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Abstract 

Objective: To develop an equitable artificial intelligence model for glaucoma screening. 

Design: Cross-sectional study. 

Participants: 7,418 optical coherence tomography (OCT) paired with reliable visual field (VF) 

measurements of 7,418 patients from the Massachusetts Eye and Ear Glaucoma Service 

between 2021 and 2023. 

Methods: We developed fair identify normalization (FIN) module to equalize the feature 

importance across different identity groups to improve model performance equity. EfficientNet 

served as the backbone model to demonstrate the effect of FIN on model equity. The OCT-derived 

retinal nerve fiber layer thickness (RNFLT) maps and corresponding three-dimensional (3D) OCT 

B-scans were used as model inputs, and a reliable VF tested within 30 days of an OCT scan was 

used to categorize patients into glaucoma (VF mean deviation < -3 dB, abnormal glaucoma 

hemifield test (GHT) and pattern standard deviation (PSD) < 5%) or non-glaucoma (VF mean 

deviation ≥ -1 dB and normal GHT and PSD results). The area under the receiver operating 

characteristic curve (AUC) was used to measure the model performance. To account for the 

tradeoff between overall AUC and group disparity, we proposed a new metric called equity-scaled 
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AUC (ES-AUC) to compare model performance equity. We used 70% and 30% of the data for 

training and testing, respectively. 

Main Outcome Measures: The glaucoma screening AUC in different identity groups and 

corresponding ES-AUC. 

Results: Using RNFLT maps with FIN for racial groups, the overall AUC and ES-AUC increased 

from 0.82 to 0.85 and 0.76 to 0.81, respectively, with the AUC for Blacks increasing from 0.77 to 

0.81. With FIN for ethnic groups, the overall AUC and ES-AUC increased from 0.82 to 0.84 and 

0.77 to 0.80, respectively, with the AUC for Hispanics increasing from 0.75 to 0.79. With FIN for 

gender groups, the overall AUC and ES-AUC increased from 0.82 to 0.84 and 0.80 to 0.82, 

respectively, with an AUC improvement of 0.02 for both females and males. Similar improvements 

in equity were seen using 3D OCT B scans. All differences regarding overall- and ES-AUCs were 

statistically significant (p < 0.05). 

Conclusions: Our deep learning enhances screening accuracy for underrepresented groups and 

promotes identity equity. 
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Introduction 

Glaucomatous optic neuropathy is the leading cause of irreversible blindness globally1–4 affecting 

3.5% of the population between 40 and 80 years totaling 3 million patients in the US and 80 million 

patients worldwide.1,5 However, most commonly, glaucoma patients are not aware of having the 

disease until the vision loss becomes severe enough to impair their daily activities, such as 

reading and driving due to the brain and fellow eye compensation.6–12 It has been reported that 

50% of people with glaucoma do not know they have the disease, and racial and ethnic minority 

groups are particularly affected due to a lack of access to ophthalmic care largely attributed to 

financial limitations.13,14  

      Increasing research indicates that glaucoma disproportionately impacts racial and ethnic 

minorities and socioeconomically disadvantaged identity groups.15–21 We recently found that 

visual field (VF) loss in glaucoma patients at the first visit to an ophthalmology service is 

significantly worse in Blacks and Asians than in Whites and significantly worse in Hispanics than 

in non-Hispanics.22 Noticeably, lower proficiency in English was also linked to a more pronounced 

VF loss in patients with glaucoma. Despite greater severity at the first visit, Black patients had 

lower VF test frequency compared to Whites. In a separate study, we found that compared with 

non-Hispanic Whites, Black individuals faced higher risks of developing early central and 

advanced VF loss.23 Blacks and Hispanics are significantly more likely (4.4 and 2.5 times) to have 

undiagnosed and untreated glaucoma compared with non-Hispanic Whites.13 Therefore, 

automated glaucoma screening with deep learning deployed at primary care and pharmacies 

would greatly benefit racial and ethnic minorities and socioeconomically disadvantaged identity 

groups. 

