Early Detection of Diabetic Neuropathy Based on Health Belief Model: A Scoping Review

Okti Sri Purwanti¹, Prof Dr. Nursalam², Dr. Moses Glorino Rumambo Pandin³

Doctor of Nursing, Faculty of Nursing, Airlangga University¹, Nursing Study Program, Muhammadiyah University of Surakarta², English Department, Faculty of Nursing, Airlangga University³

Corresponding author: okti.sri.purwanti-2023@fkp.unair.ac.id
okti.purwanti@ums.ac.id

Abstract

Introduction: Uncontrolled blood sugar levels may result in complications, namely diabetic neuropathy. Diabetic neuropathy is a nerve disorder that causes symptoms of numbness, foot deformity, dry skin, and thickening of the feet. The severity of diabetic neuropathy carries the risk of developing diabetic ulcers and amputation. Early detection of diabetic neuropathy can prevent the risk of diabetic ulcers.

Methods: This research studied articles in 6 databases via Scopus, Ebsco, Pubmed, Sage journal, Science Direct, and Springer link with the keywords "screening Neuropathy" AND "Detection Neuropathy" AND "Scoring Neuropathy" AND "Diabetic" published in 2019-2023. This study identified articles based on the English language, variables, and population. This research used PRISMA Flow-Chart 2020 to record the article filtering process.

Results: This research identified articles through PRISMA Flow-Chart 2020, obtaining 25 articles that discussed early detection of diabetic neuropathy.

Conclusion: Early detection of diabetic neuropathy prevents the occurrence of diabetic neuropathy. The method for early detection of neuropathy is using a neuropathy questionnaire and physical examination. Neuropathy questionnaires are Michigan Neuropathy Screening Instrument (MNSI), Toronto Clinical Neuropathy Score (TCNS), and Diabetic Neuropathy Classification (BDC). Physical examination tools include biotesimeters, vibrations, neurotesimeters, tuning forks, monofilament threads, ultrasonography (USG) results, artificial intelligence (AI), and nomograms.

Keywords: diabetes mellitus, early detection of neuropathy, ontology, epistemology, axiology

Introduction

Diabetes mellitus may cause complications of diabetic, retinopathic, and nephrotic neuropathy. Diabetic neuropathy is the most common complication in type 2 diabetes mellitus (Akhtar et al., 2023). Diabetic neuropathy occurs in the sensory, motor, and autonomic nervous systems (Saranya et al., 2019). Patients experience decreased sensitivity in the feet and legs. The severity of diabetic neuropathy causes diabetic wounds and ulcers (Lian et al., 2023). The health belief model identifies behaviors to prevent diabetes mellitus complications (Wang et al., 2023).

The health belief model considers perceived vulnerability, perceived benefits, perceived barriers, perceived seriousness, and received support (Orbell, 2020). Nursing
services apply philosophy in providing nursing care. Philosophy has three main points of thought: ontology, epistemology, and axiology (Rokhmah, 2021).

The incidence of neuropathy in the world reaches 2.4% of the world's human population, and the prevalence of neuropathy cases increases in old age by 8.0%. Globally, the highest prevalence of neuropathy occurs in the Asian continent. A higher incidence of neuropathy can be found in countries on the Southeast Asian continent, namely Malaysia (54.3%), the Philippines (58.0%) and Indonesia (58.0%) (Malik et al., 2020). A study shows that 50% of patients aged > 60 years’ experience neuropathy in the early stages of type 2 diabetes (Chevtchouk et al., 2017). In Indonesia, diabetes patients who experience complications from diabetic neuropathy reach 54% (Kementerian Kesehatan et al., 2020).

Early detection of neuropathy is to establish an early diagnosis and determine patient care. Proper treatment of neuropathy patients can prevent diabetic ulcers (Basir et al., 2020). Nurses can detect neuropathy early by using neuropathy instruments before signs of neuropathy symptoms appear. Patients aware of the signs of neuropathy can carry out appropriate foot care to prevent diabetic ulcers (Jones et al., 2023). Patients are willing to undergo a neuropathy examination if the patient feels the severity of neuropathy symptoms. Health workers diagnose neuropathy after clinical signs of neuropathy appear (Ziegler et al., 2022).

Based on the explanation above, early detection of neuropathy is carried out to confirm the diagnosis and prevent diabetic ulcers. This research aims to determine the early detection of diabetic neuropathy based on the health belief model.

