/impulsivity (American Psychiatric Association 2013). The clinical presentation of ADHD is quite heterogeneous; symptoms and impairments persist into adulthood in the majority of affected individuals, and other psychiatric and somatic problems often accompany ADHD\(^2\). The etiology of ADHD is likely multifactorial, combining genetic and environmental risk-factors or protective influences\(^3\).

Studies have suggested potential roles of e.g. immune- and inflammatory processes and alterations in dopaminergic and serotonergic neurotransmission, resulting in altered brain development and functioning, for the emergence of ADHD symptoms\(^4\).

The gut-microbiome is involved in early brain-development as well as every-day brain functioning; it can modulate the bioavailability of key-signaling molecules (e.g. neurotransmitters or nutrients relevant for energy homeostasis) by influencing the metabolism and the integrity of intestinal- and-blood-brain barriers\(^5\). Through the regulation of the intestinal barrier, but also through the production of short-chain-fatty-acids (SCFA) and the release of cytokines, it further plays an important role in immune and inflammatory responses (for a review see\(^5\)). These pathways might influence ADHD symptoms and pathophysiology\(^6, 7\). Studies showing associations of microbial diversity and composition with altered neurodevelopment (for a review, see\(^8\)), psychiatric disorders (for a review, see\(^9\)) and common metabolic comorbidities of ADHD\(^10, 11\) have fueled hypotheses about the potential role of the gut-microbiome alterations for ADHD. The few published studies investigating gut-microbiome alterations in ADHD, however, report inconsistent results. Most authors reported no differences between individuals with and without ADHD or conflicting results for gut-microbiome diversity\(^{12-16}\). Recent systematic reviews showed that differential abundance of some taxa between individuals with and without ADHD was reported in all published studies\(^13\). However, the results converged at the genus-level (marking the highest resolution of taxonomic assignment from 16S sequencing) in maximally
two out of eight published studies in children and adolescents (see Supplementary Table 1
17, 18). The three studies published on adults so far showed no overlap in results, despite a
substantial overlap in samples and wet-lab procedures between Aarts et al. (2017) and
Szopinska-Tokov et al. (2020) 19-21. The scarcity of consistent results renders biological
interpretations of gut-microbiome alterations as well as consideration of the abundance of
particular taxa as potential biomarkers or treatment targets for ADHD difficult.

Inconsistencies in reported results might be explained by a variety of factors; 22 provide an
overview on this topic. Most relevant may be the expected small effect sizes of microbiome
alterations due to high inter- and intrapersonal variability, in conjunction with the statistical
testing of a high number of features and the small sample sizes of gut-microbiome studies
published to date (mean n_ADHD = 39, mean n_noADHD = 49 13); those might lead to high false
positive rates and at the same time low detection of true effects. Heterogeneity in terms of
age (children, adolescents, adults), sex (some studies only focused on males), and ethnic
origin (Asian or European) might render summarizing and comparing the results more
difficult. Accounting for common confounders (e.g. age, sex, diet), focusing on one
developmental stage, and meta-analysis across studies might help increase the robustness
of findings. Importantly, methodological choices can strongly influence observed microbial
diversity and composition, e.g. in the technical variation of wet-lab procedures and
processing of microbiome data. While most studies use 16S rRNA sequencing, different
sequencing methods (extraction, storing, platforms, protocols) and the choice of the regions
of the 16S gene can have a substantial influence on the identified features (for a review, see
23). The lack of consensus on preprocessing pipelines and statistical analysis tools or
approaches further contributes to the scattered and irreproducible gut-microbiome
associations with ADHD across the field. 16S microbiome data comes with particular
properties, that should be accounted for: 1) Compositionality-bias (stemming from the fact
that the count of a feature does not carry information about its absolute abundance) results
from the sequencing and the restriction to the library size. Transformations such as the
center-log-ratio (CLR) scale the counts to a reference and can successfully eliminate compositionality bias of between-sample comparisons. 2) Zero-inflation and un-identifiable sources of zeros (e.g. sampling bias, sequencing bias, true zero) are particularly problematic for differential abundance analysis. Bias-related zeros increase the number of (uninformative) tests, and the resulting distribution has to be accounted for by the statistical approach. A recent paper reviewed approaches to deal with these issues, showing that exclusion of features that are observed in less than 10% of the samples from further analysis (prevalence threshold) increased cross-method comparability and reduced the statistical testing burden, false discovery rates, and zero inflation bias while maintaining sufficient information content for downstream statistical analysis. Attempts to account for these biases in the statistical approaches, however, vary profoundly between research groups, resulting in incomparable results across studies. The comparison of results across tools is recommended, where converging results are most likely to reflect true findings. Next to logistic regression in case-control studies, ANOVA-like Differential Expression (ALDEEx) is a promising approach to analyze differential abundance; this method produced the most comparable results across statistical approaches and studies while preserving a low false discovery rate.

