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Abstract 
 
Introduction 
There is increasing use of knowledge graphs within medicine and healthcare, but a 
comprehensive survey of their applications in biomedical and healthcare sciences is lacking. 
Our primary aim is to systematically describe knowledge graph use cases, data 
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characteristics, and research attributes in the academic literature. Our secondary objective is 
to assess the extent of real-world validation of findings from knowledge graph analysis.  
 
Methods 
We conducted this review in accordance with the PRISMA extension for Scoping Reviews to 
characterize biomedical and healthcare uses of knowledge graphs. Using keyword-based 
searches, relevant publications and preprints were identified from MEDLINE, EMBASE, 
medRxiv, arXiv, and bioRxiv databases. A final set of 255 articles were included in the 
analysis. 
 
Results 
Although medical science insights and drug repurposing are the most common uses, there is a 
broad range of knowledge graph use cases. General graphs are more common than graphs 
specific to disease areas. Knowledge graphs are heterogenous in size with median node 
numbers 46 983 (IQR 6 415-460 948) and median edge numbers 906 737 (IQR 66 272-9 894 
909). DrugBank is the most frequently used data source, cited in 46 manuscripts. Analysing 
node and edge classes within the graphs suggests delineation into two broad groups: 
biomedical and clinical. Querying is the most common analytic technique in the literature; 
however, more advanced machine learning techniques are often used.  
 
Discussion  
The variation in use case and disease area focus identifies areas of opportunity for knowledge 
graphs. There is diversity of graph construction and validation methods. Translation of 
knowledge graphs into clinical practice remains a challenge. Critically assessing the success 
of deploying insights derived from graphs will help determine the best practice in this area.  
 
 
Introduction 
 
Context and importance of knowledge graphs 

Data representation plays a vital role in advancing medicine: efficient organisation of 
increasingly large datasets enables analysis to robustly generate novel insights. (1) (2) An 
increasingly important representation method is the knowledge graph (KG). KGs consist of 
the entities, relationships, and facts in a given domain, captured as a graph of nodes 
(representing entities or concepts) and edges (indicating the relationships or associations 
between them), often enriched with attributes, classifications, and semantic meanings. (3) 

Data representation through KGs has a historical foundation dating back multiple decades. 
Key accelerants to adoption were the development of Resource Description Framework 
(RDF) and Web Ontology Language (OWL) standards for the semantic web and Google’s 
implementation of knowledge graphs in its search algorithms. (3) (4) KGs offered distinct 
advantages over traditional relational databases, including greater schema flexibility and the 
capacity to capture nuanced capture of edge characteristics and relationships, making them 
valuable for knowledge retrieval analytical purposes such as recommender systems. (3) Early 
uses of KGs within healthcare included theoretical conceptualizations of clinical reasoning 
(5) and in research literature representation. (6) More recent applications in biomedicine and 
healthcare have included identifying drug repurposing candidates and generating novel 
biomedical hypotheses by established and early-stage pharmaceutical companies such as 
AstraZeneca (7) and Benevolent AI. (8)  
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Motivation for review  
Given the increasing use of KGs in biomedical and healthcare sciences, this review presents a 
comprehensive survey of research literature to detail the use of KGs within this domain. 
Many other reviews discuss the history of KGs and the methodologies used in their 
construction and analysis. There are also reviews that categorize uses for knowledge graphs. 
(3) This prior work includes systematic overviews of specific methods or analysis archetypes 
for KGs, for example, KG reasoning, (9) KG completion, (10) and relational machine 
learning. (11) There have also been reviews on data quality and methodology in KG 
construction across uses, including KG completeness (12) and generative KG construction. 
(13)  
 
There are commentaries and reviews for specific use cases within biomedicine, such as drug 
repurposing and adverse drug reactions (14), and focussed reviews, for example, on 
bioinformatic graphs and their analyses without a systematic survey of use cases. (15) In 
addition, some reviews have surveyed use of KGs in specific disease areas. (16) There are 
also commentary articles that outline potential broader use cases for biomedical KGs. (17)  
 
Despite this work, no systematic survey of use cases for knowledge graphs within the 
biomedical and healthcare sciences has been conducted. Our primary aim is to address this 
gap by providing a landscaping of disease areas in which knowledge graphs are used, and 
how they are used. We survey characteristics of these manuscripts, including author 
affiliations and funding. We also review graph characteristics: including node class and edge 
class numbers, node and edge numbers, node class domains and whether graphs have been 
made openly available. We review techniques used in KG analysis.  
 