Methodology

This research used a systematic review research method. This research explained a review of ontology, epistemology, and axiology regarding early detection of diabetic neuropathy based on the health belief model. This research was conducted by collecting articles based on "screening Neuropathy," "Detection Neuropathy," "Scoring Neuropathy," AND "Diabetic" through the databases PubMed, Scopus, Sage Journal, Science Direct, Ebsco, and SpringerLink. This research used articles in English and was published in the last five years (2019-2023). In this study, the process of selecting articles and recording used the PRISMA Flow-Chart 2020 diagram. In this panel, the article’s inclusion criteria were a population of diabetic neuropathy patients with early neuropathy detection interventions. The article selection process used rayyan.ai based on duplicate articles, abstracts, and types of research. The exclusion of articles was based on review articles, non-diabetes mellitus patient populations, book chapters, and articles appropriate to the topic, namely early detection of diabetic neuropathy.

Results

This research conducted a journal search through 6 journal databases and filtered articles using PRISMA-P 2020. This research focused on articles discussing early detection of diabetic neuropathy. Based on filtering using PRISMA-P 2020, five articles were found. The article filtering process’s images were included in PRISMA-P 2020 below (figure 1).
Source: (Moher et al., 2015)

Figure 1. Flow chart Diagram
Table 1. Journal review

<table>
<thead>
<tr>
<th>Author (year)</th>
<th>Study design</th>
<th>Sample</th>
<th>Variable</th>
<th>Instrument</th>
<th>Intervention</th>
<th>Analysis</th>
<th>Results</th>
</tr>
</thead>
</table>
| Liu et al., 2021 | Quantitative experimental | 421 patients | **Independent:** Vibration perception threshold
Dependent: Diabetic polyneuropathy | Neurothesimeter | Vibration perception threshold (VPT) measurement using a neurothesimeter | Mann Whitney | The neurothesimeter can examine diabetic neuropathy by measuring the vibration perception threshold (VPT) |
| Drechsel et al., 2021 | Cross-sectional study | 69 patients | **Independent:** Frequency Vibration Perception Thresholds
Dependent: Diabetic Neuropathy | Customized vibration exciter | Provides vibration to the first metatarsal (MTH1) at a frequency of 30 Hz and the heel at a frequency of 200 Hz | Spearman and Pearson, ANOVA | Custom vibration exciters can examine diabetic neuropathy by measuring the vibration perception threshold (VPT) on the metatarsals and heels. |
| Pafili et al., 2020 | Cross-sectional study | 153 patients | **Independent:** Clinical Tools for Peripheral Neuropathy
Dependent: Diabetic neuropathy | Neurothesiometer, 10 g semmes-weinstein monofilament, Ipswich touch, DPN Check, Neuropathy Disability Score | Assessment of significant nerve fiber function with neurothesiometer, 10 G Semmes-Weinstein monofilament, Ipswich touch, DPN examination, neuropathy disability score (DNS) | Kolmogorov-Smirnov test | Slight nerve fiber function examination with negative results of 97%, sensitivity of 89%, and specificity of 73%. An examination using the vibration perception threshold yielded a pessimistic prediction of 91%, sensitivity of 62%, and specificity of 75%. |
<p>| Hnit et al., 2022 | Cross-sectional study | 625 patients | Independent: Accuracy and Cost-effectiveness of the Diabetic Foot Screen Proforma Detection | Biothesimeter and Diabetic Foot Screen | Measurement of vibration perception threshold (VPT) with a biothesimeter and early detection of diabetic foot complications with the Diabetic Foot Screen (DFS) | System 15.0. From ROC analysis and Youden's index | Vibration perception threshold check (VPT) using DFS was ≥1.5 (sensitivity 62%; specificity 76%), indicating diabetic neuropathy. During the examination, the results were obtained: 74.76% (95% CI: 70.46%-79.06%) of patients experienced diabetic neuropathy. |</p>
<table>
<thead>
<tr>
<th>Study</th>
<th>Design</th>
<th>Patients</th>
<th>Independent</th>
<th>Dependent</th>
<th>Methodology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wittenberg et al., 2021</td>
<td>Experimental</td>
<td>289</td>