In this study, we aimed to investigate gut-microbiome alterations in adult ADHD and identify genera that might be risk-conferring for the condition. To assure robustness of the results, we applied four strategies: 1) We harmonized the bioinformatic pipelines for sequencing data of four case-control cohorts of adults with and without ADHD (N=617); 2) we focused on one developmental stage, i.e. adulthood; 3) we investigated diversity and differential abundance across tools and indices, correcting for common confounders per study; 4) we meta-analyzed the results across studies. Converging results across tools and studies were analyzed for associations with the clinical representations of ADHD such as hyperactive/impulsive and inattentive symptoms.
Materials and Methods

Cohort description

We requested data from all ADHD case-control studies that included 16S fecal gut-microbiome samples, identified in two recent systematic reviews, see Supplementary Section 1.1, Table 1 and Supplementary Figure 15. We received clinical information and raw sequencing data from four adult cohorts (comprising the three articles including adults published to date: the NeuroIMAGE cohort and the Mental-Cat cohort from the Vall d’Hebron Research Institute in Barcelona (VHIR); and unpublished data from the MIND-Set cohort and our own cohort IMpACT2-NL.

The NeuroIMAGE cohort comprises adolescents and young adults with ADHD, their family members as well as unrelated healthy controls; only adult participants were included in this study. The Mental-Cat cohort consists of medication-naive adults with and without ADHD. The MIND-Set cohort includes adults with ADHD exhibiting a high level of psychiatric comorbidity and psychopharmacological treatment, as well as healthy individuals. For detailed information about individual studies, recruitment and inclusion/exclusion criteria, see Supplementary Chapter 1.1. Information about fecal sample collection, storing, and sequencing are provided in Supplementary Chapter 2. Our report follows STORMS guidelines for human microbiome research, whenever possible, see the Supplementary Table 14.

Participants with gut-related diseases (irritable bowel disease) and those with an unclear ADHD diagnosis were excluded, and overlapping samples between MIND-Set and IMpACT2-NL were removed from the MIND-Set cohort, resulting in a sample of 312 adults with and 305 adults without ADHD (56 exclusions, see Supplementary Figure 1). Table 1 provides a demographic overview of the included sample.

Microbiome preprocessing

Preprocessing was harmonized and performed per study using QIIME2 pipeline defaults, Figure 1 summarizes the preprocessing steps. For all studies, the raw forward and reverse reads were demultiplexed and then denoised using DADA2, where the primers were
trimmed off, sequencing errors and erroneous read combinations were removed and clusters of representative sequences (amplicon sequence variants, ASVs) were identified. We assured high sequencing quality by truncating the reads displaying a signal drop below a median phred-score of 30 (marking 99.9% base-call accuracy) towards the end of the reads resulting in a truncation from basepair 260 in NeuroIMAGE and VHIR. For IMpACT and MIND-Set no truncation was applied (no signal drop). The sequencing data for NeuroIMAGE was delivered in four batches and merged after denoising. The ASVs were aligned to their phylogenic tree (fasttree2). Taxonomy was assigned using a naive bayes classifier, pre-trained on a SILVA reference database of the full-length 16S gene (version 138, 99% OTUs full-length sequences, https://docs.qiime2.org/2022.2/data-resources/), to assure coherent classification irrespective of the sequencing region of the study. The resulting feature table with taxonomic assignments and the phylogenic tree were imported in R (version 4.2.1). We removed non-bacterial ASVs and screened for read depth (plateau in the rarefaction curve) and summarized sequencing data after each step, see Supplementary Chapter 2. We then investigated potential differences in alpha and beta diversity as well as composition per study, correcting for age and sex. Other common confounders were assessed post-hoc (ADHD medication, diet) or not included due to (excess) missing information (body-mass-index (BMI), smoking, general medication, anti-/probiotics) or high co-linearity with ADHD-control grouping (smoking, psychopharmacological treatment, comorbidities).

