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A plasma peptidomic signature reveals extracellular matrix remodeling and predicts prognosis in 1 

alcohol-related hepatitis.   2 

 3 

#Khaled Sayed1,2, #Christine E. Dolin3, Daniel W. Wilkey3, Jiang Li4, Toshifumi Sato4, Juliane I 4 

Beier4,5, Josepmaria Argemi4,6, Ramon Bataller7, Abdus S Wahed8, *Michael L Merchant3, 5 

*Panayiotis V Benos1, *Gavin E Arteel4,5 6 

 7 

1Department of Epidemiology, University of Florida, Gainesville, Florida, USA. 8 

2Department of Electrical & Computer Engineering and Computer Science, University of New 9 

Haven, West Haven, Connecticut, USA. 10 

3Department of Medicine, University of Louisville, Louisville, Kentucky, USA. 11 

4Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of 12 

Pittsburgh, Pittsburgh, PA, USA. 13 

5Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA.  14 

6Department of Internal Medicine, Clinical University of Navarra, Navarra, Spain. 15 

7Liver Unit, Hospital Clinic. Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 16 

Barcelona, Spain. 17 

8Department of Biostatistics and Computational Biology, University of Rochester, Rochester, 18 

NY, USA.  19 

 20 

#Equally contributing first authors 21 

*Equally contributing senior authors 22 

Running title: Plasma peptidome of alcohol-related hepatitis. 23 

 24 

Keywords: causal models, protein degradomics, extracellular matrix, ALD, LC-MS/MS  25 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted December 14, 2023. ; https://doi.org/10.1101/2023.12.13.23299905doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2023.12.13.23299905


2 
 

Send all correspondence to:  Gavin E. Arteel, PhD, FAASLD 1 

 Thomas E. Starzl Biomedical Science Tower 2 

West 1143 3 

200 Lothrop Street 4 

Pittsburgh, PA 15213 5 

Phone: +1-412-648-4187  6 

 Email: gearteel@pitt.edu 7 

 8 

 9 

Abbreviations: ABIC, age, bilirubin, INR and creatinine; AH, alcohol-related hepatitis; ALD, 10 

alcohol-related liver disease; ALT, alanine aminotransferase; AP, alkaline phosphatase; ASH, 11 
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ABSTRACT 1 

Alcohol-related hepatitis (AH) is plagued with high mortality and difficulty in identifying at-risk 2 

patients. The extracellular matrix undergoes significant remodeling during inflammatory liver 3 

injury that can be detected in biological fluids and potentially used for mortality prediction. EDTA 4 

plasma samples were collected from AH patients (n= 62); Model for End-Stage Liver Disease 5 

(MELD) score defined AH severity as moderate (12-20; n=28) and severe (>20; n=34). The 6 

peptidome data was collected by high resolution, high mass accuracy UPLC-MS. Univariate and 7 

multivariate analyses identified differentially abundant peptides, which were used for Gene 8 

Ontology, parent protein matrisomal composition and protease involvement. Machine learning 9 

methods were used on patient-specific peptidome and clinical data to develop mortality 10 

predictors. Analysis of plasma peptides from AH patients and healthy controls identified over 11 

1,600 significant peptide features corresponding to 130 proteins.  These were enriched for ECM 12 

fragments in AH samples, likely related to turnover of hepatic-derived proteins.  Analysis of 13 

moderate versus severe AH peptidomes showed a shift in abundance of peptides from collagen 14 

1A1 and fibrinogen A proteins.  The dominant proteases for the AH peptidome spectrum appear 15 

to be CAPN1 and MMP12. Increase in hepatic expression of these proteases was orthogonally-16 

validated in RNA-seq data of livers from AH patients.  Causal graphical modeling identified four 17 

peptides directly linked to 90-day mortality in >90% of the learned graphs. These peptides 18 

improved the accuracy of mortality prediction over MELD score and were used to create a 19 

clinically applicable mortality prediction assay.  A signature based on plasma peptidome is a 20 

novel, non-invasive method for prognosis stratification in AH patients.  Our results could also 21 

lead to new mechanistic and/or surrogate biomarkers to identify new AH mechanisms.   22 
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Lay summary.  We used degraded proteins found the blood of alcohol-related hepatitis patients 1 

to identify new potential mechanisms of injury and to predict 90 day mortality.  2 
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Alcohol-related hepatitis (AH) is a subacute form of alcohol-related liver disease with a 1 

high mortality rate of 30-50% at 3 months and 40% at 6 months [1, 2].  AH is characterized by 2 

hepatic decompensation, jaundice and multiple organ failure [3].  AH occurs in patients with 3 

heavy chronic alcohol consumption (80-100 g per day) and can be the first manifestation of 4 

clinically silent ALD or an exacerbation of pre-existing cirrhosis [3].   5 

 6 

Accurately predicting AH patient outcome risks is important for clinical decision-making.  7 

For example, AH patients with higher negative outcome (e.g., mortality) risks are better 8 

candidates for corticosteroid treatment, and patients with lower risk could be candidates for 9 

long-term clinical studies [2, 3].  Currently, the best approach for predicting outcome risk is 10 

combining static scores, such as the modified Maddrey’s discriminant function (MDF), Model for 11 

