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34 Abstract (250 words):

35 Background: The human gut microbiome develops rapidly during infancy, a key window of 

36 development coinciding with maturation of the adaptive immune system. However, little is 

37 known of the microbiome growth dynamics over the first few months of life and whether there 

38 are any generalizable patterns across human populations. We performed metagenomic 

39 sequencing on stool samples (n=94) from a cohort of infants (n=15) at monthly intervals in the 

40 first six months of life, augmenting our dataset with seven published studies for a total of 4,441 

41 metagenomes from 1,162 infants.

42 Results: Strain-level de novo analysis was used to identify 592 of the most abundant organisms 

43 in the infant gut microbiome. Previously unrecognized consortia were identified which 

44 exhibited highly correlated abundances across samples and were composed of diverse species 
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45 spanning multiple genera. Analysis of a cohort of infants with cystic fibrosis identified one such 

46 novel consortium of diverse Enterobacterales which was positively correlated with weight gain. 

47 While all studies showed an increased community stability during the first year of life, microbial 

48 dynamics varied widely in the first few months of life, both by study and by individual.

49 Conclusion: By augmenting published metagenomic datasets with data from a newly 

50 established cohort we were able to identify novel groups of organisms that are correlated with 

51 measures of robust human development. We hypothesize that the presence of these groups 

52 may impact human health in aggregate in ways that individual species may not in isolation. 

53

54 Keywords (3-10):
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57 Background

58 Early-life colonization of the human gut by microorganisms can have long-term implications for 

59 physiology and disease[1-3]. Species- and strain-level analyses suggest that most taxa can be 

60 inherited from the mother during vaginal birth, and microbial transfer is likely reduced in 

61 infants born by Caesarean delivery or by those treated with antibiotics[4-6]. Disruptions to 

62 natural bacterial exposures and microbiome development (e.g., by Caesarian section delivery, 

63 excessively sterile environment, or antibiotic-treatment) are associated with increased 

64 susceptibility to inflammatory and metabolic diseases, and intervention studies in animal 

65 models have defined key pre- and post-natal developmental windows during which the 

66 developing microbiome affects important immune processes, such as tolerance induction. 
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67

68 Key knowledge gaps remain concerning the immune phenotypes of at-risk infant populations 

69 and how early-life complications, such as microbiome disruption, malnutrition, and pathogen 

70 exposures, alter immune ontogeny and lead to vaccine response deficiencies in some children.

71 Emerging evidence suggests that individual variation in response to infection or vaccination 

72 may be influenced by past viral and bacterial exposures, which shape the immune system and 

73 can establish pre-existing immune-reactivity[7-10].

74

75 Murine systems and longitudinal human birth cohorts have defined critical neonatal windows in 

76 which the intestinal microbiome stimulates immune maturation and provides colonization 

77 resistance to protect against infectious and immune-mediated disease[3, 11-28]. While 

78 neonatal taxa-immune pathways remain to be fully elucidated, the acquisition of Clostridiales 

79 taxa in early-life is clearly vital [2, 29-44]. Clostridiales provide colonization resistance[13], 

80 stimulate immune-regulatory responses[18, 26, 45-47], and activate IFN-mediated lung 

81 protection[48]. A failure to acquire Clostridiales taxa, especially Ruminococcaceae, 

82 Lachnospricaeae and Clostridium Cluster XIVa, represents the major deficiency of the CF infant 

83 microbiome, a finding that is highly reproducible across multiple independent cohorts, 

84 including the most extensively characterized BONUS cohort[30, 31, 35, 37, 44].

85

86 Longitudinal studies of birth cohorts – so far conducted predominantly in North America and 

87 Europe – have begun to characterize compositional changes to the gut microbiome that occur 

88 in the first years of life. These studies have relied primarily on amplification of the bacterial 16S 
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89 ribosomal RNA gene or, more seldomly, whole genome sequencing[4, 6, 49-51]. These 

90 longitudinal studies, along with one major cross-sectional study[52], have demonstrated that 

91 there is considerable inter-individual and temporal variation in the neonatal and infant 

92 microbiome community starting from birth and extending to approximately three years of age. 

93 During this period the microbiome gains richness and stability to form a microbial community 

94 that is more reflective of the adult microbiome[4, 6, 49-51, 53].   This represents a general 

95 transition where bacteria specialized to the aerobic neonatal gut (e.g., E. coli) or for growth on 

96 complex sugars in breastmilk (e.g., Bifidobacterium and Veillonella) and are outcompeted by 

97 organisms found more commonly in the adult gut microbiome, such as Bacteroideceae and 

98 Rumminococcaceae[4, 6, 50]. This is reflected in the metagenomic composition of the bacterial 

99 communities, with genes involved in milk oligosaccharide metabolism giving way to those 

100 better suited to solid foods, such as fiber degradation[4, 6, 49]. 