Alpha Diversity Analysis

We estimated three indices of alpha diversity, considering 1) number of observed ASVs, 2) abundance of ASVs (Shannon index), and 3) phylogenic relationships between ASVs (phylogenic distance) (microbiome package,36). We applied rank-based nonparametric regression analysis (Rfit, 37) for each study (alpha diversity ~ ADHD diagnosis). We further extracted the standardized correlation coefficient R as effect size measure per study and meta analyzed over the four cohorts with a random-effects models, which estimates study heterogeneity (metafor package 38).
Beta Diversity Analysis

Beta diversity (the similarity of the microbiome between samples) was investigated per study, applying the Permanova (adonis2) with 999 permutations in order to estimate Aitchison distance by ADHD diagnosis (vegan package 39). We additionally investigated beta diversity differences over all studies in a mega-analytic fashion by combining all feature tables and including the cohort as a nominal dummy variable. We visualized the effect of ADHD diagnosis on beta diversity using Canonical Analysis of Principal coordinates (CAP) plots, supervised for group effects (phyloseq package 40).

Composition

To investigate microbial composition, we applied a prevalence threshold of 10% (improves comparability over statistical tools, reduces the number of statistical tests and zero-biases 25) and aggregated the data to the genus level, see Supplementary Table 2 for counts per study. We applied CLR transformations to the count data to account for zero-inflation and compositionality biases 24.

Feature selection

To test only genera with potential informative value for the outcome of interest (ADHD diagnosis), we performed feature selection using randomized lasso stability selection in each cohort (monaLisa package, 41). In a random subsample of n/2, ADHD diagnosis was regressed against all genera in a lasso-penalized regression (repeated for 999 subsamples). The selection probability was calculated as the number of permutations in which a genus was selected (i.e., $\beta \neq 0$) divided by the total number of permutations. Due to small individual sample sizes and high interindividual variability in the gut-microbiome, the selection probabilities per genus are expected to be small. We applied a lenient threshold of 10% stability selection probability within each study, to assure that genera with potentially small within-study relevance will be picked up, as they might accumulate across studies. We disregarded all genera from further analysis whose selection probability stability paths showed low to no informative value, see Supplementary Chapter 5.1. Selected genera, prevalent across cohorts were introduced to differential abundance analysis.
Differential abundance analysis

We applied differential abundance analysis per study, using logistic regressions associating ADHD diagnosis with the CLR-transformed abundance. We meta-analyzed over the standardized effect size (log odds ratio) of all four studies for each genus. To account for potential inconsistencies across statistical tools, we additionally performed differential abundance analysis with ALDEx2. We applied ALDEx2 per study before prevalence thresholding and feature selection, as the correction for feature variation is estimated most accurately taking all features into account. We subsequently estimated standardized effect sizes (standardized correlation coefficient R and variance) and performed meta-analysis on only the prevalent, feature selected genera. We applied a significance threshold of \(p < 0.05 \), where \(p \)-values were false discovery rate (fdr) corrected.

Associations with symptoms

To investigate if compositional differences in the gut-microbiome of adults with ADHD were associated with the symptoms of hyperactivity/impulsivity or inattention, we employed rank-based regression (\(Rfit \)) on the mean centered number of symptoms (see supplementary chapter 1.1) and the (CLR-transformed) abundance of those genera, that were robustly associated with ADHD diagnosis abundance, corrected for age and sex. We extracted the standardized effect size measure R (\(metafor \)) for each association per study and meta analyzed (\(N = 505 \)). We applied a significance threshold of \(p < 0.05 \), \(p \)-values were false discovery rate (fdr) corrected.
Results

Alpha Diversity
We found no significant differences of alpha diversity between adults with and without ADHD, neither on the individual study level nor in the meta-analysis, in terms of observed ASV, Shannon index, or Faith’s phylogenetic diversity, see Supplementary Chapter 3.

Beta Diversity
At the individual study level, three out of four studies showed differences in beta diversity between people with and without ADHD (Supplementary Chapter 4). The Permanova over all studies showed a significant association of ADHD diagnosis with beta diversity ($p = 4.7 \times 10^{-2}$, $F=1.77$) explaining 0.2% of variance, despite pronounced differences between the cohorts (explaining ca. 25%, $p = 1.0 \times 10^{-2}$, $F=67.94$, Table 2). Figure 2 shows a separation of individuals with (blue) and without ADHD (red) as well as separation of MIND-Set and IMPACT2-NL, using the same sequencing technique and region, from the other two cohorts, which applied different wet-lab techniques.