<td>Biothesiometer and tuning fork</td>
<td>Vibration perception threshold (VPT) measurement using a biothesiometer and tuning fork</td>
<td>Both tools provide the same results for examining diabetic neuropathy so that early examination of diabetic neuropathy can be carried out using a biothesimeter or tuning fork.</td>
</tr>
<tr>
<td>Itani et al., 2021</td>
<td>Cross-sectional study</td>
<td>277</td>
<td>Small and large fiber sensory polyneuropathy</td>
<td>Vibration perception threshold (VPT) examination uses a 128Hz tuning fork, ankle reflexes were tested with a hammer reflex, and hypoalgesia and hyperalgesia were tested using a pinprick.</td>
<td>Diabetic neuropathy can be classified into three types, namely, small fiber neuropathy (SFN), significant fiber neuropathy (LFN), and mixed fiber neuropathy (MFN).</td>
</tr>
<tr>
<td>Dubey et al., 2022</td>
<td>Experimental</td>
<td>5088</td>
<td>Predicting</td>
<td>Neurothesiometer</td>
<td>Evaluation of the risk of diabetic neuropathy was carried out using a neurothesimeter and recording the risk factors experienced by the patient. Neurothesiometer examination was categorized into three risks: low at 0-20.99 Volts, medium at 21-30.99 Volts, and high at ≥31 Volts.</td>
</tr>
<tr>
<td>Papanas et al., 2020</td>
<td>Prospective</td>
<td>100</td>
<td>Vibration</td>
<td>Vibration using a vibrating tip was conducted at 3 locations: feet, hallux</td>
<td>I use a vibrating tip to check neuropathy disability score and foot symmetry in diabetes mellitus patients.</td>
</tr>
<tr>
<td>Authors</td>
<td>Study Type</td>
<td>Sample Size</td>
<td>Symmetrical Polyneuropathy</td>
<td>Independent:</td>
<td>Dependent:</td>
</tr>
<tr>
<td>--------------------</td>
<td>---------------------</td>
<td>-------------</td>
<td>-----------------------------</td>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>Ramanathan et al., 2021)</td>
<td>Cross-sectional observational study</td>
<td>48 patients</td>
<td>Symmetrical Polyneuropathy</td>
<td>Independent: Conventional Nerve Conduction Studies</td>
<td>Dependent: Sensorimotor Polyneuropathy</td>
</tr>
<tr>
<td>Haque et al., 2022)</td>
<td>Cross-sectional study</td>
<td>10.180 patients</td>
<td>Symmetrical Polyneuropathy</td>
<td>Independent: Machine Learning Michigan Neuropathy Screening Instrument</td>
<td>Dependent: Diabetic Sensorimotor Polyneuropathy</td>
</tr>
<tr>
<td>Fateh & Madani, 2021)</td>
<td>Cross-sectional study</td>
<td>31 patients</td>
<td>Symmetrical Polyneuropathy</td>
<td>Independent: Conduction nerve interdigital sensory</td>
<td>Dependent: Initial diagnosis of Diabetic Neuropathy</td>
</tr>
<tr>
<td>Maatta et al., 2021)</td>
<td>Case-control</td>
<td>5 patients</td>
<td>Symmetrical Polyneuropathy</td>
<td>Independent: Michigan Neuropathy</td>
<td>Dependent: Diabetic</td>
</tr>
<tr>
<td>Year</td>
<td>Analysis</td>
<td>Patients</td>
<td>Independent</td>
<td>Dependent</td>
<td>Screening Instrument</td>
</tr>
<tr>
<td>------</td>
<td>----------</td>
<td>----------</td>
<td>-------------</td>
<td>-----------</td>
<td>----------------------</td>
</tr>
<tr>
<td>2019</td>
<td>analysis</td>
<td>peserta</td>
<td>Neuropathic Symptoms</td>
<td>Diagnosed Diabetic Polyneuropathy</td>
<td>Screening Instrument questionnaire</td>
</tr>
<tr>
<td>Carbajal-Ramirez et al., 2019</td>
<td>Quantitative</td>
<td>221 patients</td>
<td>Independent: Detection of peripheral neuropathy</td>
<td>Dependent: Type 2 diabetes mellitus patient</td>
<td>I: Michigan Neuropathy Screening Instrument (MNSI) and electrochemical skin conductance (ESC)</td>
</tr>
<tr>
<td>Oh et al., 2022</td>
<td>Cross-sectional study</td>
<td>144 orang</td>
<td>Independent: Michigan Neuropathy Screening Instrument</td>
<td>Dependent: Diabetic Peripheral Neuropathy Screening</td>
<td>Michigan Neuropathy Screening Instrument (MNSI), SUDOSCAN, 10-g monofilament test.</td>
</tr>
<tr>
<td>Kaymaz et al., 2020</td>
<td>Cross-sectional study</td>
<td>83 patients</td>
<td>Independent: Turkish version of the Michigan Neuropathy Screening Instrument</td>
<td>Dependent: Diabetic peripheral neuropathy</td>
<td>Michigan Neuropathy Screening Instrument Turkish version and Toronto clinical scoring system</td>
</tr>
<tr>
<td>Gylfadottir et al., 2023</td>
<td>Study</td>