Though numerous deep learning studies have been conducted for automated glaucoma 

detection using retinal images (e.g. as illustrated in Figure 1a),24–31 it remains unclear if these 

deep learning models have equitable performance across different identity groups. In recent years, 

significant work in deep learning has been done to alleviate performance inequality in the 

models.32–34 The performance inequality observed in deep learning models primarily stems from 

data inequality and data characteristic variability between different identity groups. Standard deep 

learning models without equity-improving design favor the majority group algorithmically and may 

not be able to represent the diverse data characteristic variability across different identity groups. 

For example, consistent with the US population composition,35 there are fewer Black and Asian 

glaucoma patients present in ophthalmic care, which is data inequality.36  

      In this study, we introduce fair identity normalization (FIN) to promote equitable glaucoma 

screening. The fundamental premise of FIN rests on the notion that individuals within the same 



 

 

identity group exhibit a greater correlation compared to those from other groups. This correlation 

is cultivated by promoting distinct feature distributions across different identity groups during the 

deep learning model's training phase. Our examination of FIN's efficacy spanned across two 

state-of-the-art deep learning frameworks: EfficientNet and ResNet.37,38 However, given that 

EfficientNet is more effective than ResNet based on our experiments, we chose EfficientNet as 

the backbone model in this study. We aimed to diminish group disparities in glaucoma screening 

using retinal nerve fiber layer thickness (RNFLT) maps. Additionally, a three-dimensional (3D) 

convolutional neural network (CNN),39 both standalone and in conjunction with FIN, was 

employed to predict glaucomatous status using 3D optical coherence tomography (OCT) B-scans. 

We compared FIN against other common methods. These included oversampling to equalize data 

representation from various groups, and a transfer learning approach where a deep learning 

model trained on the entire patient data was fine-turned for each individual identity group based 

on race, gender, and ethnicity, respectively. We adopted the area under the receiver operating 

characteristic curve (AUC) to analyze overall screening accuracy and group-level accuracies. 

Furthermore, to account for the tradeoff between overall AUC and group disparity, we proposed 

a new metric called equity-scaled AUC (ES-AUC) to compare the model equity. Additionally, we 

used mean and max disparities to quantify the differences in screening accuracies across different 

identity groups. 

Methods 

The OCT data used for developing the equitable deep learning model were from the glaucoma 

patient service at the Massachusetts Eye and Ear (MEE) between 2021 and 2023. The 

institutional review boards (IRB) of MEE approved the creation of the database in this 

retrospective study. This study complied with the guidelines outlined in the Declaration of Helsinki. 

In light of the study's retrospective design, the requirement for informed consent was waived.  

Dataset Description 

In this study, we utilized a dataset comprising 7,418 RNFLT maps obtained from 7,418 patients 

who underwent tests at the MEE glaucoma service from 2021 to 2023. Each of these two-

dimensional (2D) RNFLT maps (Figure 1b), with dimensions of 200 × 200, represents thickness 

values and was sourced from a spectral-domain OCT instrument (Cirrus, Carl Zeiss Meditec, 

Dublin, California). Only high-quality RNFLT maps with a signal strength of 6 or higher were 

considered. Additionally, the dataset encompassed corresponding 3D OCT B-scans. Each of 

these 3D OCT B-scan volumes consists of 200 individual B-scans, with each B-scan measuring 

200 × 200 in dimension.  



 

 

The glaucomatous status was determined by matching the reliable visual field (VF) test with OCT. 

In this study, we exclusively utilized reliable 24-2 VFs, characterized by fixation loss ≤ 33%, a 

false positive rate ≤ 20%, and a false negative rate ≤ 20%. These reliability criteria align with those 

employed in our previous research.40,41 Glaucomatous status was ascertained based on the VF 

mean deviation (MD): an MD of less than -3 dB with abnormal glaucoma hemifield test and pattern 

standard deviation results was classified as glaucoma, while an MD greater than or equal to -1 

dB with normal glaucoma hemifield test and pattern standard deviation results was identified as 

non-glaucoma. 