Composition
Feature selection
A total of 27 genera were selected over all four studies in the randomized Lasso stability selection, 20 of which exceeded the prevalence threshold of 10% in all four cohorts; see Supplementary Chapter 5 for the selected features, selection probability, and the stability paths per study.

Differential abundance analysis
Logistic regression-based meta-analyses of the 20 selected genera identified 5 significantly different genera between adults with and without ADHD (fdr-corrected): *Ruminococcus_torques_group* ($p_{fdr}=4.4 \times 10^{-2}$, Log odds ratio (LOR) = 0.17), *Eubacterium_xylanophilum_group* ($p_{fdr}=6.9 \times 10^{-3}$, LOR = -0.12), *Eubacterium_ruminantium_group* ($p_{fdr}=4.4 \times 10^{-2}$, LOR = -0.06), *Eisenbergiella* ($p_{fdr}=2.0 \times 10^{-2}$, LOR = 0.14), and *Clostridia_UCG_014* ($p_{fdr}=4.4 \times 10^{-2}$, LOR = -0.07). Figure 3 displays the effect size, direction of effects, and significance level for each genus.
By repeating the meta-analyses on the ALDEx2-based effects of the selected genera, we identified two fdr-corrected significantly different genera, both overlapping with the results from logistic regression; *Ruminococcus_torques_group* ($p_{fdr}=1.9\times10^{-2}$, $r=0.13$) was more abundant, while *Eubacterium_xylanophilum_group* ($p_{fdr}=1.9\times10^{-2}$, $r=-0.12$) was less abundant in people with ADHD compared to those without ADHD. At an uncorrected significance level, ALDEx2 identified four out of the five genera identified in logistic regression (along with *Eisenbergiella* and *Clostridia_UCG_014*), which were subsequently introduced to post-hoc symptom associations (see below). The significant results showed small effect sizes, with no significant influence of study heterogeneity. Forest plots of significant results, and results tables of the meta-analyses are described in Supplementary Chapter 6.1 and 6.2. We further visualized relative abundance and the number of non-zero samples for the 20 selected genera, see Supplementary Chapter 6.3.

Post-hoc associations with ADHD symptoms

More inattention symptoms were significantly associated with higher abundance of *Eisenbergiella* ($p_{fdr}=1.1\times10^{-3}$, $r=0.16$), and more hyperactivity/impulsivity symptoms were significantly associated with higher abundance of *Eisenbergiella* ($p_{fdr}=4.2\times10^{-3}$, $r=0.14$) and *Ruminococcus_torques_group* ($p_{fdr}=1.2\times10^{-2}$, $r=0.13$). The results of the meta-analyses are available in the Supplementary Chapter 7.1.
Discussion

Study summary and results

In study, we aimed to identify robust gut-microbiome alterations in adult ADHD by harmonizing the bioinformatic pipelines of four case-control cohorts (N=617), investigating diversity and differential abundance across tools and indices, correcting for common confounders per study, meta-analyzing and interpreting converging results across tools and studies. While alpha diversity was not significantly different between adults with and without ADHD, we found differences in beta diversity and identified robust microbiome-compositional alterations in adult ADHD and associations with the severity of inattention and hyperactivity/impulsivity symptoms.

Interestingly, beta diversity was additionally influenced by the individual cohort setup, despite harmonized preprocessing. The clustering of two studies with overlapping wet-lab procedures and separation of two studies who applied different wet-lab strategies underlines the impact on detected composition and supports the need for meta-analytic approaches and harmonized wet-lab protocols to account for influences of collection, storing and sequencing. While diversity is an unspecific measure for disease-related processes, indicating only global tendencies of potentially disrupted ecosystems, compositional differences can add information on individual features involved and help identifying relevant functional pathways.

On a compositional level, *Eubacterium_xylanophilum_group* was significantly less abundant in adults with ADHD, while *Ruminococcus_torques_group* was more abundant and associated with more hyperactivity/impulsivity symptoms, converging over meta-analyses. Additionally, both methods identified higher abundance of *Eisenbergiella*, associated with hyperactivity/impulsivity and inattention symptoms, and lower abundance of *Clostridia_UCG_014* in adults with ADHD.

Functional properties

The Ruminococcus_torques_group has earlier been found enriched in children with ASD⁴², Irritable Bowel Syndrome⁴³, Crohn’s disease⁴⁴, and influenza-like illness⁴⁵; it was also
found associated with the degradation of the intestinal mucosal layer \(^{46}\).