<td>389 patients</td>
<td>Independent:</td>
<td>The Michigan</td>
<td>The neuropathy</td>
</tr>
<tr>
<td>Year</td>
<td>Design</td>
<td>Methodology</td>
<td>Patient Sample Size</td>
<td>Diagnosis</td>
<td>Screening Instrument/Neuropathy Score Scored</td>
</tr>
<tr>
<td>--------</td>
<td>--------------</td>
<td>--</td>
<td>---------------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>2020</td>
<td>Cross-sectional</td>
<td>Diagnosis of neuropathy</td>
<td></td>
<td>Neuropathy Screening Instrument (MNSI) and Toronto Clinical Neuropathy Scoring System (TCNS) use the 128 Hz tuning fork tool, biothesimeter, and monofilament thread.</td>
<td>Examination used the Michigan (MNSI) and Toronto Clinical Neuropathy Scoring System (TCNS) and a 128 Hz tuning fork, biothesimeter, and monofilament thread.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dependent: Diabetic neuropathy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Idiáquez Rios et al., 2023)</td>
<td>Cross-sectional study</td>
<td>34 patients</td>
<td>Independent: Toronto clinical neuropathy score (TCNS) and modified Toronto clinical neuropathy score (m TCNS) Spanish version</td>
<td>Toronto clinical neuropathy examination with the Spanish version of the Toronto Clinical Neuropathy Score (TCNS).</td>
<td>Cronbach's alpha</td>
</tr>
<tr>
<td>Huang et al., 2023)</td>
<td>Prospective</td>
<td>341 patients</td>
<td>Independent: Neuropathy screening tool</td>
<td>Toronto Clinical Neuropathy Score (TCNS)</td>
<td>Neuropathy examination with the Toronto Clinical Neuropathy Score (TCNS)</td>
</tr>
<tr>
<td>Ziegler et al., n.d.)</td>
<td>Cross-sectional survey</td>
<td>574 dokter</td>
<td>Independent: Screening and diagnostics</td>
<td>tripartite questionnaire</td>
<td>Neuropathy examination with a tripartite questionnaire.</td>
</tr>
<tr>
<td>Study</td>
<td>Study Design</td>
<td>Study Population</td>
<td>Independent:</td>
<td>Dependents:</td>
<td>Study Parameters:</td>
</tr>
<tr>
<td>------------------</td>
<td>---------------------</td>
<td>------------------</td>
<td>--</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Wang et al., 2021</td>
<td>Cross-sectional</td>
<td>104 patients</td>
<td>Shear wave elastography (SWE) and the Toronto clinical scoring system (TCSS)</td>
<td>Diabetic peripheral neuropathy</td>
<td>SWE examination on peripheral nerve examination with Ultrasonography and Toronto Clinical Scoring System (TCSS)</td>
</tr>
<tr>
<td>Dhanapalaratnam et al., 2022</td>
<td>Cross-sectional</td>
<td>156 patients</td>
<td>Ultrasonography (USG)</td>
<td>Peripheral neuropathy in type 2 diabetes</td>
<td>Examination based on ultrasound results and Neuropathy Total Score (TNS), Modified Toronto Clinical Neuropathy Screening (MTCNS)</td>
</tr>
<tr>
<td>Fitri et al., 2019</td>
<td>Prospective cohort study</td>
<td>50 patients</td>
<td>Baba's Diabetic Neuropathy Classification (BDC) and laboratory examination results</td>
<td>Diabetic Polyneuropathy</td>
<td>Neuropathy examination used Baba's Diabetic Neuropathy Classification (BDC) and vitamin D laboratory results.</td>
</tr>
<tr>
<td>Li et al., 2023</td>
<td>Retrospective analysis</td>
<td>901 patients</td>
<td>Nomogram</td>
<td>Type 2 Diabetic Peripheral Neuropathy</td>
<td>Input data on neuropathy symptoms in the nomogram</td>
</tr>
<tr>
<td>Study</td>
<td>Design</td>
<td>Number of Patients</td>
<td>Independent:</td>
<td>Dependent:</td>
<td>Methodology</td>
</tr>
<tr>
<td>----------------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>--</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Matuszewska-Iwanic et al., 2022</td>
<td>Prospective study</td>
<td>60 patients</td>
<td>Corneal Nerve Plexus</td>
<td>Diabetic Peripheral Neuropathy</td>
<td>Inspection of early neuropathy diabetes with subbasal nerve plexus (SNP). Inspection done with the method see Rostock Cornea Module (HRT-RCM) and Eye Guidance module (EG) for subbasal nerve plexus (SNP), which indicates neuropathy diabetes.</td>
</tr>
<tr>
<td>Preston et al., 2022</td>
<td>Experimental</td>
<td>518 patients</td>
<td>Artificial intelligence (AI)</td>
<td>Diagnosis of peripheral neuropathy</td>
<td>Artificial intelligence examination using Figure cornea identified with AI</td>
</tr>
</tbody>
</table>
Discussion

