It is made available under a CC-BY 4.0 International license .

Early Detection of Diabetic Neuropathy Based on Health Belief Model: A Scoping Review

Okti Sri Purwanti¹, Prof Dr. Nursalam², Dr. Moses Glorino Rumambo Pandin³

Doctor of Nursing, Faculty of Nursing, Airlangga University¹, Nursing Study Program, Muhammadiyah University of Surakarta², English Department, Faculty of Nursing, Airlangga University³

> Corresponding author: <u>okti.sri.purwanti-2023@fkp.unair.ac.id</u> <u>okti.purwanti@ums.ac.id</u> Abstract

Introduction: Uncontrolled blood sugar levels may result in complications, namely diabetic neuropathy. Diabetic neuropathy is a nerve disorder that causes symptoms of numbness, foot deformity, dry skin, and thickening of the feet. The severity of diabetic neuropathy carries the risk of developing diabetic ulcers and amputation. Early detection of diabetic neuropathy can prevent the risk of diabetic ulcers.

Methods: This research studied articles in 6 databases via Scopus, Ebsco, Pubmed, Sage journal, Science Direct, and Springer link with the keywords "screening Neuropathy" AND "Detection Neuropathy" AND "Scoring Neuropathy" AND "Diabetic" published in 2019-2023. This study identified articles based on the English language, variables, and population. This research used PRISMA Flow-Chart 2020 to record the article filtering process.

Results: This research identified articles through PRISMA Flow-Chart 2020, obtaining 25 articles that discussed early detection of diabetic neuropathy.

Conclusion: Early detection of diabetic neuropathy prevents the occurrence of diabetic neuropathy. The method for early detection of neuropathy is using a neuropathy questionnaire and physical examination. Neuropathy questionnaires are Michigan Neuropathy Screening Instrument (MNSI), Toronto Clinical Neuropathy Score (TCNS), and Diabetic Neuropathy Classification (BDC). Physical examination tools include biotesimeters, vibrations, neurotesimeters, tuning forks, monofilament threads, ultrasonography (USG) results, artificial intelligence (AI), and nomograms.

Keywords: diabetes mellitus, early detection of neuropathy, ontology, epistemology, axiology

Introduction

Diabetes mellitus may cause complications of diabetic, retinopathic, and nephrotic neuropathy. Diabetic neuropathy is the most common complication in type 2 diabetes mellitus (Akhtar *et* al., 2023). Diabetic neuropathy occurs in the sensory, motor, and autonomic nervous systems (Saranya *et* al., 2019). Patients experience decreased sensitivity in the feet and legs. The severity of diabetic neuropathy causes diabetic wounds and ulcers (Lian *et* al., 2023). The health belief model identifies behaviors to prevent diabetes mellitus complications (Wang *et* al., 2023).

The health belief model considers perceived vulnerability, perceived benefits, perceived barriers, perceived seriousness, and received support (Orbell, 2020). Nursing

It is made available under a CC-BY 4.0 International license .

services apply philosophy in providing nursing care. Philosophy has three main points of thought: ontology, epistemology, and axiology (Rokhmah, 2021).

The incidence of neuropathy in the world reaches 2.4% of the world's human population, and the prevalence of neuropathy cases increases in old age by 8.0%. Globally, the highest prevalence of neuropathy occurs in the Asian continent. A higher incidence of neuropathy can be found in countries on the Southeast Asian continent, namely Malaysia (54.3%), the Philippines (58.0%) and Indonesia (58.0%) (Malik *et al.*, 2020). A study shows that 50% of patients aged > 60 years' experience neuropathy in the early stages of type 2 diabetes (Chevtchouk *et al.*, 2017). In Indonesia, diabetes patients who experience complications from diabetic neuropathy reach 54% (Kementerian Kesehatan et al., 2020).

Early detection of neuropathy is to establish an early diagnosis and determine patient care. Proper treatment of neuropathy patients can prevent diabetic ulcers (Basir *et* al., 2020). Nurses can detect neuropathy early by using neuropathy instruments before signs of neuropathy symptoms appear. Patients aware of the signs of neuropathy can carry out appropriate foot care to prevent diabetic ulcers (Jones *et* al., 2023). Patients are willing to undergo a neuropathy examination if the patient feels the severity of neuropathy symptoms. Health workers diagnose neuropathy after clinical signs of neuropathy appear (Ziegler *et* al., 2022).

Based on the explanation above, early detection of neuropathy is carried out to confirm the diagnosis and prevent diabetic ulcers. This research aims to determine the early detection of diabetic neuropathy based on the health belief model.

Methodology

This research used a systematic review research method. This research explained a review of ontology, epistemology, and axiology regarding early detection of diabetic neuropathy based on the health belief model. This research was conducted by collecting articles based on "screening Neuropathy," "Detection Neuropathy," "Scoring Neuropathy," AND "Diabetic" through the databases PubMed, Scopus, Sage Journal, Science Direct, Ebsco, and SpringerLink. This research used articles in English and was published in the last five years (2019-2023). In this study, the process of selecting articles and recording used the PRISMA Flow-Chart 2020 diagram. In this panel, the article's inclusion criteria were a population of diabetic neuropathy patients with early neuropathy detection interventions. The article selection process used rayyan.ai based on review articles, non-diabetes mellitus patient populations, book chapters, and articles appropriate to the topic, namely early detection of diabetic neuropathy.