Ruminococcus_torques species were further associated with a western diet (high energy, low nutrition) and neuroinflammation; it might also be related to reduction in striatal dopamine in Parkinson’s Disease (for a review, see \(^{47}\)). These studies suggest a role of *Ruminococcus_torques_group* in gut-barrier functioning and pro-inflammatory processes, which have previously been implicated in the etiology of psychiatric, neurodevelopmental, and neurological disorders \(^{48, 49}\).

Eisenbergiella has also been found enriched in individuals with neuropsychiatric disorders, such as ASD, depression, and Parkinson’s disease \(^{50-52}\), in chickens and mice infected with pathogens \(^{53, 54}\), and in children with an allergy to cow’s milk \(^{55}\). It was found reduced in rats after immunosuppressive/anti-inflammatory treatment \(^{56}\), suggesting general associations with pro-inflammatory processes and immune activation. Higher abundance of *Eisenbergiella* has also been linked to a high energy diet (rich in carbohydrates, fat, and protein) \(^{57}\) and to metabolic disorders, such as gestational diabetes mellitus \(^{58}\).

Eubacterium_xylanophilum_group seems to play an anti-inflammatory role. It is considered a producer of SCFAs and was found enriched after intervention with polyphenols in piglets \(^{59}\). Metabolism of polyphenols into SCFAs by the gut-microbiome is discussed as a potential mechanism through which polyphenols might unfold their anti-inflammatory properties \(^{60}\).

Eubacterium_xylanophilum_group was also found enriched in mice with colorectal cancer after supplementation with sodium butyrate, associated with SCFA production and an improved immune response \(^{61}\). Associations of *Eubacterium_xylanophilum_group* with beneficial effects on immune functioning might be relevant for ADHD, potentially supporting favorable health outcomes, but these interpretations are highly speculative, as human and functional studies are lacking.

In summary, the idea that *Ruminococcus_torques_group* and *Eisenbergiella* could play a role in the pathophysiology of adult ADHD is supported by the described associations with other brain disorders characterized by altered monoamine neurotransmission (e.g. ASD, depression, Parkinson’s disease) and by the observed influences on inflammation and...
immune functioning. Immune activation, for example caused by increased intestinal permeability, is considered as a potential mechanism causing and maintaining psychiatric and somatic symptoms, reflecting in shared genetic risk of immune and psychiatric disorders.

Notably, none of these genera had been reported in any previous studies of gut microbiome composition in ADHD (see table ST1), potentially due to the differences in origin, developmental stage and power issues of the published studies.

Strengths and Limitations
The results of this study have to be viewed in the light of its strengths and limitations. Even though we provide a comparably big sample size, the expected small effect sizes and high inter- and intra-individual variability in gut-microbial signatures require replication of these findings in even larger samples. Collecting data from different studies comes with limitations of the included individual studies (quality, technical variation). We reduced and accounted for effects of individual study differences by harmonizing pipelines and using random effects meta-analyses. However, different sequencing region, for example, might still limit the detection of the same genera across studies. Inconsistently detected genera would not be considered or introduced to meta-analysis.

All included datasets were based on 16S sequencing, which picks up on low abundant features, but provides comparably low resolution. The taxonomic identification at this resolution does not provide information about functional properties of the identified taxa. Discussions of potential disorder-related mechanistic pathways (e.g. a potential role of inflammatory processes in ADHD) or functional properties of genus-level data are based on a narrative summary of associations with other phenotypes in the literature, and are therefore necessarily speculative and unspecific to ADHD. The gut-microbiome is sensitive to environmental, behavioral, and dietary changes. For people with psychiatric disorders, disorganized thoughts and behaviors or impulsive food choices, for example, might be responsible for the observed difference in abundance of particular genera. Similarly, the decrease of *Eisenbergiella* after immune-suppressive treatment supports the idea that -
rather than a cause - increases in abundance could be seen as an epiphenomenon or consequence of inflammation. Through the association studies performed here, we therefore cannot give insights on causality or consequences of the differential microbial abundance in ADHD.