End-stage Liver Disease (MELD), prognostic algorithm score constituting Age, Bilirubin, INR 12 

and Creatinine (ABIC), and/or Glasgow with the dynamic Lille scoring system [4, 5], with the 13 

MELD score favored globally [6]. These clinical scores are useful for predicting outcome risks in 14 

patients with severe AH, but are limited in predicting outcome risks in patients with moderate 15 

disease [7].  Our group demonstrated significant extracellular matrix (ECM) remodeling during 16 

inflammatory liver injury [8].  During such remodeling, altered protein turnover shifts the 17 

distribution of peptide fragments including degraded ECM in biologic fluids (e.g., plasma) [9]. 18 

Peptidomic analysis of the degraded ECM (i.e., ‘degradome’) is a useful diagnostic/prognostic 19 

tool in metastatic cancers and other diseases of ECM remodeling [9].  20 

 21 

Probabilistic Graphical Models (PGMs), in general (i.e., “causal graphs”) have recently 22 

gained popularity, because of their simplicity and straightforward interpretability. When certain 23 

assumptions are met,[10] there are theoretical guarantees that DAGs will recover the true 24 

cause-effect associations [11, 12]. Current methods can handle mixed data types (continuous 25 

and discrete) [13, 14], and have reduced processing time [15, 16], overcoming past obstacles. 26 
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Importantly, these methods can be used to build robust predictive models of an outcome [17, 1 

18]. 2 

 3 

It was hypothesized that the severe inflammatory liver injury caused by AH would yield a 4 

unique peptidome profile in human patient plasma, and that unique ECM peptides or peptide 5 

grouping would vary between patient groups.  The goals of this work were three-fold: 1) identify 6 

novel surrogate candidate biomarkers for AH, 2) develop new mechanistic hypotheses by 7 

predicting proteases that generated the observed peptidome, and 3) employ PGM to identify 8 

unique predictors of outcome from the peptidome profile (see Figure 1 for scheme).   9 

  10 
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Methods 1 

Study participants.  The University of Louisville Human Studies Committee Human 2 

approved sample collection and use of de-identified samples provided in this study. All study 3 

subjects provided informed consent prior to sample collection. All studies were conducted in 4 

compliance with the Declaration of Helsinki. A total of 70 adult male and female individuals 5 

participated in this NIH-funded study (Figure 1A).  This investigation constitutes a single time 6 

point assessment of patients between the study subgroups.  Data were collected from 7 

biobanked samples from a large national multisite clinical trial (clinicaltrials.gov: NCT01922895 8 

and NCT01809132). Inclusion and exclusion criteria are listed in those studies.  Informed 9 

consent was obtained from all study participants before collection of data and bodily samples.  10 

All AH patients were enrolled at the University of Louisville, the University of Massachusetts 11 

Medical School, the University of Texas-Southwestern and the Cleveland Clinic.  AH diagnosis 12 

was done using clinical and laboratory criteria described by the NIAAA consortium on AH [19]. 13 

Individuals with liver injury met the criteria for AUD based on DSM 4 XR or DSM 5 manual.  All 14 

healthy participants were recruited at the University of Louisville free of any clinically diagnosed 15 

disease (liver or organ systems) that might contribute to altered laboratory values in comparison 16 

analyses.   17 

 18 

The subgroups included healthy participants (n=7) and AH patients (n=63; Figure 1A). 19 

Clinical variables did not exist for healthy controls and for one AH patient and were therefore 20 

excluded from categorical analyses (n=62).  For categorical comparisons, AH patients were 21 

stratified as “moderate” (MELD=12-20; n=28) and “severe” AH (>20; n=34).[20] Out of the 63 22 

AH patients, survival information was lacking for 5 patients, so they were excluded from the 23 

causal graphical modeling (n=58; see Supplemental Material). A variety of clinical data was 24 

gathered for these patients, including transaminases, alkaline phosphatase, and total bilirubin.  25 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted December 14, 2023. ; https://doi.org/10.1101/2023.12.13.23299905doi: medRxiv preprint 

https://doi.org/10.1101/2023.12.13.23299905


8 
 

Table 1 shows a list of demographics and clinical data for the moderate AH, and severe AH 1 

participants. 2 

 3 

Analytical approaches, data analysis and causal graphical modeling.  Peptidomic 4 

analysis of patient samples were conducted as recently described with some modifications 5 

(Figure 1B) [21]. That and all other detailed methods are provided in Supplemental Material.    6 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted December 14, 2023. ; https://doi.org/10.1101/2023.12.13.23299905doi: medRxiv preprint 

https://doi.org/10.1101/2023.12.13.23299905


9 
 

Results 1 

For initial analysis, we compared the degradome in moderate (MELD 12-20) and severe 2 

(MELD >20) AH versus healthy controls.  Moderate and severe AH patients did not differ 3 

significantly by age, sex, or race (Table 1). The median age was 51 years, 66% of patients were 4 

male, and 90% were white.  In addition to MELD, severe AH patients had higher MDF (median 5 