Results

This research conducted a journal search through 6 journal databases and filtered articles using PRISMA-P 2020. This research focused on articles discussing early detection of diabetic neuropathy. Based on filtering using PRISMA-P 2020, five articles were found. The article filtering process's images were included in PRISMA-P 2020 below (figure 1).

It is made available under a CC-BY 4.0 International license .

Source: (Moher *et* al., 2015) Figure 1. Flow chart Diagram

Table 1. Journal review

Author (year)	Study design	Sample	Variable	Instrument	Intervention	Analysis	Results
(Liu <i>et</i> al., 2021)	Quantitative experimental	421 patients	Independent: Vibration perception threshold Dependents: Diabetic polyneuropathy	Neurothesimeter	Vibration perception threshold (VPT) measurement using a neurothesimeter	Mann Whitney	The neurothesimeter can examine diabetic neuropathy by measuring the vibration perception threshold. (VPT)
(Drechsel <i>et</i> al., 2021)	Cross- sectional study	69 patients	Independent: Frequency Vibration Perception Thresholds Dependents: Diabetic Neuropathy	Customized vibration exciter	Provides vibration to the first metatarsal (MTH1) at a frequency of 30 Hz and the heel at a frequency of 200 Hz	Spearman and Pearson, ANOVA	Custom vibration exciters can examine diabetic neuropathy by measuring the vibration perception threshold (VPT) on the metatarsals and heels.
Pafili <i>et</i> al., 2020)	Cross- sectional study	153 patients	Independent: Clinical Tools for Peripheral Neuropathy Dependents: Diabetic neuropathy	Neurothesiometer, 10 g semmes-weinstein monofilament, Ipswich touch, DPN Check, Neuropathy Disability Score	Assessment of significant nerve fiber function with neurothesiometer, 10 G Semmes-Weinstein monofilament, Ipswich touch, DPN examination, neuropathy disability score (DNS)	Colmogorov - Smirnov test	Slight nerve fiber function examination with negative results of 97%, sensitivity of 89%, and specificity of 73%. An examination using the vibration perception threshold yielded a pessimistic prediction of 91%, sensitivity of 62%, and specificity of 75%.
(Hnit <i>et</i> al., 2022)	Cross- sectional study	625 patients	Independent: Accuracy and Cost- effectiveness of the Diabetic Foot Screen Proforma Dependents: Diabetic Neuropathy Detection	Biothesimeter and Diabetic Foot Screen	Measurement of vibration perception threshold (VPT) with a biothesimeter and early detection of diabetic foot complications with the Diabetic Foot Screen (DFS)	System 15.0. From ROC analysis and Youden's index	Vibration perception threshold check (VPT) using DFS was ≥ 1.5 (sensitivity 62%; specificity 76%), indicating diabetic neuropathy. During the examination, the results were obtained: 74.76% (95% CI: 70.46%-79.06%) of patients experienced diabetic

							neuropathy. It showed that using the DFS DNA biothesimeter can detect diabetic neuropathy early and can be applied to health services.
Wittenberg <i>et</i> al., 2021)	Experimental	289 patients	Independent: Biothesimeter and tuning fork Dependents: Diagnostic vibratory sensation neuropathy diabetic	Biothesiometer and tuning fork	Vibration perception threshold (VPT) measurement using a biothesimeter and tuning fork	STATA IC version 16	Both tools provide the same results for examining diabetic neuropathy so that early examination of diabetic neuropathy can be carried out using a biothesimeter or tuning fork.
(Itani <i>et</i> al., 2021)	Cross- sectional study	277 patients	Independent: Small and large fiber sensory polyneuropathy Dependents: neuropathy subtypes	128Hz tuning fork, reflex hammer, and pinprick	Vibration perception threshold (VPT) examination uses a 128Hz tuning fork, ankle reflexes were tested with a hammer reflex, and hypoalgesia and hyperalgesia were tested using a pinprick.	Clopper Pearson method	Diabetic neuropathy can be classified into three types, namely, small fiber neuropathy (SFN), significant fiber neuropathy (LFN), and mixed fiber neuropathy (MFN).
Dubey <i>et</i> al., 2022)	Experimental	5088 patients	Independent: Predicting Diabetic Neuropathy Dependents: Artificial Neural Networks and Clinical Parameters	Neurothesimeter	Vibration perception threshold (VPT) measurement using a neurothesimeter	Neural network toolbox on the MATLAB platform	Evaluation of the risk of diabetic neuropathy was carried out using a neurothesimeter and recording the risk factors experienced by the patient. Neurothesimeter examination was categorized into three risks: low at 0-20.99 Volts, medium at 21-30.99 Volts, and high at \geq 31 Volts.
(Papanas <i>et</i> al., 2020)	Prospective	100 patients	Independent: Vibration Dependents: Distal	Vibration	Examination using a vibrating tip was conducted at 3 locations: feet, hallux	Youden's J uses standard formulae.	I use a vibrating tip to check neuropathy disability score and foot symmetry in diabetes mellitus patients.