101

102 While these studies have elucidated general trends in infant microbiome development, most 

103 prior studies are limited by low density of fecal sampling in the first 6 months of life when 

104 temporal intraindividual variation in the microbiome is highest and exposures to the immune 

105 system are particularly impactful. Furthermore, bioinformatic approaches have focused 

106 predominantly on identifying microbiome community states that are reflective of specific ages 

107 and which are generalizable across individuals. In contrast, these approaches offer more limited 

108 insight into the growth dynamics of individual taxa or clusters of interacting consortia. It is now 

109 evident that the path of individual microbiome development is highly variable across infants. 

110 For example, a recent analysis of transitions between ten different microbiome community 
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111 states in early life observed great diversity in the patterns of transitions between states. In fact, 

112 the most common transition pattern was only observed in 20% percent of infants, with the 

113 remaining 80% of infants displaying unique maturation transition patterns.[54]

114

115 Recognizing that the microbiome may not conform to consistent community states, an 

116 alternate ontological approach is to identify the subsets of microbial organisms which are found 

117 together in concert, as would be expected from a group of Bifidobacteria which jointly 

118 metabolize human milk oligosaccharides. From an informatic point of view, we approach the 

119 identification of microbial consortia by testing for organisms with correlated abundances across 

120 large numbers of microbiome samples[55]. When organisms are more likely to be found 

121 together than would be expected by random assortment, we may hypothesize that there is a 

122 shared underlying biological process which is jointly driving their growth and survival.

123

124 In human microbiome research, detection of well-studied bacterial species and genera can 

125 reveal considerable information about environmental conditions present during health and 

126 disease conditions of the host; however, there are limitations in taxonomic-centered 

127 approaches that orient analysis around finding associations with host characteristics and 

128 relative abundance of bacterial groups agglomerated by phylogenetic clade. Critically, 

129 aggregating organismal relative abundances within phylogenetic clades (i.e., summarizing 

130 microbiome features to the genus, family, or order level) becomes less informative as 

131 physiology and metabolism of bacteria within taxonomically derived grouping can vary greatly. 

132 However, strain-level analysis suffers from high-dimensionality and high sparsity of features 
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133 between samples. Thus, a major challenge in analysis of microbiome is finding a flexible unit of 

134 analysis that permits detection of consistent and interpretable ecological changes in the host 

135 via phylogenetic-independent agglomeration of co-abundant organisms.

136

137 Thus, to gain a better understanding of dynamics of microbiome development in the critical 

138 development period between 1 to 6 months of age, we conducted such a gene-level 

139 microbiome analyses on stool samples collected monthly in a longitudinal mother-infant birth 

140 cohort[56]. Because the aggregate gene content of the gut microbiome is comprised of tens or 

141 hundreds of millions of genes[57], a meaningful embedding in lower dimensional space is 

142 helpful for comparisons across samples. For this purpose, we use Co-Abundant Gene Groups 

143 (CAGs)[58, 59] which represent sets of genes that are expected to be found together in the 

144 same genetic element (chromosome, plasmid, virus, etc.) across all of the samples in the 

145 collection. To increase the total amount of biological information used for CAG construction, we 

146 augmented the data from our own cohort with additional metagenomic data from seven 

147 published infant microbiome datasets[4, 6, 49-53], for a total of 4,441 biological samples in the 

148 combined dataset. We used a reproducible pipeline, geneshot [60], for constructing and 

149 quantifying CAGs to describe groups of organisms that colonize the gut according to patterns of 

150 correlated abundance which are reproduced across cohorts. We describe these groups of 

151 microbes which are present or absent in concert as previously-unrecognized microbial 

152 consortia, which may help researchers more succinctly describe the patterns of rapid turnover 

153 which are observed during the first six months of life. Moreover, parallel analysis of a published 

154 cross-sectional cohort[53] identified one such consortium whose presence was strongly 
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155 correlated with infant growth rate. We propose that this dynamic growth variation may 

156 underlie altered immune development between individuals and associated susceptibility to 

157 immune-mediated disease in later life, and therefore that CAG-based analysis of microbial 

158 consortia would be a useful approach for the analysis of existing and future longitudinal birth 

159 cohorts.

160

161 Results

162

163 De novo metagenomic analysis identifies 592 bacterial genomospecies in the infant gut

164 To quantify the relative abundance of microorganisms present in the gut during early human 

165 life, metagenomic whole-genome shotgun sequencing (WGS) data were generated from the 

166 total DNA isolated from stool samples collected from cohort of healthy infants (n = 15) at 

167 monthly intervals from birth until 6 months. To mitigate the inherent stochasticity of 

168 metagenomic sequencing, we sought to increase generalizability of gene-level analysis by 

169 including other publicly available deeply sequenced microbiome samples from other infant 

170 cohorts . the most that are In all, we analyzed metagenomic data from the seven largest 

171 published infant microbiome datasets[4, 6, 49-53], for a total of 4,441 biological samples in the 

172 combined dataset (Fig. 1A, Table 1, Table S1, S2). Gene-level metagenomic analysis was 

173 performed by: (1) generating a gene catalog via de novo assembly and centroid clustering 

174 (based on 90% amino acid identity); (2) estimating the relative abundance of organisms 

175 encoding each individual gene via short-read alignment; and (3) grouping genes with correlated 

176 abundances into co-abundant gene groups (CAGs) via iterative greedy single linkage 
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177 clustering[60]. Thus, the primary unit of measurement for downstream analyses was the 

178 relative abundance of each CAG in a particular sample, which is an estimate of the relative 

179 abundance of the organisms contained within that sample encoding the genes in that CAG. 