58 vs. 18), CTP/child-Pugh score (median 11 vs. 9), bilirubin (median 18.6 vs. 4.9 mg/dl), and 6 

INR (median 2.0 vs 1.4 ) and Ascites score (88.2% vs 51.9% 1-2) than the moderate AH 7 

patients (all p<0.001).  AST and ALT did not differ significantly by MELD score severity.  The 8 

peptidomic dataset consisted of 1,693 primary peptidome features identified by PEAKS X Pro, 9 

corresponding to degradation products of 134 unique proteins. There was significant qualitative 10 

overlap between peptides changed in Moderate and Severe AH (vs healthy control), as 11 

visualized by Venn Diagram (Figure 1C).  Differences in relative peptide abundance between 12 

moderate and severe AH were determined using t-test (on preprocessed TIC-normalized data);  13 

volcano plots visualize these results (Figure 1D).  These data demonstrate a shift toward 14 

increased relative abundances of collagen 1A1 (COL1A1) and collagen 1A2 (COL1A2) 15 

fragments and relative decreases in some fibrinogen A (FGA) peptide fragments in severe AH.   16 

 17 

Feature analysis of the peptidome.  PCA showed that the two largest principal 18 

components account for 8.0% and 5.8% variability between the three participant categories 19 

(healthy, and moderate and severe AH; Figure 2A).  Repeated analysis of healthy versus 20 

moderate and healthy versus severe categories demonstrated a slight increase in PC1 to 21 

explaining 10% of the data separation (Figure 2B).  Comparison of the moderate versus severe 22 

AH samples decreased PC1 to 7% thus suggesting most of the variability in the data, could be 23 

attributed to the differences between healthy versus moderate and healthy versus severe.    24 

 25 
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Impact of AH on plasma peptidome profile: dominance of matrisome-derived peptides. The 1 

matrisome is an expanded definition of the ECM that also incorporates ECM-affiliated proteins 2 

and ECM-modifying proteins.[22]  The gene names associated with all identified peptides 3 

(Supplemental Table S1) were submitted for annotation by matrisome category and division 4 

using the matrix-annotator tool MatrisomeAnalyzer 5 

(https://matrinet.shinyapps.io/MatrisomeAnalyzer/).  The plasma peptidome comparison of the 6 

healthy versus AH samples were enriched in AH samples for peptides belonging to components 7 

of the core matrisome (collagen, ECM glycoprotein, proteoglycan) or the matrisome associated 8 

compartment (ECM regulators, ECM-affiliated proteins, secreted factors; Supplemental Table 9 

S2). The pattern of proteins from significantly differential abundant peptides that belong to 10 

matrisome did not differ with AH severity, comprising 60% of the total peptide signal (vs. healthy 11 

controls).  The majority were defined as core matrisome proteins (collagens, ECM glycoproteins 12 

and proteoglycans) in all comparisons.   13 

 14 

To further assess the molecular differences between the moderate and severe AH, we 15 

performed a supervised oPLS-DA score plot analysis of the plasma peptidome profiles of 16 

individual patients (Figure 2C) grouped by moderate and severe AH.  The variation both within 17 

(7.3%) and between (4.4%) was small suggesting the differences between AH groups are 18 

driven by a small set of peptides.  Variable importance plot (VIP) identified the top 25 peptides 19 

separating moderate and severe AH groups.  In total, 23 of the top 25 peptides were collagen 20 

fragments.  Interestingly, orthogonal partial least squared-discriminant analysis (oPLS-DA) 21 

indicated several overlapping ECM-derived peptides (e.g., degraded fibrinogen and collagen 22 

proteins) were dominant in the top-scored peptides (Figure 2D).  These differences in plasma 23 

peptidomes suggest that biomarkers could be developed.   24 

 25 
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Biological pathway analyses indicate remodeling of hepatic tissue. The significantly different 1 

peptides in AH (moderate AH vs controls, severe AH vs controls) were analyzed using StringDB 2 

[23], which contains physical and functional protein-protein associations from both 3 

experimentally validated and homology-based associations.  Molecular pathways related to 4 

altered metabolism and remodeling were also enriched in Gene Ontology (GO) terms for 5 

Biological Process and Cellular Component (Supplemental Tables S3 and S4).  Alcohol-6 

related hepatitis is a systemic disorder and extrahepatic dysfunction (e.g., skeletal muscle and 7 

kidneys) is a key driver of mortality [24]. Despite this factor, the liver was the most common solid 8 

organ enriched in the data set as determined by Brenda Tissue Ontology (BTO:0000759; 9 

Supplemental Table S5) in the AH-moderate and -severe versus healthy controls (p=5.82×10-10 

11 and 4.90×10-16, respectively), and second only to plasma proteins (e.g., BTO:0000131; p= 11 