Ramanathan <i>et</i> al., 2021)	Cross- sectional observational study	48 patients	Symmetrical Polyneuropathy Independent: Conventional Nerve Conduction Studies Dependent: Sensorimotor Polyneuropathy	Biothesiometer, semmes weinstein monofilament (SWMF), nerve conduction studies (NCS), and Michigan Neuropathy Screening Instrument (MNSI)	pulp, and first and third metatarsals. Neuropathy measurements using a biothesiometer, Semmes Weinstein monofilament SWMF, nerve conduction studies (NCS), and the Michigan Neuropathy Screening Instrument (MNSI)	Independent t- test/Wilcoxon Rank -sum test	Measuring neuropathy using biothesiometry, SRA waves can be done to diagnose neuropathy in a shorter time.
(Haque <i>et</i> al., 2022)	Cross- sectional study	10.180 patients	Independent: Machine Learning Michigan Neuropathy Screening Instrument Dependents: Diabetic Sensorimotor Polyneuropathy	Machine Learning Michigan Neuropathy Screening Instrument based on Machine Learning	Neuropathy detection using MNSI Machine Learning	performance test: ML Algorithms Correlation: Pearson's correlation Significant: ANOVA test Correlation Observations and predictions: Cohen's kappa	Michigan Machine Learning- based Machine Learning can be used to measure diabetic neuropathy. MNSI machine learning ranks in the 10 th Class of diabetic neuropathy screening
Fateh & Madani, 2021) Maatta <i>et</i> al	Cross- sectional study	31 patients	Independent: Conduction nerve interdigital sensory Dependents: Initial diagnosis of Diabetic Neuropathy	Electrode diagnostic	Physical neuropathy examination using diagnostic electrodes was conducted on the sensory nerves of the dorsal, medial plantar, and toes I, II, and III. The filter was set at 2 Hz – 10 kHz, with a speed of 2 sweeps and a sensitivity of 10–20 μV Diabetic	Mann Whitney U test And the Kolmogorov- Smirnov test	The results showed that nine respondents experienced nerve conduction study (NCS) disorders, and 22 subjects were normal. Interdigital nerve examination results were abnormal in 17 of 22 patients, whereas nerve conduction studies (NCS) were standard.
Niaatta <i>ei</i> al.,	case-control	510	maepenaem:	Michigan Neuropaury	Diabetic	KIUSKal-	Diabetic neuropatity can be

2019)	analysis	peserta	Neuropathic Symptoms Dependents: Diagnosed Diabetic Polyneuropathy	Screening Instrument questionnaire	polyneuropathy examination used the Michigan Neuropathy Screening Instrument questionnaire, and examination of nerve fiber dysfunction used tiny fibers.	Wallis and x2 tests.	measured using the MNSI.
Carbajal- Ramirez <i>et</i> al., 2019)	Quantitative	221 patients	Independent: Detection of peripheral neuropathy Dependents: Type 2 diabetes mellitus patient	I: Michigan Neuropathy Screening Instrument (MNSI) and electrochemical skin conductance (ESC)	Diabetic neuropathy was measured using the Michigan Neuropathy Screening Instrument (MNSI) and electrochemical skin conductance (ESC) on the patient's hands and feet.	ANOVA test	MNSI and electrochemical skin conductance (ESC) can detect neuropathy in small fiber neuropathy.
Oh <i>et</i> al., 2022)	cross- sectional study	144 orang	Independent: Michigan Neuropathy Screening Instrument Dependents: Diabetic Peripheral Neuropathy Screening	Michigan Neuropathy Screening Instrument (MNSI), SUDOSCAN, 10-g monofilament test.	Diabetic neuropathy examination using the Michigan Neuropathy Screening Instrument (MNSI), SUDOSCAN, 10 g monofilament test.	Mann– Whitney U test: chi-square test, Spearman.	This combination of instruments can be used for optimal examination of diabetic neuropathy.
Kaymaz <i>et</i> al., 2020)	Cross- sectional study.	83 patients	Independent: Turkish version of the Michigan Neuropathy Screening Instrument Dependents: Diabetic peripheral neuropathy	Michigan Neuropathy Screening Instrument Turkish version and Toronto clinical scoring system	Pemeriksaan neuropati menggunakan Michigan <i>Neuropathy</i> <i>Screening Instrument</i> versi Turki	intraclass correlation coefficient, Cronbach's alpha	The Turkish version of the Michigan Neuropathy Screening Instrument (MNSI) can be used to measure neuropathy symptoms.
Gylfadottir <i>et</i> al.,	389 patients	Studi	Independent:	The Michigan	The neuropathy	Spearman's	Early neuropathy examination

2020)		cross- sectional	Diagnosis of neuropathy Dependents: Diabetic neuropathy	Neuropathy Screening Instrument (MNSI) and Toronto Clinical Neuropathy Scoring System (TCNS) use the 128 HZ tuning fork tool, biothesimeter, and monofilament thread.	examination used the Michigan (MNSI) and Toronto Clinical Neuropathy Scoring System (TCNS) and a 128 HZ tuning fork, biothesimeter, and monofilament thread.	rank-order correlation	results were obtained using a questionnaire, and more clinical symptoms of neuropathy were obtained compared to neuropathy examinations using only a questionnaire.
Idiáquez Rios et al., 2023)	cross- sectional study	34 patients	Independent: Toronto clinical neuropathy score (TCNS) and modified Toronto clinical neuropathy score (m TCNS) Spanish version Dependents: Diabetic polyneuropathy	Toronto clinical neuropathy score Spanish version and modified Toronto clinical neuropathy score Spanish version	Neuropathy examination with the Spanish version of the Toronto Clinical Neuropathy Score (TCNS).	Cronbach's alpha	The validity test used Cronbach's alpha with a TCNS result of 0.83 and m TCNS of 0.85. P showed that the Spanish version of the TCNS and mTCNS instruments was valid and reliable for use as an instrument for examining diabetic neuropathy.
Huang <i>et</i> al., 2023)	Prospective	341 patients	Independent: Neuropathy screening tool Dependents: Diabetic sensorimotor polyneuropathy	Toronto Clinical Neuropathy Score (TCNS)	Neuropathy examinationwith the ClinicalTorontoClinicalNeuropathyScore(TCNS)	ANOVA tests	Patient assessment was done using the Toronto Clinical Neuropathy Score (TCNS). Screening was carried out by examining the hand cold detection threshold (CDT), hand warm detection threshold (WDT), foot CDT, and foot WDT.
Ziegler <i>et</i> al., 1.d.)	cross- sectional survey	574 dokter	Independent: Screening and diagnostics Dependents: diabetic polyneuropathy	tripartite questionnaire.	Neuropathy examination with a tripartite questionnaire.	encompassed descriptive	In health care practice in Germany. Patients can use the tripartite questionnaire to screen for diabetic neuropathy.