While we corrected for age and sex effects on the gut-microbiome, diet information was only provided for IMpACT2-NL and MIND-Set. After post-hoc analyses, correcting for diet on an individual study level in MIND-Set and IMpACT2-NL, all significant associations remained significant, see Supplementary Chapter 7.2. However, diet was significantly associated with ADHD diagnosis, confirming the relevance of diet as either behavioral epiphenomenon or influence on ADHD. Dietary habits should be assessed thoroughly using standardized tools and accounted for in each study. Another important confounder is medication. Drugs can impact the gut-microbiome; in turn, the gut-microbiome might also impact the metabolism of medications and modulate the treatment response (for an overview, see 63). However, in psychiatric case-control cohorts, pharmacological treatment is highly colinear with the diagnostic group, and issues like multi-medication resulting from high comorbidity and treatment adherence further complicate this picture. Significant contributions of the medication naïve sample (Mental-Cat) as well as the highly medicated sample (MIND-Set), point towards low sensitivity of these results for ADHD medication. Post-hoc analyses of medication effects was performed on cases only in IMpACT2-NL and NeuroIMAGE. Eisenbergiella was more abundant in participants with ADHD in the NeuroIMAGE sample, but not on IMpACT and no other association of genus abundance with current current use of ADHD medication was found, see Supplementary Chapter 7.3. The interplay of gut-microbiota with psychopharmacological treatment should be investigated in future studies.

Conclusion and future directions

In summary, we identified alterations of the gut-microbiome in adult ADHD that were robust to statistical approach and study heterogeneity. The ADHD-associated genera suggested potential relevance of inflammatory and immune processes for ADHD symptoms. However, more human and functional studies are needed to support potential interpretations.
To exhaust the potential of 16S sequencing studies and increase comparability we emphasize the need for standardized pre-processing and statistical pipelines, large samples, and deep phenotyping. To extend this work to the lifespan of ADHD, future studies should integrate studies in children, adolescents, and adults in meta-regression or in longitudinal designs. These approaches could account for natural changes in the gut-microbiome in the different developmental stages and help to provide insight in potential influences of the gut-microbiome in early life on later neurodevelopment within ADHD (e.g. to identify potential remission profiles). To distinguish disorder-specific, symptom-/trait-specific, and transdiagnostic effects, studies across psychiatric categories and in population-based cohorts are needed. Additionally, the combination of 16S studies with metagenomic sequencing, clustering of sequences based on their involvement in functional mechanistic pathways as well as wet-lab culturing studies investigating functions of the bacteria are needed to gain mechanistic insights. Intervention studies, targeting the reduction of genera enriched in ADHD (and/or the enrichment of reduced genera), could be implemented to infer causal relationships between ADHD symptoms and gut-microbial alterations; such studies could evaluate the potential of the gut-microbiome as a biomarker as well as for treatment support. Investigating the gut-microbial changes in pharmacological randomized control trials could help disentangle disorder-related effects from medication-related effects, additionally providing a perspective to improve treatment response.
Acknowledgements

NeuroIMAGE: This project was supported by grants from National Institutes of Health (grant R01MH62873 to SV Faraone) for initial sample recruitment, and from NWO Large Investment (grant 1750102007010 to JK Buitelaar), NWO Brain & Cognition (grant 433-09-242 to JK Buitelaar), and grants from Radboud University Medical Center, University Medical Center Groningen, Accare, and VU University Amsterdam for subsequent assessment waves. NeuroIMAGE also received funding from the European Community's Seventh Framework Programme (FP7/2007 – 2013) under grant agreements n° 602805 (Aggressotype), n° 278948 (TACTICS), and n° 602450 (IMAGEMEND), and from the European Community’s Horizon 2020 Programme (H2020/2014 – 2020) under grant agreements n° 643051 (MiND), n° 667302 (CoCA), and n° 728018 (Eat2beNICE).

IMpACT: We acknowledge funding from the Netherlands Organization for Scientific Research (NWO), i.e. the Veni Innovation Program (grant 016-196-115 to MH) and the Vici Innovation Program (grant 016–130-669 to BF). The work was also supported by the European College of Neuropsychopharmacology (ECNP) Network “ADHD Across the Lifespan”.

BJ and BF were also supported by funding from the European Community’s Horizon 2020 Programme (H2020/2014 – 2020) under grant agreement n° 847879 (PRIME).
Conflict of Interests

J.A.R.Q was on the speakers’ bureau and/or acted as consultant for Biogen, Janssen-Cilag, Novartis, Shire, Takeda, Bial, Shionogi, Sincrolab, Novartis, BMS, Medice, Rubió, Uriach, Technofarma and Raffo in the last 3 years. He also received travel awards (air tickets + hotel) for taking part in psychiatric meetings from Janssen-Cilag, Rubió, Shire, Takeda, Shionogi, Bial and Medice. The Department of Psychiatry chaired by him received unrestricted educational and research support from the following companies in the last 3 years: Janssen-Cilag, Shire, Oryzon, Roche, Psious, and Rubió.