2.22×10-14 and 4.39×10-23, respectively).  Interestingly, another tissue that was highly enriched 12 

in the peptidome in AH-moderate and -severe versus healthy controls was determined to be of 13 

fetal origin (BTO:0000449; p=1.56×10-9 and p=7.68×10-8, respectively), which is in-line with 14 

previous studies (e.g., [25]).   15 

 16 

Calpains and MMP-14 proteases are predicted to regulate the observed peptidome. Many 17 

proteases cleave substrates with high specificity only at certain sequence sites.  Thus, 18 

information on the fragment sequence of degraded proteins can inform on proteases that may 19 

have generated this pattern.  Proteasix (proteasix.org) is an open-source peptide-centric tool to 20 

predict in silico the proteases involved in generating these peptides [26]. Figure 2E shows the 21 

relative frequency (node size) with which the top 16 proteases were predicted to generate the 22 

resultant peptidome peptides by this analysis.  The two top predicted upregulated proteases, 23 

Calpain -1/-2 (CAPN1/CAPN2) and MMP-14 (MMP14) were also robustly induced in publicly-24 

available RNAseq expression data from human AH (Figure 2E, node color) [25].  Indeed, there 25 
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was generally good concordance between the Proteasix prediction and the hepatic gene 1 

expression data from that study.   2 

 3 

Peptide features that are directly linked to 90-day survival in AH. The initial analysis was to 4 

categorically describe the gestalt changes in the peptidome caused by moderate and severe AH 5 

(as determined by MELD).  These results may yield useful insight for future mechanistic or 6 

interventive studies.  However, as mentioned in the Introduction, a key limitation in the clinical 7 

management of AH is an accurate tool to predict outcome after clinical presentation, namely 8 

patient 90-day survival.  We hypothesized that representative peptides from the peptidome 9 

could serve as surrogate biomarkers to predict this outcome.   10 

 11 

Identifying differentially abundant peptides and pathways related to AH severity is 12 

undoubtedly useful for future studies. However, for clinical purposes, we were also interested in 13 

identifying a few peptides that could inform AH patient survival in conjunction or independently 14 

of the MELD score. To identify such potential effector peptides, we used (causal) probabilistic 15 

graphical models. Given the relatively small size of our unique dataset, we followed a leave-16 

one-out approach, where we learned 58 graphs (one for each sample that was left out) at 10 17 

different scarcities (see Methods). Then we counted the times, out of a total of 580 models, a 18 

particular variable was independently linked (i.e., belongs to its Markov blanket) to the 90-day 19 

mortality (binarized) variable. The graph models that did not include clinical features had four 20 

peptide fragments that consistently appeared in >90% of the graphs: X83A, X54A, X79C, and 21 

X142A. These fragments correspond to parent genes VIM, APOC1, TUBB, CALD1, respectively 22 

(Supplemental Figure S2). A fifth fragment (X231B, gene BIN2) appears in 76% of the models 23 

(Supplemental Table S6). Three of these genes (CALD1, TUBB, VIM) belong to the 24 

cytoskeleton pathway. 25 

 26 
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When we included the clinical features and the MELD score in our models, the same four 1 

fragments still appeared in >90% of the graphs, but fragment X231B appeared in 24.5% of the 2 

models (Supplemental Table S7). The MELD score was also found in the top informative 3 

features, as it was included in 58% of the models. We noted that MELD and X231B (BIN2) appear 4 

together in only 10 of the models (1.7%), indicating they may contain redundant information 5 

regarding the 90-day survival. Supplemental Figure S8 shows the distribution of the identified 6 

variables within each predicted outcome group (i.e., alive vs deceased).  7 

 8 

Additionally, we performed stepwise regression analysis on the five informative peptides to 9 

further reduce the number of relevant peptides that can be measured in a clinical setting when 10 

predicting the mortality of new patients. We found that only X54A (APOC1), X142A (CALD1), and 11 

X231B (BIN2) are the most relevant features, and these are the features we used for our 12 

predictive model.  13 

 14 

Development of a three-peptide signature for clinical application. In clinical practice it is not 15 

feasible to use whole peptidome measurements as a prognostic test. Therefore, we wanted to 16 

test whether the model we learned from TIC-normalized data can be used to make predictions 17 

about survival when a limited number of peptides are measured. Thus, we simulated a clinical 18 

application of the predictive ability of the 3-peptidome signature as follows. We divided the 19 

dataset into five folds. In each fold, we used 80% of the samples (training set) to select the 20 

optimum parameters of the three peptides (“signature peptides”) through 10X cross-validation. 21 

For the training phase, we used the TIC-normalized data. The performance of the model of this 22 

fold was assessed on the raw measurements of the 20% of the left-out samples (validation set).  23 

 24 

To avoid sample-to-sample variation in these three peptides, we used a small number of 25 

peptides to act as normalization standards. We chose the four most invariant peptides (p-value 26 
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>0.95) with mean raw concentration >14 across all samples (“invariant peptides”) as our 1 

normalization standard. To overcome the problem of spontaneous missing values, normalization 2 

was done based on the median of the 4 invariant peptides. The selected most invariant peptides 3 

were: X38A, X157A, X61A, and X154C, corresponding to parent proteins CO3, LASP1, FETUA, 4 

and ITIH4 respectively. The median of the four invariant peptides was calculated for all samples 5 

with 3 or more non-zero values to normalize the peptides associated with mortality as shown in 6 