Wang <i>et</i> al., 2021)	Cross- sectional	104 patients	Independent: Shear wave elastography (SWE) and the Toronto clinical scoring system (TCSS) Dependents: Diabetic peripheral neuropathy	shear wave elastography (SWE) and the Toronto Clinical Scoring System (TCSS)	SWE examination on peripheral nerve examination with Ultrasonography and Toronto Clinical Scoring System (TCSS)	Evaluated: Mann– Whitney U test Compare: Wilcoxon signed-rank test w Correlation: Spearman correlation	Shear wave elastography (SWE) is an effective tool used to diagnose neuropathy. Combining SWE with TCSS is an effective parameter for neuropathy screening.
Dhanapalaratnam 2t al., 2022)	cross- sectional	156 patients	Independent: Ultrasonography (USG) Dependents: Peripheral neuropathy in type 2 diabetes	ultrasonography, Neuropathy Total Score (TNS), Modified Toronto Clinical Neuropathy Screening (MTCNS)	Examination based on ultrasound results and Neuropathy Total Score (TNS), Modified Toronto Clinical Neuropathy Screening (MTCNS)	Shapiro–Wilk test	Ultrasonography (USG) can examine diabetic neuropathy on peripheral nerve ultrasound.
[Fitri <i>et</i> al., 2019)	prospective cohort study	50 patients	Independent: Vitamin D levels Dependents: Diabetic Polyneuropathy	Baba'sDiabeticNeuropathyClassification(BDC)andlaboratoryexamination results	Neuropathy examination used Baba's Diabetic Neuropathy Classification (BDC) and vitamin D laboratory results.	Chi-Square Test or Fisher's Test.	The Baba's Diabetic Neuropathy Classification (BDC) instrument and laboratory examination results are used for early detection of neuropathy. Examinations were carried out on laboratory results that showed the presence of vitamin D in diabetic neuropathy patients.
(Li <i>et</i> al., 2023)	Retrospective analysis	901 patients	Independent: Nomograms Dependents: Type 2 Diabetic Peripheral Neuropathy	Nomogram	Input data on neuropathy symptoms in the nomogram	Chi-square analysis and Fisher's exact test	Early examination of diabetic neuropathy can be done using a nomogram. Minor absolute shrinkage and selection operator (LASSO) were performed to identify neuropathy risk factors and create a nomogram to predict diabetic neuropathy.

Matuszewska-	Prospective	60	Independent:	Inspection of early	Rostock Cornea	Mann-	Diabetes examination is divided
wanicka et al.,	study	patients	Corneal Nerve	neuropathy diabetes	Module (HRT-RCM)	Whitney test	into three categories: corneal
2022)		-	Plexus	with subbasal nerve	and EyeGuidance		nerve fiber length (CNFL;
			Dependents:	plexus (SNP).	module (EG)		mm/mm2), corneal nerve fiber
			Diabetic	Inspection done with			density (CNFD; no./mm2),
			Peripheral	the method see			corneal nerve branch density
			Neuropathy	Rostock Cornea			(CNBD; no./mm2). Based on
				Module (HRT-RCM)			this, it showed that in assessing
				and Eye Guidance			diabetic neuropathy using SNP
				module (EG) for			at an early stage, there were no
				subbasal nerve plexus			differences in neuropathy in
				(SNP), which indicates			diabetes mellitus patients.
				neuropathy diabetes.			
Preston et al.,	Experimental	518	Independent:	Artificial intelligence	Neuropathy	Cohen's κ	The use of artificial intelligence
2022)		patients	Artificial	(AI)	examination using	score	(AI) to detect neuropathy in
			intelligence		Figure cornea		people with diabetes by
			Dependents:		identified with AI		examining the cornea can be
			Diagnosis of				done to detect neuropathy early.
			peripheral				
			neuropathy				

It is made available under a CC-BY 4.0 International license .

Discussion

1. Early Detection of Diabetic Neuropathy Based on the Health Belief Model

Health workers carry out early detection of neuropathy to make a diagnosis and determine appropriate care. The neuropathy examination uses a neuropathy questionnaire and physical examination tools. Early neuropathy detection questionnaires are the Michigan Neuropathy Screening Instrument (MNSI) and the Toronto Clinical Neuropathy Score (TCNS) (Ramanathan *et al.*, 2021). Another study translated the Michigan Neuropathy Screening Instrument (MNSI) questionnaire into Turkish. The Michigan Neuropathy Screening Instrument (MNSI) questionnaire results were divided into three categories: mild neuropathy, moderate neuropathy, and severe neuropathy (Kaymaz *et al.*, 2020). Another study used the Toronto Clinical Neuropathy Score (TCNS) questionnaire for early detection of diabetic neuropathy (Huang *et al.*, 2023). The Toronto Clinical Neuropathy Score (TCNS) questionnaire detects neuropathy by asking about symptoms, reflex examination, and sensitivity examination (Rios *et al.*, 2023).