180 Because the groups of genes contained in each CAG have highly correlated abundances, they 

181 are predicted to be contained within the same genomic context with the metagenome , 

182 representing the complete or partial core genome of a set of closely related isolates or 

183 strains[58].

184

185 To focus our analysis on CAGs most likely to represent species-level groupings of genes, we 

186 subset our analysis to those CAGs containing between 1,000 and 10,000 genes (n = 592), a 

187 range which encompasses most representative bacterial genomes in the NCBI RefSeq database 

188 (Fig. 1B). We conceptualized these CAGs as “genomospecies” because they define a group of 

189 organisms at the species or strain level based on a high degree of shared genomic content[61]. 

190 The filtered set of 592 appropriately sized CAGs, i.e., genomospecies, account for over half of 

191 the raw sequence fragments recovered from infant stool samples with no clear bias by study or 

192 timepoint (Fig. 1C). While the organisms contributing the remaining sequence fragments may 

193 also have a meaningful influence on human health, they were not observed consistently at high 

194 enough abundance across multiple samples to enable gene-level analysis in this study. Using 

195 these genomospecies-level abundances as the basis of characterizing microbiome composition 

196 in our  to -cohort, we compared pairs of samples from the same or different individuals using 

197 rank correlations across the CAGs. Sample pairs from the same individual were more correlated 

198 (Fig. 1D, p=1.16E-46 Mann-Whitney U), as were samples collected from the same individual at 
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199 shorter time intervals compared to longer intervals (Fig. 1E, p=4.12E-10 Spearman); together 

200 these show that there is some degree of temporal stability in community composition. A 

201 graphical summary of microbial abundances across samples is shown in Figure 1F, with each 

202 genomospecies shown in a row and each sample shown in a column. Samples are ordered by 

203 participant and timepoint, and the genomospecies are grouped by linkage clustering based on 

204 the similarity of abundance patterns across samples. The presence of genomospecies with very 

205 similar patterns of abundance in this dataset suggests that organisms are not distributed 

206 randomly across individuals, but that there may be groups of genomospecies whose relative 

207 abundance are correlated when comparing across specimens (Fig. 1F). 
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208

209 Figure 1. Quantification of 592 microbial genomospecies from 0-6 months across 8 studies.

210 A) Density of sample collection per study over time relative to term birth (40 weeks of 

211 gestational age).

212 B) Distribution of genomospecies genome sizes (number of coding sequences, top) in 

213 comparison to NCBI prokaryotic reference genomes (bottom).

214 C) Proportion of metagenomic sequence data from each sample which can be 

215 unambiguously assigned to any one of the 592 bacterial genomospecies, compared 

216 across studies.
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217 D) Within- versus intra-participant variation in metagenome similarity estimated using the 

218 Spearman correlation coefficient of Centered-Log Ratio (CLR) abundances.

219 E) Comparison of within-participant variation in metagenome similarity between samples 

220 at varying time intervals estimated using the Spearman correlation coefficient of CLR 

221 abundances.

222 F) Comparison of microbiome composition within the samples collected for this study, 

223 with participants (n=15) and timepoints (n=6) indicated on the top marginal axis. 

224 Dendrogram indicates hierarchical clustering of the 592 genomospecies based on 

225 similarity of abundance profiles across samples. Color scale indicates log-scaled relative 

226 abundances.

227

228 Bacterial strains are observed in tightly correlated consortia across populations

229 To identify microbial species with correlated abundances, we calculated the Kendall rank 

230 correlation coefficient[62] for every pair of genomospecies across all of the samples from both 

231 published and newly-generated microbiome samples. Ordination of genomospecies based on 

232 similarity of abundance profiles across samples suggested a correlation within taxonomic 

233 groups (Fig. 2A; Supp. Data 1). While correlation coefficients were higher overall within 

234 taxonomic groups than between taxonomic groups (ANOSIM R=0.43 p=0.001) this was not 

235 observed universally across taxonomic groups, with many CAG pairs from the same taxa 

236 showing a complete lack of correlation (Fig. 2B, S1). Having observed that taxonomic similarity 

237 was not the primary driver of correlated abundances, we compared all pairs of genomospecies 

238 in a taxonomically-agnostic analysis. Out of all pairwise comparisons of genomospecies 
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239 (n=174,936) only 143 had a Kendall’s tau value of 0.7 or greater (shown with connecting lines in 

240 Fig. 2A). The correlation of this subset of CAG pairs remained strong even after filtering the data 

241 to only include a single sample from each participant or calculating the correlation 

242 independently for each study (Fig. 2C), and so it is not likely to be driven by the confounding 

243 effect of intra-individual or inter-population differences in community composition.