Glaucoma Screening Model with Fair Identity Normalization 

We designed a deep learning model based on the EfficientNet,37 enhanced with fair identity 

normalization (FIN), to achieve equitable glaucoma screening (Figure 2). Initially, the model takes 

RNFLT maps or 3D OCT B-scans as the input, extracting pertinent and discriminative features 

through the EfficientNet structure. Subsequently, these features undergo normalization via FIN, 

considering the group identity associated with the input image. As a result of this normalization, 

data from patients within the same identity groups are aligned to a consistent distribution, thereby 

aiding the model in distinguishing between different identity groups. Finally, the normalized 

features, tailored to specific identity groups, are employed to predict glaucomatous status. The 

model training followed a supervised approach. The dataset underwent a patient-level random 

split: 70% was dedicated to model training and the remaining 30% was used for evaluating both 

glaucoma screening precision and group equity. 

      We assessed FIN's efficacy for equitable glaucoma screening across three distinct identity 

parameters: race, ethnicity, and gender. Beyond EfficientNet, we also examined the effectiveness 

of FIN through its integration with ResNet for glaucoma detection. Furthermore, we benchmarked 

EfficientNet + FIN against oversampling and transfer learning methods, known to be helpful to 

mitigate group disparities which could be caused by the skewed distribution of samples between 

different identity groups.  

Evaluation of Glaucoma Screening and Group Disparity 

We employed deep learning models, both with and without FIN integration, to predict 

glaucomatous status. The AUC served as our metric for quantifying both overall screening 

accuracy and group-level accuracy, categorized by race, gender, and ethnicity. Specifically, we 

concentrated on the racial groups of Asians, Blacks, and Whites; the gender-based groups of 

Females and Males; and the ethnic groups of Non-Hispanics and Hispanics. To ascertain AUC 

disparities in glaucoma screening across these identity groups, we proposed to use a new metric 



 

 

called equity-scaled AUC (ES-AUC) to compare the model performance equity. ES-AUC was 

computed as the ratio of the overall AUC to the adjusted (incremented by one) sum of differences 

between the overall AUC and every individual group AUC. Additionally, we calculated both mean 

disparity and max disparity. Mean disparity was determined by the ratio of the standard deviation 

of individual group AUCs to the adjusted overall AUC, which is the overall AUC subtracting 0.5. 

Meanwhile, max disparity was computed as the ratio of the difference between the highest and 

lowest individual group AUCs to the same adjusted overall AUC.  

      We used paired t-test and bootstrapping with replacement to compare the glaucoma 

screening performance of different deep learning models with or without FIN. All deep learning 

modeling and statistical analyses were performed in Python 3.8 (available at 

http://www.python.org) on a Linux system. 

Results 

Participant Characteristics 

In this study, we analyzed 3D OCT B-scans and their corresponding RNFLT maps from 7,418 

eyes of 7,418 unique patients. The participants' average age at the time of imaging was 60.8 ± 

16.5 years, and 57.8% were females. When examining ethnicity and race, 4.6% of the patients 

identified as Hispanic, while the racial distribution was 8.6% Asian, 14.9% Black, and 76.5% White 

(as shown in Table 1). Notably, 46.7% of these 7,418 patients were diagnosed with glaucoma. 

Glaucoma Screening Performance using RNFLT Maps 

For ResNet combined with FIN, the overall AUC and ES-AUC for racial group increased from 0.76 

and 0.80 to 0.77 and 0.82 (p-value < 0.001), with the AUC improved by 0.01 (p-value < 0.05) for 

Blacks, and 0.02 (p-value < 0.001) for both Asians and Whites, although the improvements (from 

0.09 and 0.17 to 0.08 and 0.17) of mean and max disparities are not significant (Figure 3a). 

Similarly, the overall AUC and ES-AUC for gender group both improved by 0.02, and the mean 

and max disparities increased from 0.09 and 0.12 to 0.06 and 0.09 (p-value < 0.001), respectively 

(Figure 3b). For ethnic group, the overall AUC had an improvement of 0.02 (p-value < 0.001), 

while the ES-AUC remained unchanged after integrating FIN with ResNet (Figure 3c).  