Nurses carry out early detection of diabetic neuropathy using diabetic neuropathy instruments (Dhanapalaratnam *et* al., 2022). Vibration perception threshold (VPT) examines vibration sensitivity using a neurotesimeter. The examiner applies vibrations to the heel at 200 Hz and the metatarsals at 30 Hz (Drechsel *et* al., 2021). Another article stated that vibrations are given in the stages from small vibrations to more significant vibrations with a sensitivity limit of >14.9 V. Patients who do not feel vibrations >14.9 V showed diabetic neuropathy (Liu *et* al., 2021). Vibration perception threshold (VPT) examination uses a biotesimeter with vibrations of 0-50 V. Neuropathy examination results show adverse neuropathy if the patient feels vibrations <25 V; patients show positive neuropathy if they feel vibrations et al., 2021).

Health workers diagnose diabetic neuropathy using peripheral nerve ultrasonography (USG) in diabetes mellitus patients (Dhanapalaratnam *et* al., 2022). Shear wave elastography (SWE) is an examination of diabetic neuropathy using elastography images (Wang *et* al., 2021). neuropathy examination with Baba's Diabetic Neuropathy Classification (BDC) questionnaire and vitamin D laboratory results (Fitri *et* al., 2019). Nurses used nomograms to input data on neuropathy symptoms in diabetic patients. Neuropathy symptoms that exceed the nomogram limit indicate diabetic neuropathy (Li *et* al., 2023).

Early neuropathy examination uses Artificial Intelligence (AI) by looking at the corneas of diabetic patients. However, examinations using artificial intelligence (AI) have not been proven to show significant differences in signs of neuropathy in diabetes mellitus patients (Preston *et* al., 2022).

2. Ontology Review of Early Detection of Diabetic Neuropathy Based on Health Belief Model for Diabetic Ulcers Prevention

The Health Belief Model was developed by Rosenstock in 1966. The Health Belief Model is used to identify individual behavior to prevent disease (Orbell, 2020). According to Rosenstock, individual behavior toward health is influenced by health concerns, beliefs about disease susceptibility, and beliefs about the consequences of disease (Mckellar & Sillence, 2020). The health belief model identifies behavior to prevent complications in chronic diseases such as diabetes mellitus. Patients apply the health belief model in preventing complications of diabetes mellitus (Wang *et al.*, 2023). Diabetic neuropathy is the most frequent complication of diabetes mellitus (Akhtar *et al.*, 2023).

The nurse performs a diabetic neuropathy examination to establish a diagnosis and determine appropriate treatment—early detection of neuropathy by examining signs, symptoms, vibration threshold, sensitivity, and reflexes. Instruments for early detection of diabetic neuropathy can be questionnaires and physical examination tools such as monofilaments, biotesimeters, and tuning forks (Liu *et al.*, 2021). Early neuropathy diagnosis and proper foot care can prevent diabetic ulcers (Basir *et al.*, 2020).

3. Epistemology Review of Early Detection of Diabetic Neuropathy Based on Health Belief Model for Prevention of Diabetic Ulcers

The health belief model has five components: perceived susceptibility, perceived severity, perceived benefits, perceived barriers, and cues to action (Kahaleh & Truong, 2021). The behavior of diabetes mellitus patients is based on their beliefs regarding vulnerability, seriousness, obstacles, and perceived benefits. Family support, health services, and availability of instruments influence patient motivation in implementing disease prevention behavior (Wang *et al.*, 2023).

Early examination of neuropathy used questionnaires and physical examination. The Michigan Neuropathy Screening Instrument (MNSI) questionnaire consists of 12 questions about neuropathy symptoms (Kaymaz *et al.*, 2020). The Toronto Clinical Neuropathy Score (TCNS) questionnaire contains questions about signs of neuropathy symptoms, reflex examination, and sensitivity examination in diabetes mellitus patients (Huang *et al.*, 2023). In one article, researchers combined the TCNS questionnaire with other instruments such as shear wave elastography (SWE) (Wang *et al.*, 2021). The diagnosis of neuropathy is based on peripheral nerve ultrasound (USG) (Dhanapalaratnam *et al.*, 2022).

Vibration perception threshold (VPT) examination using a biotesimeter. The magnitude of the vibrations was 200 Hz on the heel and 30 Hz on the metatarsals. Patients were diagnosed with neuropathy if they did not feel vibrations (Liu *et al.*, 2021). Diabetic neuropathy examination used monofilament thread for food sensitivity testing—a nurse examined by inserting a monofilament thread into the patient's leg. The examination results showed neuropathy if the patient did not feel the prick of the monofilament thread (Oh *et al.*, 2022).

Early diabetic neuropathy examination used Baba's Diabetic Neuropathy Classification (BDC) and vitamin D laboratory results (Fitri *et al.*, 2019). Nurses used a

nomogram to detect neuropathy by entering data on signs of neuropathy symptoms in the nomogram. Symptom data in the nomogram line showed neuropathy (Li *et al.*, 2023)—early examination of neuropathy using artificial intelligence (AI) on images of the cornea of diabetes patients. However, examinations using artificial intelligence (AI) have not been proven to be accurate in diagnosing diabetic neuropathy (Preston *et al.*, 2022).