Our secondary research question examines the extent to which findings or insights from 
knowledge graphs been tested and validated in the real-world. There has been no systematic 
survey KG validation in the biomedical literature. KG validation includes the process of 
ensuring the accuracy of the data within a KG, as well as verifying insights derived from the 
KG. Validation is often divided into two  categories: internal and external; however, these 
terms do not have standardized definitions. Consequently, in this article, we use the terms 
'inside graph validation' and 'outside graph validation'. Inside graph validation assesses 
robustness of the graph based on the graph data itself. This includes hold-one-out studies or 
cross-validation, calculation and assessment of performance scores, or analysis with multiple 
algorithms on the same graph and comparing results.  Outside graph validation refers to 
testing of insights in a different dataset, for example through in vitro testing or a clinical trial.  
 
Aims of the review 
The primary aim of this review is to establish a systematic description of the use cases, data 
characteristics, and research characteristics in current KG implementations in the academic 
literature. The secondary aim is to determine the extent to which findings or insights from 
KGs have been tested and validated in the real world. 
 
 
Methods 
 
Protocol 
We were guided by the PRISMA extension for Scoping Reviews checklist. (18) A protocol 
was written a priori and posted on the website OSF on 5 November 2021 
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(https://osf.io/etg6f). We limited our search to only academic literature (i.e., publications and 
preprints), and did not survey other sources of insights such as patent databases. This topic is 
suitable for a scoping review as it represents an exploratory mapping of the literature, where 
it was not possible to delineate how best to categorise manuscripts a priori. 
 
Literature Search  
Relevant studies were be identified from an academic search on databases for biomedical 
literature. We used MEDLINE and EMBASE (via Ovid), as well as medRxiv, arXiv (section: 
quantitative biology) and bioRxiv, employing free-text searches for keywords. Our search 
strategy was as follows: "knowledge graph" OR "graph neural network" OR "graph 
convolutional network" This was an adaptation of the search methodology outlined in a 
similar scoping review by Chatterjee et al. (16) The search strategy was agreed upon by the 
authors (SB, JZ, HA, NS).  
 
Inclusion and exclusion criteria 
Publications and preprints available until 21 November 2021 written in English were 
included. Manuscripts were required to (i) describe the creation of a KG or the use a KG to 
generate insights; (ii) use multimodal graphs (i.e. graphs with more than one discrete node 
class); and (iii) directly mention medical insights and/or health outcomes in humans.  
 
We excluded (i) neuroimaging graph theory and graph topology manuscripts, unless KGs 
were explicitly mentioned within the manuscript;(ii) papers analysing animal models; (iii) 
articles about traffic road safety where health outcomes were not explicitly mentioned; (iv) 
manuscripts using graph neural network or graph theory which did not make use of a KG; (v) 
reviews and commentary articles, opinion pieces, editorials, and any other articles that did 
not report original research; (vi) single modality graphs with only one node class (as defined 
by the authors); and (vii) papers not in English language. Review contents were used to guide 
additional literature discovery.  
 
Data Collection 
Duplicate manuscripts were removed using Endnote and Rayyan.ai. Two reviewers (JZ, SB) 
carried out a title and abstract screening. Papers passing the abstract screen underwent a full-
text screening by two reviewers (SB and one of JZ, YA, VS, DM, EF, and MA). Data 
extraction was carried out by two reviewers (SB and one of JZ, YA, VS, DM, EF, and MA).  
 