244

245 Next, groups of microbes were identified by single-linkage clustering using these highly 

246 correlated genomospecies, which we conceptualized as “consortia” because of their high 

247 degree of co-abundance in the infant gut microbiome (Table S3). We retained all 

248 genomospecies in this analysis, with those that did not have any correlated match being 

249 treated as individual single-genomospecies “consortia.” The most abundant consortia 

250 accounted for 1-5% of all predicted genome copies on average across all specimens in the 

251 meta-analysis (Table S4, S5). To test our hypothesis that these highly correlated genomospecies 

252 represent multiple organisms (in comparison to the null hypothesis that that a single organism 

253 encodes all of the observed co-abundant genes), we compared these metagenome-derived 

254 genomospecies to the reference genomes of bacterial isolates. To identify the bacterial 

255 reference genomes which are most similar to each genomospecies we searched the NCBI 

256 RefSeq collection of bacterial genomes (n=113,938; downloaded June 6th, 2022) by amino acid 

257 sequence alignment. To better understand genomospecies relationships to conventional 

258 phylogenetic based metagenome interpretation, we closely examined the two largest groups of 

259 genomospecies with highly correlated abundances (Fig. 2D, S2). We made two observations. 

260 First, the genes contained within each individual genomospecies generally mapped to a 
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261 consistent set of genomes. Second, genomospecies within those consortia often mapped to 

262 different strains and species within a genus (Fig. 2A,2E) or even different orders within a class 

263 (Fig. 2F, Supp. Data 2). Finding no single genome with the complete genetic content present in 

264 these correlated genomospecies, it is likely that they represent groups of distinct organisms 

265 that are present at correlated relative abundances in the human gut microbiome during early 

266 life.
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267

268 Figure 2. Groups of microbial genomospecies are reproducibly observed at correlated 

269 abundances across studies.
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270 A) UMAP-based ordination of genomospecies (filtered at a minimum threshold of 0.1% 

271 average abundance) based on correlation of relative abundances across samples 

272 (Kendall’s tau).

273 B) Comparison of relative abundance-based correlation coefficients for genomospecies 

274 pairs based on order-level taxonomic annotations.

275 C) Considering only those pairs of genomospecies with a correlation coefficient greater 

276 than 0.7 (Kendall’s tau) using all available data, correlation metrics were recalculated 

277 using a single timepoint per participant across all studies (“Single Timepoint”); while 

278 calculating an independent correlation metric for each individual study (“Within Study”); 

279 or using a single timepoint per participant while also calculating an independent 

280 correlation metric for each individual study (“Within Study – Single Timepoint”). The 

281 Spearman correlation coefficient was also calculated for all comparisons (blue) in 

282 addition to Kendall’s tau (orange).

283 D) Comparison of relative abundances (CLR) across all samples for each pair of 

284 genomospecies within Consortium 5.

285 E) Bacterial reference genome similarity for each of the genes within the 4 genomospecies 

286 which make up Consortium 5. Each column represents a single gene reconstructed from 

287 the metagenomic analysis. The bottom color bar indicates the genomospecies (CAG) 

288 assignment for each gene. Blue marks indicate reference genomes (each shown in a 

289 distinct row) in which that gene was detected by sequence alignment. The right-hand 

290 color bar indicates the species-level assignment for each reference genome. Hierarchical 
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291 clustering of reference genomes is based on the average nucleotide identity-based 

292 dissimilarity matrix.

293 F) Bacterial reference genome similarity for Consortium 3 (following E), with the full set of 

294 reference genomes available for inspection in Supplementary Data 2.

295

296 Relative abundance of microbial consortia changes rapidly during human infancy

297 Considering the human gut microbiome as a collection of microbial consortia, we wanted to 

298 better understand how this complex community evolves during early life. Individual consortia 

299 vary widely in relative abundance both as a function of host age as well as study population 

300 (Fig. 3A-B, Supp. Data 3). Because each study included samples from a single population, it was 

301 not possible to distinguish between study population differences and batch effects of sampling. 

302 Ordinating samples based on consortium abundances across all studies shows a complex 

303 pattern, suggesting that samples at earlier timepoints are more varied in community 

304 composition, and samples at later timepoints converge on a smaller number of community 

305 types (Fig. 3C, Supp. Data 4). Consistent with this hypothesis, we found that the composition of 

306 microbial consortia was more similar at premature-birth and later timepoints within each study 

307 (Fig. 3D, p=0.008 Spearman).