4. Review of Axiology Early Detection of Diabetic Neuropathy Based on Health Belief Model for Prevention of Diabetic Ulcers

Early detection of diabetic neuropathy reduces the risk of diabetic ulcers in diabetes mellitus patients. Early detection of neuropathy occurs in 2 ways: examination using a neuropathy questionnaire and physical examination using a neuropathy instrument. The availability of health facilities and patient health beliefs can motivate patients to implement health behavior (Savari *et* al., 2023).

Patients implement behavior to prevent complications by early detection of neuropathy. Nurses diagnose neuropathy early and can determine nursing care for diabetic neuropathy. This behavior can prevent complications of diabetic ulcers (Crowley *et* al., 2023).

Conclusion

Early detection of diabetic neuropathy is carried out to determine the severity of neuropathy in diabetes mellitus patients. Diabetic neuropathy examination is carried out in 2 ways: a neuropathy questionnaire and a physical examination using a neuropathy instrument. Neuropathy questionnaires are Michigan Neuropathy Screening Instrument (MNSI), Toronto Clinical Neuropathy Score (TCNS), and Diabetic Neuropathy Classification (BDC). Physical examination tools include biotesimeters, vibrations, neurotesimeters, tuning forks, monofilament threads, ultrasonography (USG) results, artificial intelligence (AI), and nomograms.

References

- Akhtar, S., Hassan, F., Saqlain, S. R., Ali, A., & Hussain, S. (2023). The prevalence of peripheral neuropathy among the patients with diabetes in Pakistan: a systematic review and meta-analysis. Scientific Reports, 13(1), 1–9. https://doi.org/10.1038/s41598-023-39037-1
- Basir, I. S., Syam, Y., Yusuf, S., & Sandi, S. (2020). Accuracy of Ipswich Touch Test (IpTT) to detect small and large fiber neuropathy as a risk factor of diabetic foot ulcers in public health centers. Enfermeria Clinica, 30(Dm), 308–312. https://doi.org/10.1016/j.enfcli.2019.07.108
- Carbajal-Ramirez, A., Hernández-Domínguez, J. A., Molina-Ayala, M. A., Rojas-Uribe, M. M., & Chávez-Negrete, A. (2019). Early identification of peripheral neuropathy

It is made available under a CC-BY 4.0 International license .

based on sudomotor dysfunction in Mexican patients with type 2 diabetes. BMC Neurology, 19(1), 1–6. https://doi.org/10.1186/s12883-019-1332-4

- Crowley, B., Drovandi, A., Seng, L., Fernando, M. E., Ross, D., & Golledge, J. (2023). Patient Perspectives on the Burden and Prevention of Diabetes-Related Foot Disease. Science of Diabetes Self-Management and Care, 49(3), 217–228. https://doi.org/10.1177/26350106231170531
- Dhanapalaratnam, R., Issar, T., Poynten, A. M., Milner, K. L., Kwai, N. C. G., & Krishnan, A. V. (2022). Diagnostic accuracy of nerve ultrasonography for the detection of peripheral neuropathy in type 2 diabetes. European Journal of Neurology, 29(12), 3571–3579. https://doi.org/10.1111/ene.15534
- Drechsel, T. J., Monteiro, R. L., Zippenfennig, C., Ferreira, J. S. S. P., Milani, T. L., & Sacco, I. C. N. (2021). Low and high-frequency vibration perception thresholds can improve the diagnosis of diabetic neuropathy. Journal of Clinical Medicine, 10(14). https://doi.org/10.3390/jcm10143073
- Dubey, V. N., Dave, J. M., Beavis, J., & Coppini, D. V. (2022). Predicting Diabetic Neuropathy Risk Level Using Artificial Neural Network and Clinical Parameters of Subjects With Diabetes. Journal of Diabetes Science and Technology, 16(2), 275– 281. https://doi.org/10.1177/1932296820965583
- Fateh, H. R., & Madani, S. P. (2021). Role of interdigital sensory nerve conduction study as a noninvasive approach for early diagnosis of diabetic peripheral neuropathy. Journal of Diabetes and Metabolic Disorders, 20(1), 71–75. https://doi.org/10.1007/s40200-020-00710-1
- Fitri, A., Sjahrir, H., Bachtiar, A., Ichwan, M., Fitri, F. I., & Rambe, A. S. (2019). Predictive model of diabetic polyneuropathy severity based on vitamin D level. Open Access Macedonian Journal of Medical Sciences, 7(16), 2626–2629. https://doi.org/10.3889/oamjms.2019.454
- Gylfadottir, S. S., Itani, M., Krøigård, T., Kristensen, A. G., Christensen, D. H., Nicolaisen, S. K., Karlsson, P., Callaghan, B. C., Bennett, D. L., Andersen, H., Tankisi, H., Nielsen, J. S., Andersen, N. T., Jensen, T. S., Thomsen, R. W., Sindrup, S. H., & Finnerup, N. B. (2020). Diagnosis and prevalence of diabetic polyneuropathy: a cross-sectional study of Danish patients with type 2 diabetes. European Journal of Neurology, 27(12), 2575–2585. https://doi.org/10.1111/ene.14469
- Haque, F., Reaz, M. B. I., Chowdhury, M. E. H., Kiranyaz, S., Ali, S. H. M., Alhatou, M., Habib, R., Bakar, A. A. A., Arsad, N., & Srivastava, G. (2022). Performance Analysis of Conventional Machine Learning Algorithms for Diabetic Sensorimotor Polyneuropathy Severity Classification Using Nerve Conduction Studies. Computational Intelligence and Neuroscience, 2022. https://doi.org/10.1155/2022/9690940