      In comparison, after combining the FIN with EfficientNet, the overall AUC and ES-AUC for 

racial groups increased from 0.82 to 0.85 and 0.76 to 0.81 (p-value < 0.001), respectively, with 

the AUC for Blacks increasing from 0.77 to 0.81 (p-value < 0.001) (Figure 3a). The mean and 

max disparities significantly decreased from 0.12 to 0.06 and 0.23 to 0.12 (p-value < 0.001) 

(Figure 3a), respectively. With FIN for gender groups, the overall AUC and ES-AUC increased 



 

 

from 0.82 to 0.84 and 0.80 to 0.82 (p-value < 0.001), respectively, with an AUC improvement of 

0.02 for both females and males (p-value < 0.001) (Figure 3b). With FIN for ethnic groups, the 

overall AUC and ES-AUC increased from 0.82 to 0.84 and 0.77 to 0.80 (p-value < 0.001), 

respectively, with the AUC for Hispanics increasing from 0.75 to 0.79 (p-value < 0.001) (Figure 

3c). The mean and max disparities decreased by 0.05 and 0.07 (p-value < 0.001), respectively 

(Figure 3c).  

      The feature distributions learned by the deep learning model from input RNFLT maps are 

shown in Figure 4. With FIN for racial groups, features of Asians and Blacks were more deviant, 

and they both are closer to the features of Whites (Figure 4a and Figure 4d). For gender groups, 

the features of females and males are more similar after the integration of FIN (Figure 4b and 

Figure 4e). In contrast, the features between non-Hispanic and Hispanic groups became more 

similar with FIN (Figure 4c and Figure 4f).  

      While comparing the oversampling and transfer learning methods, FIN generally achieved 

better AUC and ES-AUC performances for different identity groups (Figure 5). For racial groups, 

the overall AUC and ES-AUC of FIN were 0.03 and 0.04 higher than the oversampling (p-value < 

0.001), and 0.01 and 0.04 higher than the transfer learning (p-value < 0.001) (Figure 5a). The 

mean and max disparities of FIN had a significant decrease of 0.04 and 0.10 compared to the 

over sampling approach (p-value < 0.001), and 0.07 and 0.15 compared to the transfer learning 

(p-value < 0.001). Similarly, for gender groups, the overall AUC and ES-AUC of FIN both improved 

by 0.05 compared with oversampling (p-value < 0.001), where the improvements were 0.01 and 

0.04 compared to the transfer learning (p-value < 0.001) (Figure 5b). The mean and max 

disparities of FIN significantly decreased by 0.02 and 0.03 compared to oversampling (p-value < 

0.001), and 0.07 and 0.1 compared to the transfer learning (p-value < 0.001). Lastly for ethnic 

groups, the overall AUC and ES-AUC of FIN significantly improved by about 0.02 and 0.01 over 

the sampling and transfer learning methods (p-value < 0.001), respectively (Figure 5c). 

Glaucoma Screening Performance using 3D OCT B-Scans 

Using 3D OCT B-scans with FIN for glaucoma screening, the overall AUC and ES-AUC for racial 

groups improved from 0.84 to 0.85 and 0.78 to 0.80 (p-value < 0.05), respectively (Figure 6a). 

The mean and max disparities decreased by 0.01 and 0.03, respectively. With FIN for gender 

groups, the overall AUC and ES-AUC both had a moderate improvement of 0.01 (Figure 6b). 

While with FIN for ethnic group, the overall AUC and ES-AUC improved by 0.01 and 0.03 (p-value 

< 0.05), respectively, with the AUCs improved by 0.02 and 0.04 for non-Hispanic and Hispanic 



 

 

groups (p-value < 0.001) (Figure 6c). In addition, the mean and max disparities had significant 

declines of 0.06 and 0.08 (p-value < 0.001), respectively.  

Discussion 

This paper is to demonstrate that deep-learning models for glaucoma screening may perform 

quite differently across demographic groups, and it is possible to reduce the performance disparity 

gap between different demographic groups by model innovation, which is our fair identity 

normalization (FIN) model in this work. Simply using our fair identity normalization model without 

any additional real cost can make deep-learning glaucoma screening models more equitable, 

which means reduced group disparities with no overall performance deterioration or even overall 

performance improvement. 