1. Early Detection of Diabetic Neuropathy Based on the Health Belief Model

Health workers carry out early detection of neuropathy to make a diagnosis and determine appropriate care. The neuropathy examination uses a neuropathy questionnaire and physical examination tools. Early neuropathy detection questionnaires are the Michigan Neuropathy Screening Instrument (MNSI) and the Toronto Clinical Neuropathy Score (TCNS) (Ramanathan et al., 2021). Another study translated the Michigan Neuropathy Screening Instrument (MNSI) questionnaire into Turkish. The Michigan Neuropathy Screening Instrument (MNSI) questionnaire results were divided into three categories: mild neuropathy, moderate neuropathy, and severe neuropathy (Kaymaz et al., 2020). Another study used the Toronto Clinical Neuropathy Score (TCNS) questionnaire for early detection of diabetic neuropathy (Huang et al., 2023). The Toronto Clinical Neuropathy Score (TCNS) questionnaire detects neuropathy by asking about symptoms, reflex examination, and sensitivity examination (Rios et al., 2023).

Nurses carry out early detection of diabetic neuropathy using diabetic neuropathy instruments (Dhanapalaratnam et al., 2022). Vibration perception threshold (VPT) examines vibration sensitivity using a neurothesiometer. The examiner applies vibrations to the heel at 200 Hz and the metatarsals at 30 Hz (Drechsel et al., 2021). Another article stated that vibrations are given in the stages from small vibrations to more significant vibrations with a sensitivity limit of >14.9 V. Patients who do not feel vibrations >14.9 V showed diabetic neuropathy (Liu et al., 2021). Vibration perception threshold (VPT) examination uses a biotesimeter with vibrations of 0-50 V. Neuropathy examination results show adverse neuropathy if the patient feels vibrations <25 V; patients show positive neuropathy if they feel vibrations ≥25 V (Ramanathan et al., 2021).

Health workers diagnose diabetic neuropathy using peripheral nerve ultrasonography (USG) in diabetes mellitus patients (Dhanapalaratnam et al., 2022). Shear wave elastography (SWE) is an examination of diabetic neuropathy using elastography images (Wang et al., 2021). neuropathy examination with Baba's Diabetic Neuropathy Classification (BDC) questionnaire and vitamin D laboratory results (Fitri et al., 2019). Nurses used nomograms to input data on neuropathy symptoms in diabetic patients. Neuropathy symptoms that exceed the nomogram limit indicate diabetic neuropathy (Li et al., 2023).

Early neuropathy examination uses Artificial Intelligence (AI) by looking at the corneas of diabetic patients. However, examinations using artificial intelligence (AI) have not been proven to show significant differences in signs of neuropathy in diabetes mellitus patients (Preston et al., 2022).
2. Ontology Review of Early Detection of Diabetic Neuropathy Based on Health Belief Model for Diabetic Ulcers Prevention

The Health Belief Model was developed by Rosenstock in 1966. The Health Belief Model is used to identify individual behavior to prevent disease (Orbell, 2020). According to Rosenstock, individual behavior toward health is influenced by health concerns, beliefs about disease susceptibility, and beliefs about the consequences of disease (McKellar & Sillence, 2020). The health belief model identifies behavior to prevent complications in chronic diseases such as diabetes mellitus. Patients apply the health belief model in preventing complications of diabetes mellitus (Wang et al., 2023). Diabetic neuropathy is the most frequent complication of diabetes mellitus (Akhtar et al., 2023).