- Hnit, M. W., Han, T. M., & Nicodemus, L. (2022). Accuracy and Cost-effectiveness of the Diabetic Foot Screen Proforma in Detection of Diabetic Peripheral Neuropathy in Myanmar. Journal of the ASEAN Federation of Endocrine Societies, 37(1), 31–37. https://doi.org/10.15605/jafes.037.01.06
- Huang, Y. C., Chuang, Y. C., Chiu, W. C., Huang, C. C., Cheng, B. C., Kuo, C. E. A., Lin, T. Y., Chiang, H. C., & Lai, Y. R. (2023). Quantitative thermal testing as a screening and follow-up tool for diabetic sensorimotor polyneuropathy in patients with type 2 diabetes and prediabetes. Frontiers in Neuroscience, 17(March), 1–11. https://doi.org/10.3389/fnins.2023.1115242
- Idiáquez Rios, J. F., Acosta, I., Prat, A., Gattini, F., Pino, F., & Barnett-Tapia, C. (2023). Assessing diabetic polyneuropathy in Spanish-speaking patients: Translation and validation of the Toronto Clinical Neuropathy Score. Journal of the Peripheral Nervous System, 28(3), 471–475. https://doi.org/10.1111/jns.12577
- Itani, M., Gylfadottir, S. S., Krøigård, T., Kristensen, A. G., Christensen, D. H., Karlsson, P., Möller, S., Andersen, H., Tankisi, H., Nielsen, J. S., Jensen, T. S., Thomsen, R. W., Finnerup, N. B., & Sindrup, S. H. (2021). Small and large fiber sensory polyneuropathy in type 2 diabetes: Influence of diagnostic criteria on neuropathy subtypes. Journal of the Peripheral Nervous System, 26(1), 55–65. https://doi.org/10.1111/jns.12424
- Jones, K., Backhouse, M. R., & Bruce, J. (2023). Rehabilitation for people wearing offloading devices for diabetes-related foot ulcers: a systematic review and metaanalyses. Journal of Foot and Ankle Research, 16(1), 1–14. https://doi.org/10.1186/s13047-023-00614-2
- Kahaleh, A. A., & Truong, H. A. (2021). Applications of the health belief model and continuing professional development for emergency preparedness and response. American Journal of Pharmaceutical Education, 85(1), 6–9. https://doi.org/10.5688/ajpe8376
- Kaymaz, S., Alkan, H., Karasu, U., & Çobankara, V. (2020). Turkish version of the Michigan Neuropathy Screening Instrument in assessing diabetic peripheral neuropathy: a validity and reliability study. Diabetology International, 11(3), 283– 292. https://doi.org/10.1007/s13340-020-00427-9
- Kementerian Kesehatan RI. (2020). Profil kesehatan indonesia tahun 2019. In Short Textbook of Preventive and Social Medicine (pp. 28–28). https://doi.org/10.5005/jp/books/11257_5
- Li, Y., Li, Y., Deng, N., Shi, H., Caika, S., & Sen, G. (2023). Training and External Validation of a Predict Nomogram for Type 2 Diabetic Peripheral Neuropathy. Diagnostics, 13(7). https://doi.org/10.3390/diagnostics13071265
- Lian, X., Qi, J., Yuan, M., Li, X., Wang, M., Li, G., Yang, T., & Zhong, J. (2023). Study on risk factors of diabetic peripheral neuropathy and establishment of a prediction

model by machine learning. BMC Medical Informatics and Decision Making, 23(1), 146. https://doi.org/10.1186/s12911-023-02232-1

- Liu, M., Gao, Y., Chen, D. W., Lin, S., Wang, C., Chen, L. H., & Ran, X. W. (2021). Quantitative vibration perception threshold in assessing diabetic polyneuropathy: Should the cut-off value be adjusted for Chinese individuals with type 2 diabetes? Journal of Diabetes Investigation, 12(9), 1663–1670. https://doi.org/10.1111/jdi.13515
- Maatta, L. L., Charles, M., Witte, D. R., Bjerg, L., Jørgensen, M. E., Jensen, T. S., & Andersen, S. T. (2019). Prospective study of neuropathic symptoms preceding clinically diagnosed diabetic polyneuropathy: Addition-Denmark. Diabetes Care, 42(12), 2282–2289. https://doi.org/10.2337/dc19-0869
- Matuszewska-Iwanicka, A., Stratmann, B., Stachs, O., Allgeier, S., Bartschat, A., Winter, K., Guthoff, R., Tschoepe, D., & Hettlich, H. J. (2022). Mosaic vs. Single Image Analysis with Confocal Microscopy of the Corneal Nerve Plexus for Diagnosis of Early Diabetic Peripheral Neuropathy. Ophthalmology and Therapy, 11(6), 2211– 2223. https://doi.org/10.1007/s40123-022-00574-z
- Mckellar, K., & Sillence, E. (2020). Current Research on Sexual Health and Teenagers. Teenagers, Sexual Health Information and the Digital Age, pp. 5–23. https://doi.org/10.1016/b978-0-12-816969-8.00002-3
- Moher, D., Shamseer, L., Clarke, M., Ghersi, D., Liberati, A., Petticrew, M., & Shekelle, P. (2015). Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Pubmed. https://doi.org/10.1186/2046-4053-4-1.
- Oh, T. J., Song, Y., Jang, H. C., & Choi, S. H. (2022). SUDOSCAN, in Combination with the Michigan Neuropathy Screening Instrument, Is an Effective Tool for Screening Diabetic Peripheral Neuropathy. Diabetes and Metabolism Journal, 46(2), 319–326. https://doi.org/10.4093/dmj.2021.0014
- Orbell, S. (2020). Encyclopedia of Behavioral Medicine. In Encyclopedia of Behavioral Medicine. https://doi.org/10.1007/978-1-4419-1005-9
- Pafili, K., Trypsianis, G., & Papazoglou, D. (2020). Clinical Tools for Peripheral Neuropathy to Exclude Cardiovascular Autonomic Neuropathy in Type 2 Diabetes Mellitus. Diabetes Therapy, 11(4), 979–986. https://doi.org/10.1007/s13300-020-00795-0
- Papanas, N., Pafili, K., Demetriou, M., Papachristou, S., Kyroglou, S., Papazoglou, D., & Maltezos, E. (2020). The Diagnostic Utility of VibraTip for Distal Symmetrical Polyneuropathy in Type 2 Diabetes Mellitus. Diabetes Therapy, 11(1), 341–346. https://doi.org/10.1007/s13300-019-00738-4
- Preston, F. G., Meng, Y., Burgess, J., Ferdousi, M., Azmi, S., Petropoulos, I. N., Kaye, S., Malik, R. A., Zheng, Y., & Alam, U. (2022). Artificial intelligence utilising corneal confocal microscopy for the diagnosis of peripheral neuropathy in diabetes mellitus