For manuscripts passing full-text screen, we collected the following data:  

(i) Demographics: (1) domain (a  preliminary categorisation was refined iteratively 
by SB and JZ, with final categorization consisted of: medical science insights, 
drug repurposing, literature representation, drug interactions and toxicity, 
diagnostics, drug discovery, electronic health record (EHR) data representation, 
public health, non-EHR patient data representation, risk prediction, and drug 
related uses outside of discovery, repurposing, interactions and toxicity) (2) 
affiliation of authors (institution and country) (3)  disease-area (e.g. refined 
iteratively categorized by SB and JZ, final categorisation included: general/non-
disease specific, infectious diseases (Covid-19, cancer, neurology, mental health, 
diabetes/endocrine, rare disease, respiratory disease) 

(ii) Graph characteristics and data sources: (1) public availability of the KG (2) node 
and edge types (e.g. genes, drugs, proteins, etc.) (3) named data sources (e.g. The 
Cancer Genome Atlas, MEDLINE scraping, private EHR data, etc.) (4) size of the 
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graph (the number of nodes, edges, node classes and edge classes, if included in 
the manuscript)  

(iii) Analysis: (1) analysis methodology (see categorisation of analysis methodology in 
Supplementary Methods section for further details) (2) Validation: whether there 
was inside graph or outside graph (downstream) validation of insights (3) Future 
plans/next steps in the analysis   

Descriptions of the categories for use case and analysis methodology are summarized in the 
Supplementary Methods section. 
 
Regarding validation: inside graph validation refers to efforts to validate findings by dividing 
data into training, testing and validation datasets, by holding out or adding in datasets to 
check robustness of conclusions, using cross-validation techniques when running models, or 
using multiple analysis methods and comparison of performance scores. Outside graph 
validation refers to additional analyses to test findings generated from the original graph, 
which may include testing hypotheses using in vitro studies, animal experiments, human 
observational data, or clinical trials.  
 
Article filtering 
Articles were filtered through abstract and full-text screen, as shown by the flow chart in 
Figure 1.  
 
 
Results 
 
This section first presents demographic features of the surveyed manuscripts, including a 
description of manuscript numbers over time, use case, and disease area categorisation, 
author affiliations and funding sources. The graph characteristics session provides descriptive 
statistics between node and edge numbers, and node and edge class numbers in graphs used 
by the articles. A meta-graph of node classes is used to provide further information on node 
class characteristics from included graphs. A summary of data sources used in graph 
construction is presented. Finally, graph analysis techniques, validation methods and stated 
plans for future work are summarised.  
 
Manuscript demographics 
 
Figure 2 demonstrates the trend in the number of manuscripts that were preprinted/published 
each year. There is an increasing number of publications in this area; furthermore, the trend 
has accelerated in recent years.   
 
Figure 3 represents the categories of biomedical and healthcare knowledge graphs identified, 
grouped by use case. The two most common use cases are medical science insights unrelated 
to drugs or diagnostics (74 studies) and drug repurposing (57 studies), which are both twice 
as frequently seen as the third most common use case of literature representation (25). Papers 
categorised in the use case ‘medical sciences insights’ develop predictions or hypotheses 
regarding scientific knowledge. Examples might include protein-protein interactions, genes 
implicated in diseases, or a clustering of symptoms. Papers categorised as ‘literature 
representation’ include mapping and representation of research literature. This category 
includes bibliometrics and excludes papers which would be better categorised under other use 
cases such as diagnostics, drug repurposing, or other drug-related use cases. There is a broad 
array of use cases which include biomedical (medical science insights, drug repurposing, 
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literature representations, drug interactions and toxicity, drug discovery, and drug related-
other), patient related (EHR representation, non-EHR patient data) and population health 
management (diagnostics, public health, risk prediction). Descriptions of the use case 
categories are summarized in the Supplementary Methods section.  
 
Figure 4 demonstrates the therapeutic area categorisation of identified manuscripts. General 
KGs are the most common category (115 manuscripts) and exceed KGs representing any 
individual therapeutic area. The most common therapeutic area was infectious disease (47 
manuscripts); however, this was driven mainly by COVID-19 (41 manuscripts); KG for other 
infectious diseases (6 manuscripts) were less common. Outside of infectious diseases, 
manuscripts using KGs for oncology (26 manuscripts) and neurology (13 manuscripts) were 
also common. Graphs were often constructed to represent a single disease rather than a whole 
disease area.  
 