308

309 To better understand the dynamics of microbial communities as a function of host age, we used 

310 ANOSIM to compare all the samples collected at each pair of timepoints within each study. In 

311 our data, we noted a similarity of days 30-60 as well as days 90-150, with day 180 as the most 

312 distinct (Fig. 3E). In contrast, the Yassour et al. dataset showed a greater similarity of days 60-90 



18

313 than 30-60 (Fig. 3F). Looking entirely at the similarity of samples from the same individual over 

314 time, our data showed a greater degree of change (lower correlation) from days 60-90 than 30-

315 60 or 90-120 (Fig. 3G), while the Eng et al. data showed a greater degree of change from 30-60 

316 than 60-90 or 90-120 (Fig. 3H). The combined analysis across cohorts emphasizes the high 

317 degree of interpersonal heterogeneity and temporal transience in the human gut microbiome 

318 during early life.

319

320
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321

322 Figure 3. Rapid changes in relative abundance of microbial consortia during early human life.

323 A) Summary of the relative abundance of Consortium 5 (vertical axis) across stool samples 

324 as a function of time since term birth (horizontal axis), comparing samples obtained 

325 from different studies (indicated by color).

326 B) Summary of the relative abundance for Consortium 3, as in (A). 
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327 C) UMAP-based ordination of microbiome samples based on similarity of microbiome 

328 composition as measured by the relative abundance of microbial consortia. Colors 

329 indicate the timepoint of sample collection relative to term birth.

330 D) Similarity of sample composition was compared for pairs of samples collected at similar 

331 timepoints from different individuals within each study using Kendall’s tau. The 

332 horizontal axis indicates the time of sampling, and the vertical axis indicates the 

333 similarity of microbial abundances observed between different individuals. 

334 E) Similarity of microbial relative abundances were compared between pairs of samples 

335 collected at different timepoints from different individuals within the samples collected 

336 for this study (Kublin). The pairwise comparison of each timepoint using the ANOSIM R 

337 metric is shown in a heatmap, with positive values indicating more distinct microbial 

338 compositions within each of the pair of timepoints and negative values indicating more 

339 similar microbial compositions within the pair of timepoints.

340 F) Similarity of microbial relative abundances for the samples from the Yassour study (as in 

341 E).

342 G) Similarity of samples collected from the same individual at adjacent timepoints within 

343 the samples collected for this study (Kublin). The horizontal axis indicates the timepoint 

344 which was compared to samples from the immediately proceeding timepoint. Higher 

345 values on the vertical axis indicate a greater similarity of samples based on the relative 

346 abundance of microbial consortia.

347 H) Similarity of samples collected from the same individual from the Eng study (as in G).

348
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349 Taxonomically diverse microbial consortia are less abundant in the gut of infants with cystic 

350 fibrosis

351 An important application of detailed microbiome analysis is to identify microbes which may 

352 influence human health and disease. A study published by Eng, et al.[53] paired metagenomic 

353 sequencing with infant health indicators and compared the metabolic pathways encoded by the 

354 microbiome with inflammation and nutritional failure in We accessed a rich dataset that paired 

355 data from infants with cystic fibrosis (CF; n=207) to healthy controls (n=25). As previously 

356 observed[63], infants with CF had lower weight than healthy controls at each timepoint (Fig. 

357 4A, Wilcoxon p=0.0017). To identify organisms with relative abundances that are correlated 

358 with CF status and/or weight, we performed independent linear modeling at each timepoint. 

359 The weight-association analysis was performed using only samples from participants with CF. 

360 Because of uneven sampling between groups, the CF- and weight-association analyses were 

361 performed over an overlapping but distinct set of days. When comparing the strength of 

362 association with these two clinical features across the consortia, we observed that the 

363 organisms with positive weight-associations (observed at higher abundances in CF infants with 

364 greater weights) generally had negative CF-associations (observed at lower abundances in CF 

365 infants compared to healthy controls), and vice versa (Fig. 4B-C). 

366 The microbial consortium showing the strongest association with weight in the CF infants was 

367 #9 (Fig. 4D), which was also found at lower abundance in CF infants compared to healthy 

368 controls (Fig. 4E). Alignment of the genomic markers of consortium #9 against the NCBI RefSeq 

369 catalog of microbial genomes identified species spanning Bacteroides (B. uniformis, B. stercoris, 

370 B. eggerthii, B. ovatus, B. caccae, and B. thetaiotaomicron), Paraprevotella clara/xylaniphila, 
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371 and Phocaeicola (P. plebius and P. coprocola) (Fig 4F). While these genera have been identified 

372 previously as being altered in the gut microbiome of infants with CF, these resultsi: (a) identify 

373 the species that are most likely involved with a specific set of genomic markers (Supp. Data 5), 

374 (ii) indicate that those species are generally found together rather than individually in the gut 

375 microbiome, and (iii) suggest that the combined metabolism of a multi-species consortium may 

376 collectively mediate weight gain in infants with CF . 

377

378
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379

380 Figure 4. Association of specific microbial consortia with infant CF status and weight.

381 A) Measured weight of each infant at each timepoint, distinguishing infants diagnosed with 

382 CF from healthy controls.

383 B) Estimated coefficient of association for the relative abundance of each microbial 

384 consortium with CF status, calculated independently at each timepoint.