It is made available under a CC-BY 4.0 International license .

and prediabetes. Diabetologia, 65(3), 457–466. https://doi.org/10.1007/s00125-021-05617-x

- Ramanathan, S., Thomas, R., Chanu, A. R., Naik, D., Jebasingh, F., Sivadasan, A., & Thomas, N. (2021). Standard clinical screening tests, sural radial amplitude ratio, and f wave latency compared to conventional nerve conduction studies in the assessment of sensorimotor polyneuropathy in patients with type 2 diabetes mellitus. Indian Journal of Endocrinology and Metabolism, 25(6), 509–515. https://doi.org/10.4103/ijem.ijem_426_21
- Rios, J. F. I., Acosta, I., Prat, A., Gattini, F., Pino, F., & Barnett-Tapia, C. (2023). Assessing diabetic polyneuropathy in Spanish □ speaking patients □: Translation And Validation of the Toronto Clinical Neuropathy Score. Willey.
- Rokhmah, D. (2021). Ilmu dalam Tinjauan Filsafat: Ontologi, Epistemologi, dan Aksiologi. CENDEKIA: Jurnal Studi Keislaman, 7(2 SE-), 172–186.
- Saranya, S., Banupriya, N., Sivaharni, S., Suvalakshmi, E., & Suganthi, B. (2019). Early Detection of Chronicity Foot Lesion in Diabetic Neuropathy Patients. IOP Conference Series: Materials Science and Engineering, 590(1). https://doi.org/10.1088/1757-899X/590/1/012065
- Savari, A., Bashirian, S., Barati, M., & Karimi-Shahanjarini, A. (2023). The Effects of Educational Intervention Based on the Health Belief Model on Improving Foot Self-Care Behaviors in Older Adults. Aging Medicine and Healthcare, 14(1), 21–28. https://doi.org/10.33879/AMH.141.2021.09084
- Wang, F., Zheng, M., Hu, J., Fang, C., Chen, T., Wang, M., Zhang, H., Zhu, Y., Song, X., & Ma, Q. (2021). Value of shear wave elastography combined with the Toronto clinical scoring system in diagnosis of diabetic peripheral neuropathy. Medicine (United States), 100(35), E27104. https://doi.org/10.1097/MD.00000000027104
- Wang, X., Tian, B., Zhang, S., Li, J., Yang, W., Gu, L., & Zhang, W. (2023). Underlying Mechanisms of Diabetes Knowledge Influencing Diabetes Self-Management Behaviors Among Patients with Type II Diabetes in Rural China: Based on Health Belief Model. Patient Education and Counseling, 117(September), 107986. https://doi.org/10.1016/j.pec.2023.107986
- Wang, X., Tian, B., Zhang, S., Li, J., Yang, W., & Zhang, W. (2023). Underlying mechanisms of diabetes knowledge influencing diabetes self-management behaviors among patients with type II diabetes in rural China: Based on health belief model. Patient Education and Counseling, p. 117, 107986. https://doi.org/https://doi.org/10.1016/j.pec.2023.107986
- Wittenberg, B., Svendsen, T. K., Gaist, L. M., Itani, M., Gylfadottir, S. S., Jensen, T. S., Gaist, D., Sindrup, S. H., & Krøigård, T. (2021). Test-retest and time-dependent variation and diagnostic values of vibratory sensation determined by biothesiometer

It is made available under a CC-BY 4.0 International license .

and the Rydel-Seiffer tuning fork. Brain and Behavior, 11(8), 1–10. https://doi.org/10.1002/brb3.2230

- Ziegler, D., Landgraf, R., Lobmann, R., Reiners, K., Rett, K., Schnell, O., & Strom, A. (n.d.). Ziegler, Screening and diagnosis of diabetic polyneuropathy in clinical practice.
- Ziegler, D., Landgraf, R., Lobmann, R., Reiners, K., Rett, K., Schnell, O., & Strom, A. (2022). Screening and diagnosis of diabetic polyneuropathy in clinical practice: A survey among German physicians (PROTECT Study Survey). Primary Care Diabetes, 16(6), 804–809. https://doi.org/10.1016/j.pcd.2022.09.009