      In this study, we introduced a deep learning model that combines EfficientNet with FIN for 

equitable glaucoma screening utilizing RNFLT maps and 3D OCT B-scans (Figure 2). In 

comparison to the standalone EfficientNet, the EfficientNet combined with FIN model enhanced 

the overall AUC by 0.03 and ES-AUC by 0.05 for racial groups, with noticeable improvements in 

AUCs when delineated by race, ethnicity, and gender. We have compared EfficientNet with 

another state-of-the-art deep learning model ResNet with and without the enhancement of FIN 

(Figure 3). Both deep learning models showed improved glaucoma screening performance and 

equity with FIN, which demonstrates that FIN is effective in promoting equitable glaucoma 

screening.  

      Previous studies have consistently highlighted that glaucoma has a disproportionate impact 

on racial and ethnic minorities, as well as socioeconomically marginalized groups. For instance, 

upon their initial visit to an ophthalmology service, Black and Asian glaucoma patients typically 

display more severe visual field (VF) loss than their White counterparts. Similarly, the severity is 

worse in Hispanic patients compared to non-Hispanics. Notably, Blacks and Hispanics are 

approximately 4.4 and 2.5 times more likely, respectively, to have undetected and untreated 

glaucoma than non-Hispanic Whites. While deep learning models have gained traction for 

automated glaucoma detection, they often overlook the crucial aspect of ensuring equal 

performance across diverse identity groups. Our proposed FIN effectively addresses these 

disparities across different identity groups. For example, using RNFLT maps for glaucoma 

screening with FIN, racial groups increased from 0.82 to 0.85 and 0.76 to 0.81, respectively, with 

the AUC for Blacks increasing from 0.77 to 0.81 (Figure 3a). In addition, there was a significant 

decrease in the mean and max disparities by 0.06 and 0.11 for Asian, Black, and White groups 

(Figure 3a). The incorporation of FIN with ResNet, as well as its comparison to oversampling and 



 

 

transfer learning techniques, further underscores the efficacy of FIN in fostering equitable 

glaucoma screening.  

      Feature distribution visualizations indicate that FIN increases the distinction of learned 

features between Asians and Blacks compared to Whites (Figure 4a and Figure 4d). This 

suggests that the overlap of features for Asians and Blacks might have led to higher false positive 

rates in glaucoma screening for these groups. FIN's enhancement of feature differentiation has 

sharpened the distinction, improving the AUC for Blacks by 0.04 (Figure 3a). Additionally, FIN 

has narrowed the feature gap between genders (Figure 4b and Figure 4e) and widened the 

feature variance between non-Hispanic and Hispanic groups. These changes demonstrate FIN's 

role in refining feature distributions to optimize glaucoma screening outcomes and fairness. 

      Our research has several limitations. Firstly, even though we have achieved equitable 

glaucoma screening with comprehensive evaluations encompassing all severity stages, we have 

not examined the performance across different stages like mild versus severe glaucoma. This 

omission is significant since different identity groups could experience varied screening 

accuracies based on the stage of their condition. Secondly, while the patient distribution across 

identity groups in our study mirrors real-world disparities (for instance, 8.6%, 14.9%, and 76.5% 

were identified as Asian, Black, and White respectively), we have not assessed the equity of 

glaucoma screening in scenarios where sample sizes across these groups are balanced. Thirdly, 

our evaluation of FIN concentrated on its integration with EfficientNet and ResNet. We have not 

explored its efficacy when paired with other prevalent deep learning models like the vision 

transformer or the VGG network, even though FIN has the versatility to be paired with various 

learning frameworks. Lastly, our use of ES-AUC, mean and max disparities to measure the 

fairness of glaucoma prediction among identity groups is limited. There exists a range of other 

fairness metrics, such as demographic parity, equalized odds, and equal opportunity, which we 

have not considered.  

      While FIN typically aids in diminishing the mean and max disparities for race and gender, its 

integration with ResNet on RNFLT maps did not show any remarkable improvement in equity 

between the non-Hispanic and Hispanic groups ethnic. This observation can be linked to a couple 

of key factors. Firstly, the efficiency of FIN can vary based on the deep learning model it is paired 

with. Different models have unique capabilities in extracting beneficial features from the RNFLT 

map that can enhance equity. Secondly, the metrics we employed to measure the equity of 

glaucoma screening across various identity groups might not capture the full picture. To get a 

more holistic understanding, it would be beneficial to consider other fairness metrics in future 

research, such as demographic parity, equalized odds, and equal opportunity. 