Equation 1: 7 

𝑋𝑖|𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =  
𝑙𝑜𝑔2[𝑋𝑖]

𝑚𝑒𝑑𝑖𝑎𝑛(∑ 𝑙𝑜𝑔2[𝑋𝑘]4
𝑘=1 )

                𝐸𝑞. 1 8 

where 𝑋𝑖 represents a model variable and 𝑋𝑘 represents an invariant variable. Both 𝑋𝑖 and 9 

𝑋𝑘 can be non-TIC or TIC-normalized peptides. It is worth mentioning that only one sample had 10 

two non-zero values. In this way, in a potential clinical application, one has to measure only 11 

these 7 peptides (3 signature and 4 invariant peptides). 12 

 13 

Using the above procedure, we learned and compared three logistic regression models. 14 

Model 1 consisted of the MELD score only and served as our baseline model. Model 2 15 

consisted of the three peptidomic features only. Model 3 included the three peptidomic features 16 

and the MELD score. After learning the optimum weights using 10X cross-validation on the 80% 17 

of the data in each fold, we selected the optimum classification threshold as the point of 18 

intersection of sensitivity and specificity (Figure 3A). The threshold value where the sensitivity 19 

and specificity curves intersect was selected as the optimal threshold in each fold 20 

(Supplemental Table S8). The density function for the two categories (alive and deceased) 21 

across thresholds for each model is plotted in Figure 3B. This shows that the model only with 22 

the MELD score did not separate the two distributions well, while the peptidome models (with or 23 

without the MELD score) performed better. The validation results of each cross-validation fold 24 

are shown in Table 2.  Like the initial training analysis (see Supplemental Table S7), we see 25 
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that the 3-peptide model and the composite model (MELD+3-peptides) improve the MELD-only 1 

model in terms of average sensitivity, specificity, and balanced accuracy (Figure 3C). 2 

 3 

For the final model to be used in future clinical settings, we compared the three models, 4 

trained on the full dataset (parameter setting through 10× cross-validation on the TIC-5 

normalized data), and tested them using the raw data (normalized by the median of the invariant 6 

peptides). Confusion matrices, sensitivity, specificity, balanced accuracy, and survival curves, 7 

obtained for each model when the models were tested using non-TIC normalized data, are 8 

presented in Figure 3C. Consistently with the results above, the highest performance measures 9 

were obtained for Model 3 whereas the lowest performance measures were obtained for the 10 

MELD-only model (Model 1). Additionally, Models 2 and 3 split the data into two clusters (i.e., 11 

Predicted Alive and Predicted Deceased) with 12 out of 13 Deceased samples grouped in the 12 

Predicted Deceased cluster. Model 3 outperformed Model 2 in detecting the Alive samples with 13 

a sensitivity of 80%. Finally, the survival curves in Figure 3C show that Models 2 and 3 can 14 

predict the survival of AH patients better than Model 1 which is based on the MELD score only. 15 

The distribution of the final model variables (i.e., X54A, X142A, and X231B) over the predicted 16 

classes obtained by each model is presented in Supplemental Figure S3. Additionally, the 17 

demographics and clinical characteristics of each predicted class in each model are shown in 18 

Supplemental Tables S9-S11. 19 

  20 
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Discussion 1 

Both the AH diagnosis and prognosis could be impacted by the development of more 2 

sensitive and specific surrogate candidate biomarkers. Our group previously demonstrated that 3 

inflammatory stress causes the hepatic ECM to undergo dynamic transitional remodeling [8].  4 

Others have shown that ECM remodeling causes degradation products to be secreted into the 5 

blood and that analysis is a useful prognostic tool in diseases [9].  Therefore, here we aim to 6 

study the plasma ECM peptidome changes with AH severity and to develop a new, clinically 7 

useful method, to predict 90-day survival in AH patients. 8 

 9 

Informatics analysis of these peptides demonstrated an enrichment of ECM fragments in the 10 

AH patient samples that is likely related to the turnover of hepatic proteins.  Six fibrinopeptide A 11 

peptides were more abundant in plasma from moderate AH patients (compared to severe AH), 12 

whereas 27 peptides (24 COL1A1 fragments, one COL1A2, one COL1A3, and one BIN2 13 

peptide fragment) were more abundant in plasma from severe AH patients.  The findings of 14 

increased collagen in more severe AH is in line with previous studies indicating that underlying 15 

fibrosis drives AH prognosis [27].  Using a discriminant analysis (oPLS-DA; Figure 2C) the 16 

moderate and severe AH samples were well resolved into two sample groups and the VIP 17 

scores with a similar pattern (Figure 2D).   18 

 19 

Analysis of this spectrum also identified 2 proteases that appear to be dominant in 20 

generating the pattern associated with AH (CAPN1 and MMP12); the increase in hepatic 21 

expression of these proteases was orthogonally validated in a separate analysis of publicly 22 

available bulk RNA-seq data of livers from AH patients (Figure 2E).  Little is known regarding 23 

the role of MMP14 in liver disease.  Recent work by this group showed that CAPN2 is 24 

progressively induced in post-transplant NASH fibrosis severity [28].  These proteases have not 25 
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been identified to be involved in AH prior to this work.  Future studies should investigate this 1 

finding further. 2 

 3 

Besides investigating the molecular mechanisms of AH progression, we also wanted to 4 

develop a predictor for 90-day survival (outcome) using PGM. Significantly, the variables 5 

selected through this process provide independent information about 90-day survival, and 6 

collectively are the most informative variable set, even though some of them, individually, may 7 

not appear to be significantly different in the two categories (alive/deceased; Supplemental 8 