The nurse performs a diabetic neuropathy examination to establish a diagnosis and determine appropriate treatment—early detection of neuropathy by examining signs, symptoms, vibration threshold, sensitivity, and reflexes. Instruments for early detection of diabetic neuropathy can be questionnaires and physical examination tools such as monofilaments, biotesimeters, and tuning forks (Liu et al., 2021). Early neuropathy diagnosis and proper foot care can prevent diabetic ulcers (Basir et al., 2020).

3. Epistemology Review of Early Detection of Diabetic Neuropathy Based on Health Belief Model for Prevention of Diabetic Ulcers

The health belief model has five components: perceived susceptibility, perceived severity, perceived benefits, perceived barriers, and cues to action (Kahaleh & Truong, 2021). The behavior of diabetes mellitus patients is based on their beliefs regarding vulnerability, seriousness, obstacles, and perceived benefits. Family support, health services, and availability of instruments influence patient motivation in implementing disease prevention behavior (Wang et al., 2023).

Early examination of neuropathy used questionnaires and physical examination. The Michigan Neuropathy Screening Instrument (MNSI) questionnaire consists of 12 questions about neuropathy symptoms (Kaymaz et al., 2020). The Toronto Clinical Neuropathy Score (TCNS) questionnaire contains questions about signs of neuropathy symptoms, reflex examination, and sensitivity examination in diabetes mellitus patients (Huang et al., 2023). In one article, researchers combined the TCNS questionnaire with other instruments such as shear wave elastography (SWE) (Wang et al., 2021). The diagnosis of neuropathy is based on peripheral nerve ultrasound (USG) (Dhanapalaratnam et al., 2022).

Vibration perception threshold (VPT) examination using a biotesimeter. The magnitude of the vibrations was 200 Hz on the heel and 30 Hz on the metatarsals. Patients were diagnosed with neuropathy if they did not feel vibrations (Liu et al., 2021). Diabetic neuropathy examination used monofilament thread for food sensitivity testing—a nurse examined by inserting a monofilament thread into the patient's leg. The examination results showed neuropathy if the patient did not feel the prick of the monofilament thread (Oh et al., 2022).

Early diabetic neuropathy examination used Baba's Diabetic Neuropathy Classification (BDC) and vitamin D laboratory results (Fitri et al., 2019). Nurses used a
nomogram to detect neuropathy by entering data on signs of neuropathy symptoms in the nomogram. Symptom data in the nomogram line showed neuropathy (Li et al., 2023)—early examination of neuropathy using artificial intelligence (AI) on images of the cornea of diabetes patients. However, examinations using artificial intelligence (AI) have not been proven to be accurate in diagnosing diabetic neuropathy (Preston et al., 2022).

4. Review of Axiology Early Detection of Diabetic Neuropathy Based on Health Belief Model for Prevention of Diabetic Ulcers

Early detection of diabetic neuropathy reduces the risk of diabetic ulcers in diabetes mellitus patients. Early detection of neuropathy occurs in 2 ways: examination using a neuropathy questionnaire and physical examination using a neuropathy instrument. The availability of health facilities and patient health beliefs can motivate patients to implement health behavior (Savari et al., 2023).

Patients implement behavior to prevent complications by early detection of neuropathy. Nurses diagnose neuropathy early and can determine nursing care for diabetic neuropathy. This behavior can prevent complications of diabetic ulcers (Crowley et al., 2023).

Conclusion

Early detection of diabetic neuropathy is carried out to determine the severity of neuropathy in diabetes mellitus patients. Diabetic neuropathy examination is carried out in 2 ways: a neuropathy questionnaire and a physical examination using a neuropathy instrument. Neuropathy questionnaires are Michigan Neuropathy Screening Instrument (MNSI), Toronto Clinical Neuropathy Score (TCNS), and Diabetic Neuropathy Classification (BDC). Physical examination tools include biotesimeters, vibrations, neurotesimeters, tuning forks, monofilament threads, ultrasonography (USG) results, artificial intelligence (AI), and nomograms.

References

and prediabetes. Diabetologia, 65(3), 457–466. https://doi.org/10.1007/s00125-021-05617-x