24

385 C) Estimated coefficient of association for the relative abundance of each microbial 

386 consortium with infant weight using only those participants diagnosed with CF, 

387 calculated independently at each timepoint.

388 D) Comparison of the relative abundance of Consortium 9 with weight within the group of 

389 participants diagnosed with CF, shown independently at each timepoint.

390 E) Comparison of the relative abundance of Consortium 9 between participants 

391 distinguished by CF diagnosis, shown independently at each timepoint.

392 F) Comparison of the genomic content of Consortium 9 to a reference genome collection, 

393 as in Figure 2E.

394

395 Discussion

396 Quantification of microbes sampled from the human gut

397 By using the reference-free analysis approach to microbiome analysis implemented in the 

398 geneshot analysis pipeline[60], our analysis aimed to expand our understanding of the infant 

399 gut microbiome. The advantage of this approach, which quantifies organisms on the basis of 

400 the genes encoded in their genome, is that it is not dependent on the composition of existing 

401 genome databases to detect and quantify specific organisms. While the primary drawback of 

402 this approach is a lack of sensitivity for the detection of organisms that are not sequenced to a 

403 depth sufficient for de novo reconstruction, approximately 50% of the raw metagenomic data 

404 was successfully assigned to just 592 distinct genomospecies representing the most abundant 

405 organisms (Fig. 1C). Based on previous work, we expected that microbial composition would 

406 reflect some degree of individuality and temporal stability[55, 64, 65]. This expectation was 
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407 borne out using the genomospecies-level abundance data, with samples more similar within- 

408 than between-participants (Fig. 1D) and more similar between samples collected across shorter 

409 time intervals (Fig. 1E). Based on these high-level metrics, we gained confidence that our 

410 genomospecies-level analysis is capturing a biologically meaningful profile of the most 

411 abundant organisms in the infant gut microbiome.

412

413 Observation of taxonomically distinct microbial consortia

414 In addition to the detection of previously unsequenced organisms, an advantage of de novo 

415 metagenomic analysis is the ability to precisely identify organisms with correlated abundances 

416 that are taxonomically similar or diverse. While marker-gene or k-mer based analyses run the 

417 risk of confounding taxa that share a subset of genomic content, our de novo gene-level 

418 analysis assigns each raw sequence read unambiguously to a single genomospecies reference 

419 (using an expectation maximization approach to resolve duplicate alignments). Moreover, by 

420 limiting to the 592 organisms, evaluating all possible pairwise correlations among microbes 

421 became computationally tractable. Using this approach, we found only 143 pairs of microbes 

422 (out of the 174,936 total pairwise comparisons) with a Kendall’s tau correlation coefficient ≥0.7. 

423 Noting the inter-participant individuality of microbiome composition (Fig. 1D), we were 

424 encouraged that this high degree of pairwise correlation between individual genomospecies 

425 was observed after downsampling to a single sample per participant and after controlling for 

426 batch effects (Fig. 1C).

427 While it is possible that genomospecies with correlated abundances may represent a single 

428 species which was inappropriately split due to noise in the metagenomic sequencing process, it 
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429 is more likely that correlated genomospecies represent different species with correlated 

430 abundances. One biological concept used to describe such multi-species groups would be 

431 “consortia” of distinct organisms formed by cross-feeding or syntrophic interaction[66] or by 

432 stable niche partitioning of a common source of energy (such as the degradation of diverse 

433 human milk oligosaccharides by related Bifidobacteria[67]). By comparing each genomospecies’ 

434 genetic content to the extensive NCBI RefSeq genome collection, we observed candidate 

435 consortia containing genetically distinct organisms from the same genus (e.g., Consortium 5, 

436 Fig. 2E, Supp. Data 2), as well as single consortia containing organisms spanning multiple 

437 diverse genera (Klebsiella, Enterobacter, Leclercia, Citrobacter, Cronobacter, Proteus, Serratia, 

438 and Pseudomonas) (e,g, Consortium 3, Fig. 2F, Supp. Data 2). The robust correlation of relative 

439 abundances between these genetically distinct organisms is highly unlikely to be caused by 

440 technical artifacts, and strongly suggests that these groups of organisms are present or absent 

441 in the microbiome as a correlated group.

442

443 Complex, rapid temporal dynamics of the infant gut microbiome

444 Using the aggregate abundances of microbial consortia to measure the composition of the gut 

445 microbiome, we sought to better understand the complex temporal dynamics of the developing 

446 human microbiome during infancy. While there were some consistent patterns across datasets 

447 – consortium #5 of Bifidobacteria was observed at higher abundance during later timepoints 

448 (Fig. 3A) and consortium #3 of diverse Enterobacterales observed at higher abundance during 

449 earlier timepoints (Fig. 3B) – those patterns were not consistent across all individuals or all 

450 studies. Clustering of samples by total community composition did not reveal any single 
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451 community state associated with earlier or later timepoints (Fig. 3C). The most consistent 

452 pattern we observed was that microbial communities from later timepoints were more similar 

453 across individuals than the communities from later timepoints, an effect which was observed 

454 across multiple independent studies (Fig. 3D) and which is consistent with the previous 

455 observations made within single cohorts [11, 54, 55]. 