Figure S2). The final models showed that the 3-peptide model was equally accurate in 9 

predicting 90-day mortality as the composite one (MELD+3-peptides; Figure 3C). One peptide 10 

(APOC1) has been shown to be a marker of AH severity in a recent plasma proteomic study 11 

[29].  The other two peptides (CALD1 and BIN2) are both cytoskeletal proteins that have not 12 

been previously associated with AH and warrant further investigation.   13 

 14 

While our goal was to differentiate moderate and severe AH and AH outcome (i.e., 15 

mortality), we acknowledge the ratio of HC to AH in our cohort was imbalanced in “n” values and 16 

this may be insufficient to adequately power the study.  Additionally, the potential for a “clinical 17 

site effect” may be present, although the AH samples were collected from multiple institutions.  18 

Despite these study limitations, the statistical modeling and informatics filtering of the 19 

peptidomics data supports the hypothesis that the ECM plasma peptidome is associated with 20 

the AH spectrum. These patterns of select peptidome “features” can be investigated further in 21 

future studies as biomarkers for AH severity and outcome.   22 

 23 

Another important consideration for surrogate biomarker discovery is the impact of the 24 

sample preparation method on the peptidome.  Here, we used K3EDTA plasma, which inhibits 25 

coagulation-driven proteases that are dependent on divalent cations. K3EDTA is an 26 
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anticoagulant of choice for plasma proteomic studies, in general, and peptidomics in particular 1 

[30].  Although direct comparisons between plasma preparations were not performed, several of 2 

the peptides identified as key biomarkers for AH outcome in this study (e.g., vimentin) have an 3 

affinity for heparin [31], and thus may not be present in studies involving heparinized plasma.  4 

Therefore, these study results are applicable at this point with use in studies of EDTA-based 5 

plasma samples.  6 

 7 

Taken together, the results of this study indicate that analysis of the plasma peptidome can 8 

yield useful new information on mechanism and outcome prediction in AH.  This study validates 9 

previous mechanistic findings (e.g., ECM remodeling and fetal-like reprogramming), as well as 10 

identifies new potential “players” at the level of degraded proteins and proteases that may 11 

generate these signals.  Moreover, our curated algorithm identified by CGM proved to be 12 

superior to MELD both in sensitivity and specificity to predict mortality in AH.  Future studies will 13 

investigate these prospects further. 14 

  15 
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Table 1: Baseline Demographic and Characteristics by Disease Severity 1 

Variable 
All 
N=63* 

Moderate*** 
N=28 

Severe*** 
N=34 p-value 

Age (in years) N=62 N=28 N=34 0.64 

Median (IQR) 50.5 (44.0 : 57.0) 51.0 (44.5 : 58.0) 50.0 (41.0 : 56.0)  

Sex N=62 N=28 N=34 0.43 

Male 41 (66.1%) 17 (60.7%) 24 (70.6%)  

Female 21 (33.9%) 11 (39.3%) 10 (29.4%)  

Race N=62 N=28 N=34 0.12 

White 56 (90.3%) 28 (100.0%) 28 (82.4%)  

Black/African-American 4 (6.5%) 0 (0.0%) 4 (11.8%)  

Asian/Asian-American 1 (1.6%) 0 (0.0%) 1 (2.9%)  

Other 1 (1.6%) 0 (0.0%) 1 (2.9%)  

LTDH N=51 N=23 N=28 0.18 

Median (IQR) 26.0 (10.0 : 34.0) 30.0 (15.0 : 36.0) 16.5 (10.0 : 33.5)  

MELD Score N=62 N=28 N=34 <0.001 

Median (IQR) 22.0 (17.0 : 26.0) 16.0 (13.0 : 19.0) 26.0 (24.0 : 28.0)  

Maddrey's Discriminant Function N=61 N=27 N=34 <0.001 

Median (IQR) 42.3 (18.5 : 59.7) 18.0 (9.5 : 26.5) 58.0 (47.9 : 66.3)  

CTP/Child-Pugh Score N=61 N=27 N=34 <0.001 

Median (IQR) 10.0 (9.0 : 11.0) 9.0 (8.0 : 10.0) 11.0 (10.0 : 12.0)  

AST (SGOT) (IU/L) N=62 N=28 N=34 0.14 

Median (IQR) 113.5 (85.0 : 178.0) 109.0 (72.0 : 160.0) 126.0 (97.0 : 186.0)  

ALT (SGPT) (IU/L) N=62 N=28 N=34 0.64 

Median (IQR) 41.0 (29.0 : 66.0) 41.5 (27.5 : 72.5) 39.0 (32.0 : 64.0)  