BF has received educational speaking fees from Medice.

IT receives funding from the Dutch Organisation of research (ZONMW project numbers 80-86200-98-20006, 80-85200-98-20006, 60-63600-98-903)

VR has served as a speaker for Rubió and Shire/Takeda in the last 5 years. She has received travel awards from Shire/Takeda for participating in psychiatric meetings.

JKB has been in the past 3 years a consultant to / member of advisory board of / and/or speaker for Takeda, Roche, Medice, Angelini, Janssen, and Servier. He is not an employee of any of these companies, and not a stock shareholder of any of these companies. He has no other financial or material support, including expert testimony, patents, royalties.

BJ, PV, DM, PvE, MR, JV, MB, AAV and MH have nothing further to disclose.
References

1. Faraone SV. ADHD. Nature Reviews Disease Primers 2015; 15027.

24. Gloor GB, Macklaim JM, Pawlowsky-Glahn V, Egozcue JJ. Microbiome datasets are compositional: and this is not optional. *Frontiers in microbiology* 2017; 8: 2224.

51. Comparison of Metabolites and Gut Microbes between Patients with Parkinson’s Disease and Healthy Individuals—A Pilot Clinical Observational Study (STROBE Compliant). *Proceedings of the Healthcare* 2022. MDPI.

Figure Legends

Figure 1
Figure 1. Workflow diagram of bioinformatic pipelines for preprocessing and statistical analyses. Section 1 (top) describes the preprocessing per study, section 2 (middle) describes the statistical analysis of diversity and composition per study and section 3 (bottom) describes the statistical analysis over all studies. Abbreviations: ASV: amplicon sequence variants, ALDE2: ANOVA-like differential expression, CLR: center log ratio.

Figure 2
Figure 2. Beta-diversity of gut microbial communities in 312 people with ADHD (marked in blue) and 305 without ADHD (marked in red) over four cohorts. The CAP plot is supervised for differences in Alchécir dissimilarity between diagnostic groups (ADHD diagnosis), the cohort is marked by shapes (dot for IMpACT2-NL, triangle for MIND-Set, square for NeuroIMAGE and + for MentalCat).

Figure 3
Figure 3. Results from the meta-analyses on all 21 genera (y-axis) from logistic regression, displaying significance level (bubble size), effect size (x-axis) and direction of effects (red for higher, blue for lower abundance in ADHD). Converging results with ALDE2 are marked with *(uncorrected), ***(fdr corrected).
Table 1. Demographic description and characteristics of the included studies.