456 The development of the human microbiome during the earliest days of life is a highly dynamic 

457 process which has not been measured at consistent, dense intervals across previous studies. 

458 We augmented the published set of microbiome studies by collecting stool samples at 30-day 

459 intervals from birth to day 180 in a cohort of 15 infants. While the stool microbiome in this 

460 cohort was more similar between days 30-60 and 90-150 (Fig. 3E), a previous study has shown a 

461 stronger signal of similarity between days 60-90 (Fig. 3F). To identify the patterns of 

462 microbiome development that are consistent across populations, the field will need to collect 

463 considerably more metagenomic data at higher temporal frequency from this early time period 

464 across multiple geographically diverse study sites.

465

466 Identification of a multispecies microbial consortia associated with health outcomes in infants 

467 with cystic fibrosis

468 To assess whether any of the newly-identified microbial consortia were correlated with human 

469 health outcomes, we focused on a study of infants with cystic fibrosis [53], performing linear 

470 modeling of consortium abundances with both CF status and weight among infants with CF 

471 (those analyses being performed independently). The strongest association was observed with 

472 a multispecies consortium (#9) containing species of Bacteroides, Paraprevotella, and 
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473 Phocaeicola (Fig. 4F). This group of organisms was found at lower abundance in infants with CF 

474 compared to healthy controls; and critically was also found at lower abundance in those infants 

475 with CF who weighed less; in particular at day 90 of life (Fig. 4B-E). Our biological interpretation, 

476 which is heavily influenced by the identification of this microbial consortium, is that there is a 

477 mechanistic link between the presence of this group of microbes with the factors influencing 

478 weight gain during early life. Similar to the joint metabolism of human milk oligosaccharides 

479 distributed across related Bifidobacteria[67], we hypothesize that there is a consequence from 

480 the presence of this group of organisms which may not be recapitulated by any single member. 

481 When translating these findings to a controlled experimental setting, our results would imply 

482 that the administration of any single species may not be sufficient to reproduce the same 

483 biological effect, but instead the full or partial set of the multi-species community may be 

484 required.

485

486 Methods

487  Study sites and enrollment of cohort. 

488 We obtained data from a collaborative mother-infant cohort that enrolled pregnant women in 

489 the Guangdong and Zhejiang Provinces of China from and followed their newborn off-spring 

490 from birth up to two years of age[56, 68]. Samples were collected for this analysis from 

491 12/19/2017 to 08/21/2018. Pregnant women provided written informed consent and were 

492 screened and enrolled between 14 and 20 weeks of gestation. The study completed enrollment 

493 into the cohort in January, 2020.

494
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495 Specimen and data collection and processing. 

496 Stool samples were initially collected at the hospital (10 grams of fecal matter collected from 

497 diapers, placed in plastic containers and stored at -80°C). Subsequent stool samples were 

498 collected monthly by parents in the home. On the morning of sample collection, a cooler with 

499 ice packs and sample collection materials was delivered to the home of each participant. In the 

500 early evening, the coolers were collected and returned to the laboratory where samples were 

501 aliquoted, labelled and stored at -80°C. If an infant did not provide a stool sample on the 

502 collection day, collection was rescheduled for the following day and a new cooler was provided. 

503

504 Sequencing

505 DNA was extracted from each stool sample (n=94) and prepared for sequencing using the 

506 TruPrep DNA Library Prep Kit V2 for Illumina. Libraries were clustered and sequenced on an 

507 Illumina HiSeq2000 instrument and sequenced to an average depth of 61.7 million paired-end 

508 reads per sample. 

509

510 Sequencing data from published datasets were obtained using the SRA Toolkit, downloading all 

511 paired-end FASTQ data available from the BioProject accessions PRJNA521878 (Bender), 

512 PRJEB6456 (Backhed), PRJNA630999 (Bajorek), PRJNA475246 (Yassour), PRJNA698986 (Lou), 

513 PRJNA486782 (Leonard), and PRJNA510445 (Eng).

514

515 Analysis

516 Identifying and quantifying CAGs from metagenomes
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517 While previous reports have described bacteria in broad taxonomic groups (e.g. 

518 Bifidobacteriaceae, Lactobacillus, Enterococcus, Bacteroides, Streptococcus), we used gene-

519 level metagenomics to increase this level of resolution to the species- and strain-level, while 

520 also identifying horizontally transferred genetic elements which play a role in microbiome 

521 development. Analysis of raw FASTQ datasets was performed using the geneshot analysis 

522 pipeline, available at https://github.com/Golob-Minot/geneshot. The exact version of that 

523 software used was v0.9 with the commit hash 4d700993660ed8fdf4df6432d2c7cb2ddd8ce85f. 