Alkaline phosphatase (IU/L) N=62 N=28 N=34 0.32 

Median (IQR) 150.5 (119.0 : 207.0) 144.0 (98.0 : 201.5) 156.5 (133.0 : 209.0)  

Bilirubin (mg/dL) N=62 N=28 N=34 <0.001 

Median (IQR) 13.6 (5.2 : 18.8) 4.9 (2.9 : 7.1) 18.6 (14.1 : 23.4)  

Creatinine (mg/dL) N=62 N=28 N=34 0.07 

Median (IQR) 0.7 (0.6 : 1.1) 0.7 (0.5 : 0.9) 0.8 (0.6 : 1.3)  

Albumin (g/L) N=62 N=28 N=34 0.09 

Median (IQR) 2.6 (2.3 : 2.9) 2.6 (2.4 : 3.0) 2.4 (2.3 : 2.7)  

Ascites N=61 N=27 N=34 0.001 

0 17 (27.9%) 13 (48.1%) 4 (11.8%)  

1 37 (60.7%) 14 (51.9%) 23 (67.6%)  

2 7 (11.5%) 0 (0.0%) 7 (20.6%)  

Encephalopathy N=61 N=27 N=34 0.008 

0 46 (75.4%) 25 (92.6%) 21 (61.8%)  

1 14 (23.0%) 2 (7.4%) 12 (35.3%)  
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Variable 
All 
N=63* 

Moderate*** 
N=28 

Severe*** 
N=34 p-value 

2 1 (1.6%) 0 (0.0%) 1 (2.9%)  

Patients PT/INR N=61 N=27 N=34 <0.001 

Median (IQR) 1.7 (1.4 : 2.0) 1.4 (1.2 : 1.6) 2.0 (1.7 : 2.2)  

Total Protein (g/dL) N=62 N=28 N=34 0.14 

Median (IQR) 6.0 (5.5 : 6.6) 6.3 (5.6 : 7.4) 5.9 (5.5 : 6.4)  

AUDIT Total N=55 N=26 N=29 0.54 

Median (IQR) 24.0 (18.0 : 29.0) 23.0 (16.0 : 29.0) 25.0 (19.0 : 29.0)  

Vital status at 90 days** N=58 N=26 N=31 0.003 

Alive 45 (77.6%) 25 (96.2%) 19 (61.3%)  

Dead 13 (22.4%) 1 (3.8%) 12 (38.7%)  

 1 

*Clinical information including MELD score used for Severe and moderate classification was 2 

unavailable for one participant 3 

** 90-day vital status was missing for five participants. 4 

*** Moderate: MELD score 12-20; Severe: MELD score > 20. 5 

 6 

Patient baseline and clinical characteristics were summarized by disease severity using 7 

frequencies and percentages for categorical variables and using median and 25th and 75th 8 

percentiles (referred to as IQR) for continuous variables. The distribution of categorical variables 9 

across moderate and severe AH patients was compared using chi-square or Fisher’s exact tests 10 

whereas that of the continuous variables was compared using Wilcoxon’s test. 11 

 12 

Abbreviations: ALT, alanine aminotransferase; AST, aspartate aminotransferase; AUDIT, 13 

alcohol use disorders identification test; CTP, Child-Turcotte-Pugh; NR, international normalized 14 

ratio; LTDH, lifetime drinking history; MELD, model for end-stage liver disease; PT, prothrombin 15 

time.   16 
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Table 2: Causal graphical modeling validation results. Sensitivity, specificity, and accuracy 1 

values are provided for each fold of each model, while average values are also given. Red/bold 2 

font designates the maximum average value of each metric. 3 

 Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average 

Model 1  
(MELD only) 

Sensitivity 0.8889           0.8889           0.8889           0.4444 0.6667           0.7556 
Specificity 1.0000 0.3333 0.3333 1.0000 1.0000 0.7333 
Accuracy 0.9444 0.6111 0.6111 0.7222 0.8333 0.7444 

Model 2  
(Peptides only) 

Sensitivity 0.7778 0.8889           0.6667           0.6667   1.0000                    0.8000 
Specificity 1.0000 0.6667   0.6667 0.5000 1.0000 0.7666 
Accuracy 0.8889 0.7778 0.6667 0.5833 1.0000 0.7833 

Model 3  
(Peptides + MELD) 

Sensitivity 0.8889           0.8889           0.8889           0.7778                     0.7778 0.8444 
Specificity 1.000 1.0000   0.3333 0.5000 1.0000 0.7666 
Accuracy 0.9444 0.9444   0.6111 0.6389 0.8889 0.8055 

 4 

 5 

 6 

  7 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted December 14, 2023. ; https://doi.org/10.1101/2023.12.13.23299905doi: medRxiv preprint 

https://doi.org/10.1101/2023.12.13.23299905


28 
 

Figure Legends 1 

Figure 1.  Study design and peptidome.   2 

Panel A: Consort Diagram.   3 

Panel B: Analytic workflow.  Plasma proteins were precipitated with trichloroacetic acid (TCA). 4 