<table>
<thead>
<tr>
<th>Cohort</th>
<th>Recruitment period</th>
<th>Recruitment Country</th>
<th>IMpACT2-NL</th>
<th>NeuroIMAGE</th>
<th>MIND-Set</th>
<th>Mental-Cat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of subjects</td>
<td>Control</td>
<td>ADHD</td>
<td>Control</td>
<td>ADHD</td>
<td>Control</td>
<td>ADHD</td>
</tr>
<tr>
<td></td>
<td>78</td>
<td>78</td>
<td>38</td>
<td>29</td>
<td>90</td>
<td>104</td>
</tr>
<tr>
<td>Sex, proportion female participants</td>
<td>0.51</td>
<td>0.57</td>
<td>0.47</td>
<td>0.31</td>
<td>0.54</td>
<td>0.42</td>
</tr>
<tr>
<td>Age mean years (SD)</td>
<td>34.49 (13.08)</td>
<td>33.86 (10.31)</td>
<td>21.84 (2.54)</td>
<td>22.21 (3.05)</td>
<td>38.55 (16.87)</td>
<td>37.38 (12.55)</td>
</tr>
<tr>
<td>BMI mean (SD)</td>
<td>24.85 (4.25)</td>
<td>24.86 (4.49)</td>
<td>22.84* (3.05)</td>
<td>24.39 (3.79)</td>
<td>23.85** (4.46)</td>
<td>28.01*** (15.19)</td>
</tr>
<tr>
<td>Smoking, proportion non-smokers</td>
<td>0.90</td>
<td>0.65</td>
<td>NA</td>
<td>NA</td>
<td>0.93</td>
<td>0.76</td>
</tr>
<tr>
<td>ADHD medication proportion currently using ADHD medication</td>
<td>0</td>
<td>0.51</td>
<td>0</td>
<td>0.42</td>
<td>0</td>
<td>0.84</td>
</tr>
<tr>
<td>Inattentive symptoms mean(SD)</td>
<td>0.87 (1.26)</td>
<td>5.65 (2.17)</td>
<td>41.74 (10.67)</td>
<td>58.45 (12.12)</td>
<td>2.31* (1.98)</td>
<td>8.86**** (2.81)</td>
</tr>
<tr>
<td>Hyperactive/impulsive symptoms mean(SD)</td>
<td>0.79 (1.10)</td>
<td>7.38 (1.83)</td>
<td>45.42 (9.29)</td>
<td>66.86 (11.32)</td>
<td>2.51 (1.66)</td>
<td>8.09 (2.27)</td>
</tr>
<tr>
<td>Sequencing Region</td>
<td>V4</td>
<td>V1/V2</td>
<td>V4</td>
<td>V3/V4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sequencing platform</td>
<td>Illumina NovaSeq 6000</td>
<td>Illumina HiSeq PE300</td>
<td>Illumina NovaSeq 6000</td>
<td>Illumina MiSeq 300 nt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antibiotic treatment, proportion using antibiotics</td>
<td>0.01</td>
<td>No information</td>
<td>0</td>
<td>Exclusion criterium</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Psychiatric comorbidities, proportion of ADHD + additional current psychiatric diagnoses</td>
<td>Exclusion criterium</td>
<td>Exclusion criterium</td>
<td>0.83</td>
<td>Exclusion criterium</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Footnote: * 1 missing value, ** 27 missing values, *** 15 missing values, **** 11 missing values.

1. 65.5% of MIND-Set participants with an ADHD diagnosis received additional pharmacological treatment targeting the central nervous system (mostly antidepressants), with a minimum of 6 different drugs prescribed to an individual.
2. Symptom assessment tools are described in more detail in Supplementary Chapter 1.1.
3. IMpACT2-NL assessed frequency of antibiotics use [frequent, sometimes, rarely or never; 96.4% of participants answered never or rarely, one control participant reported frequent antibiotics usage.]
4. Diagnoses of neurodevelopmental and current psychiatric disorders were excluded.
5. Diagnoses of autism were excluded.
Table 2. Beta Diversity results from Permanova with 999 permutations over the samples of all four studies combined.

<table>
<thead>
<tr>
<th></th>
<th>Sum of Squares</th>
<th>R^2</th>
<th>F</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADHD diagnosis</td>
<td>12890</td>
<td>0.002</td>
<td>1.77</td>
<td>4.7E-02</td>
</tr>
<tr>
<td>Age</td>
<td>23665</td>
<td>0.003</td>
<td>3.24</td>
<td>1.0E-03</td>
</tr>
<tr>
<td>Sex</td>
<td>11763</td>
<td>0.002</td>
<td>1.61</td>
<td>6.4E-02</td>
</tr>
<tr>
<td>Cohort</td>
<td>1486900</td>
<td>0.244</td>
<td>67.94</td>
<td>1.0E-03</td>
</tr>
<tr>
<td>Residual</td>
<td>4450154</td>
<td>0.731</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>6087500</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table contains the sum of squares, the proportion of variance in beta diversity explained by the regressors diagnosis, age, sex, and effect of the study (R^2), as well as test statistics F and permutation p-value.
Preprocessing per study

Forward & reverse reads
Demultiplexing, Denoising & Clustering (Dada2)
Representative Sequences (ASV)
Classification & Alignment
Feature table with taxonomy

Analysis per study

Alpha Diversity
- Observed ASV
- Shannon Index
- Phylogenic Distance
 - Non-parametric regression per index
 - Extract effect size per study per index
 - Random effects meta-analyses
 - Converging effects

Beta Diversity
- Aitchison Distance
 - Permanova
- Join feature tables

Composition
- Genus Abundance
 - ALDEx2
 - CLR transformation
 - Prevalence threshold 10%
 - Feature selection
 - Differential Abundance
 - 21 genera
 - Logistic regression
 - Differential Abundance

Analysis over studies
- Extract effect size per study per method
- Random effects meta-analyses
- Converging effects

Random effects meta-analyses
Converging effects