524 The geneshot pipeline (described previously [60]) performs the following bioinformatics 

525 analysis steps:

526 1. De novo assembly of each sample independently (using megahit v1.2.9);

527 2. Identification of protein-coding sequences in each assembly (using prodigal v2.6.3);

528 3. Deduplication of protein-coding sequences at 90% sequencing identity and 50% 

529 coverage (using linclust/MMseqs2 release 12-113e3);

530 4. Alignment of conceptually translated sequence reads against that deduplicated gene 

531 catalog (using DIAMOND v0.9.10);

532 5. Clustering of protein-coding sequences into CAGs using a maximum cosine distance 

533 threshold of 0.35.

534 To effectively process the large number of metagenomic samples in this project, a subset was 

535 selected for de novo assembly and gene identification which included only a single 

536 representative per participant across all projects, while genes and CAGs were quantified across 

537 the full set of samples. The computational resources required for this analysis were 

538 considerable, with ~104,000 CPU hours required for the de novo assembly and gene 

https://github.com/Golob-Minot/geneshot
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539 identification and ~364,000 CPU hours required to align the full dataset against that gene 

540 catalog.

541

542 Comparing the composition of microbial communities

543 The similarity of organisms present in different microbial communities was estimated using the 

544 non-parametric Spearman correlation of CLR-transformed abundances. The Spearman R value 

545 was used when comparing pairs of samples in terms of their microbial composition. When 

546 comparing pairs of CAGs to find organisms with correlated abundances, the more conservative 

547 Kendall Tau metric was also calculated using the CLR-transformed abundances.

548

549 Identifying genomospecies associated with health status

550 Statistical analysis for the association of genomospecies relative abundance with the health 

551 status of human hosts (CF status and weight) was performed using Generalized Estimating 

552 Equations as implemented in the statsmodels package (Python). All GEE models were 

553 constructed using an exchangeable covariance structure and Gaussian family. Adjustment for 

554 multiple hypothesis testing was performing with the FDR-BH protocol as implemented in 

555 statsmodels.

556

557 Comparing genetic content of genomospecies to reference genomes

558 The reference genomes most closely resembling the organisms reconstructed de novo from this 

559 metagenomic dataset were identified by alignment against the NCBI RefSeq database 

560 (downloaded June 6, 2022). The protein-coding sequences from each CAG (“genomospecies”) 
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561 was aligned against that genome collection using the gig-map workflow (available at 

562 https://github.com/FredHutch/gig-map/), which employs the DIAMOND aligner for rapid 

563 alignment of conceptually-translated genomes in amino acid space, at a minimum alignment 

564 threshold of 90% sequence identity and 90% alignment coverage (of the de novo assembled 

565 gene sequence). The similarity of reference genomes (used for the dendrogram display in CAG-

566 genome heatmaps) was estimated by gig-map with Average Nucleotide Identity (ANI) 

567 calculated using the MASH software [69]. 

568

569

570 Tables

571

572 Table 1

573

Dataset Citation  Samples 

(#) 

 Participants 

(#) 

 Mean Reads per 

Sample 

Kublin This 

study

               94                     15                  61,722,891.79 

Bender-

PRJNA521878

1                62                     29                    4,166,371.97 

Backhed-PRJEB6456 2              400                   100                  39,764,708.24 

Nguyen-

PRJNA630999

3              292                     77                  64,487,422.86 

https://github.com/FredHutch/gig-map/
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Yassour-

PRJNA475246

4              169                     43                  28,045,378.54 

Lou-PRJNA698986 5           2,049                   642                  26,306,197.79 

Leonard-

PRJNA486782

6                96                     24                  43,482,751.56 

Eng-PRJNA510445 7           1,279                   232                  27,790,671.30 

574 Summary of metagenomic WGS gut microbiome datasets included in meta-analysis. 

575

576 Supplementary Tables

577

578  Supplementary Table 1: Manifest with metadata for all specimens, including number of 

579 reads, number of genes detected, etc.

580  Supplementary Table 2: Relative abundance of all genomes across all samples

581  Supplementary Table 3: Annotation of genomes by consortium

582  Supplementary Table 4: Annotation of consortia, mean relative abundance

583  Supplementary Table 5: Relative abundance of all consortia across all samples

584

585 Supplementary Figures

586

587  Supplementary Figure 1: Kendall’s tau within the most frequent taxonomic groups at 

588 various levels

589
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590 Supplementary Data

591

592  Supplementary Data 1: Interactive display showing ordination of CAGs with taxonomic 

593 annotations

594  Supplementary Data 2: gig-map displays for all consortia

595  Supplementary Data 3: Relative abundance displays over time and across studies for all 

596 consortia

597  Supplementary Data 4: Interactive UMAP of samples by consortium abundance

598  Supplementary Data 5: Sequences of genes in all CAGs

599
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