The peptidome was concentrated and desalted using solid phase extraction prior to data 5 

collection by high resolution, high mass accuracy UPLC-MS.  Database and de novo MS 6 

spectral assignments were made using Peaks Xpro.  Raw peptide abundances were normalized 7 

based on total extracted ion chromatograms (XIC) and then preprocessed within Metaboanalyst.  8 

Data were mined by univariate and multivariate statistical methods for differentially abundant 9 

peptides and peptide groups, for Gene Ontology (Panther), parent protein matrisomal 10 

composition (MatrisomeAnnotator) and for protease involvement (Proteasix). Machine learning 11 

methods were initiated with patient-specific TIC normalized peptidome and clinical scoring data 12 

(e.g., MELD, 90day mortality).  Data were preprocessed to address missing values and leave-13 

one out causal graphs to building a selected variables data set.  The performance of the 14 

selected variables with or without MELD scores was compared to MELD alone using a 5-fold 15 

validation and logistic regression to establish model parameters and prediction of 90-day 16 

mortality in AH.   17 

Panel C: Plasma peptidome analysis by Venn diagram for prevalence (AH moderate vs. AH 18 

severe).   19 

Panel D: Volcano plot for significant differences (FC >±1.5; p<0.05).  Significant peptide data 20 

points were labeled using the gene name.  The analysis defines shifts of increased 21 

fibrinopeptide A (FBA) in moderate and increased collagen (e.g., CO1A1) peptides in severe 22 

AH.   23 

 24 

Figure 2.  Plasma peptidome features analysis.  25 
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Panel A:  PCA analysis showing principal components PC1 and PC2 for self-sorting of healthy 1 

control (green), moderate AH (blue) and severe AH (red) samples as defined by 95% 2 

confidence intervals.  Healthy control samples are resolved from AH samples.  3 

Panel B:  Two-group analysis of moderate AH versus severe AH samples demonstrates 4 

emerging self-sorting properties of the peptidome.  5 

Panel C:  oPLS-DA analysis comparing AH severity.  Complete separation of the moderate and 6 

severe AH peptidomes is achieved using discriminate analysis.  7 

Panel D: Major peptide features sorted by oPLS-DA of AH samples are prolyl-hydroxylated 8 

CO1A1 fragments (severe AH) and FBA fragments (moderate).  Peptide fragments defined by 9 

parent protein Gene Name, amino acid (start, stop) location, and site-specific modifications: *, 10 

prolyl hydroxylation; a, acetylation; d, dehydration 11 

Panel E:  Cluster analysis of the peptidome/degradome in AH.  The peptides significantly 12 

increased in AH were analyzed by the Proteasix (http://www.proteasix.org) algorithm using a 13 

positive predictive value (PPV) cut-off to 80%. Protein-protein interaction network analysis of 14 

regulated proteomic data sets (q-value <0.05) was performed using Search Tool for the 15 

Retrieval of Interacting Genes/Proteins, STRING v11,[23] with the highest confidence score 16 

(0.900).  The resultant matrix of both Proteasix and STRING analyses were visualized using 17 

Cytoscape v3.9.1.  Node sizes of the predicted proteases represented the relative frequency 18 

with which the top 16 proteases were predicted to mediate the observed cleavage (0.2-25%).  19 

Node shape for the proteases represents protease family subtype: serine (diamond), cysteine 20 

(square), aspartyl (parallelogram), and metalloproteases (octagon).  Node color for protease 21 

corresponds to the Log2FC (vs healthy control) of hepatic mRNA expression from previously 22 

published work.[25] Raw data and metadata are publicly available in the Database of 23 

Genotypes and Phenotypes of the National Library of Medicine under the accession study code 24 

phs001807.  Node sizes of the peptides represented the relative number of unique peptides (1-25 

61) identified from each parent protein.  Node colors of the peptides represented the median 26 
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Log2FC vs healthy controls for all peptides derived from that parent protein. Solid lines depict 1 

connections between the parent proteins identified by STRING; broken lines depict predicted 2 

protease events identified by Proteasix.   3 

 4 

Figure 3. CGM modeling of the peptidome and clinical features to predict AH outcome.   5 

Panel A: Sensitivity and Specificity of the 5-fold cross-validation during the prediction phase of 6 

model development.  X-axis: the threshold used in the parameter sweep (range 0.1-1.0). The 7 

intersection of sensitivity and specificity was used to determine the optimal threshold for each 8 

fold in each model.  9 

Panel B:  Density distribution of 90-day survival classification over different cutoff probability 10 

thresholds. Model 2 and Model 3 offer better separation of the two categories than the MELD 11 

score alone. 12 

Panel C:  Comparison of model performance using the complete dataset. The tables show the 13 

number of correctly and incorrectly classified samples. Sensitivity, specificity, and balanced 14 

accuracy summarize these results. Kaplan-Maier survival plots depict the discrimination ability 15 

of the three models. 16 
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 7 

Figure 1. Sayed et al.  8 
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Figure 2. Sayed et al.  6 
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 1 

Figure 3.  Sayed et al. 2 
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