 

 

      In summary, we introduced FIN that can seamlessly integrate with many mainstream deep 

learning frameworks for equitable glaucoma screening. FIN works by normalizing features derived 

from RNFLT maps or 3D OCT B-scans in alignment with patients' identity groups. Our evaluations 

on prominent deep learning architectures, EfficientNet and ResNet, underscore FIN's capability 

to not only boost glaucoma screening accuracy but also curtail disparities across race, ethnicity, 

and gender, particularly in conjunction with EfficientNet. When compared against other strategies 

like oversampling and transfer learning that aim for equity in glaucoma screening, FIN consistently 

outperforms. With its potential for real-world clinical applications, our deep learning model 

incorporating FIN stands as a promising tool to ensure equitable glaucoma screening outcomes 

across diverse identity groups. 
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Table 1: Demographics and baseline characteristics of the patients included in the evaluation. 

Characteristic N= patients 

Number of patients (eyes) 7,418 (7,418) 

Number of 3D OCT B-scans and RNFLT map 
pairs 

7,418 

Age (years) 60.8 ± 16.5 

Gender (female %) 57.8 

Prevalence of right eyes (%) 47.2 

Prevalence of Hispanic (%) 4.6 
Race (%) 
• Asian 
• Black or African American 
• White or Caucasian 

 
8.6 
14.9 
76.5 

Visual field parameter 
• Average HVF MD (dB) 
• Average TD (dB) 

 
-4.0 ± 5.9 
-4.1 ± 6.0 

Prevalence of glaucoma (%) 46.7% 

Age is presented as mean ± standard deviation, unless otherwise stated.  

 

 

 

 

 

 

 

 

 

 



 

 

 

(a) Retinal imaging with deep learning for automated glaucoma screening 

 

(b) The relationship between OCT B-scans and RNFL 

Figure 1: The glaucoma screening paradigm with RNFLT maps and 3D B-scans.  (a) 

Illustration of using retinal imaging with deep learning for automated glaucoma screening, and 

(b) the relationship between OCT B-scans and retinal nerve fiber layer (RNFL). OCT: optical 

coherence tomography; VF: visual field; RNFLT: RNFL thickness. 
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Figure 2: The proposed far identity normalization approach for equitable glaucoma screening.  

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 
(a) Race Results 

 
(b) Gender Results 

 
(c) Ethnicity Results 

Figure 3: Comparison of EfficientNet and ResNet using retinal nerve fiber layer thickness maps 

from optical coherence tomography scans for glaucoma detection across different demographic 

identity groups. (a) race results, (b) gender results, and (c) ethnicity results. FIN: fair identity 

normalization. 

 

 

  

 

 

 



 

 

 

Figure 4: UMAP-generated distribution of features learned from RNFLT maps. (a) Feature 

distribution in racial groups with EfficientNet. (b) Feature distribution in gender-based groups 

with EfficientNet. (c) Feature distribution in ethnic groups with EfficientNet. (d) Feature 

distribution in racial groups with EfficientNet + FIN. (e) Feature distribution in gender-based 

groups with EfficientNet + FIN. (f) Feature distribution in ethnic groups with EfficientNet + FIN. 

 

 

 

 

 

 



 

 

 
(a) Race Results 

 
(b) Gender Results 

 
(c) Ethnicity Results 

Figure 5: Comparison of various methods using retinal nerve fiber layer thickness maps from 

optical coherence tomography scans for glaucoma detection across different demographic 

identity groups. (a) race results, (b) gender results, and (c) ethnicity results. FIN: fair identity 

normalization. 

 

 

 

 

 

 



 

 

 
(a) Race Results 

 
(b) Gender Results 

 
(c) Ethnicity Results 

Figure 6: Comparison of various methods using three-dimensional optical coherence 

tomography scans for glaucoma detection across different demographic identity groups. (a) race 

results, (b) gender results, and (c) ethnicity results. FIN: fair identity normalization. 

 

 

 