Table 1 demonstrates an aggregated count of country of primary affiliation for first and last 
authors of manuscripts. The United States and China are the top two contributors, with 162 
and 155 manuscripts, respectively, followed by other European and North American 
countries. After USA and China, the next highest author count is from the UK (33 authors).  
 
Table 2 demonstrates the breakdown of funding declarations within the manuscripts passing 
review screening. Each manuscript can have more than one archetype of funding source. 
Most manuscripts in this area receive funding for research from government or government 
funded bodies. More manuscripts receive commercial funding than non-governmental non-
profit funding in this area. Most papers don’t have commercial affiliations. Tables 3 outlines 
the breakdown of companies funding KG research. There is not one single dominant 
company in this area. Multiple different company types have funded research in this area, 
including big technology companies, biopharmaceutical companies, consultancies and start-
ups, with no single sector dominant. 
 
Graph characteristics 
 
38.9% of manuscripts featured graphs that were open sourced. Our definition of open source 
is that the graph was downloadable or otherwise freely and openly available. 
 
Table 4 provides summary statistics for unique node and edge classes within each graph. 
More manuscripts reported node classes than edge classes. In order to standardize the 
treatment of data across manuscripts reporting edge classes in a heterogenous manner, all 
edges between two node classes were counted as a single edge class. The skew and kurtosis 
of node and edge class counts suggest non-normally distributed data for both, so the median 
interquartile range (IQR) and range are presented. There is a wide range of node class 
numbers (2-41), but the median and IQR suggest this is due to outlying values. The mean 
class number is 6.0 and median is 4. The mean edge class number is 8.0, and the median is 4. 
The IQR for edge class numbers is 3 to 7. The range spans from a minimum of 1 to a 
maximum of 210, influenced by outlying values. 
 
Table 5 summarises node and edge numbers reported by manuscripts. Fewer manuscripts 
report node and edge numbers compared to node class and edge class numbers. For node and 
edge numbers, the skewness and kurtosis of the datasets together suggest non-normal 
distribution, so median IQR and range are presented. The node number dataset includes 123 
reports, and the edge numbers include 115 reports. The mean number of nodes across in KGs 
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used by manuscripts is approximately 3 016 830, while the median is 46 983. The node 
number IQR is 454 533 but the range is higher at 180 199 788, suggesting outlier values. The 
mean number of edges across the KGs is 152 556 781, higher than the median which is 906 
737, demonstrating skewed distribution. The edge number upper IQR is 9 828 637 but the 
range is higher at 13 999 999 762, due to outlier values. The ratio of median edge number to 
median node number was approximately 19, which gives some indication of the connectivity 
within graphs.  
 
Figure 5 summarizes information about common node classes and their relations into a meta-
graph. The nodes are aggregated node class categories extracted from the manuscripts, and 
edges represent the node class-node class relationships that are extracted from the 
manuscript. The methods for generation node class groupings and graph visualisation are 
further detailed in the Supplementary Methods section. They demonstrate that disease-gene 
and disease-drug edges are most commonly seen. On visual inspection, the graph separates 
into two groups centred upon disease concepts: biomedical nodes (here used to mean 
concepts more related to molecular biology, ‘wet lab’ science or bioinformatics) and clinical 
nodes (here used to mean concepts predominantly patient related or more commonly 
encountered in the patient facing context).  
 
Data sources 
 
Table 6 provides a list of all datasets where five or more manuscripts used the source. 
DrugBank emerges as a frequently used data source, with utilization in 46 manuscripts, 
underscoring its significance in drug-related KG research. PubMed and UniProt also exhibit 
high usage, appearing in 26 KGs each, reflecting the importance of literature and protein 
data. 
 
Graph analysis 
 
Table 7 summarizes counts of analysis technique archetypes used in KG analysis in the 
identified manuscripts. There are many different methodologies being used in KG analysis, 
of varying sophistication. We observed a diverse range of approaches in KG research. The 
most prevalent method is graph querying, used in 52 instances, followed by graph embedding 
(43) and Graph Convolutional Networks (GCNs) (33). 
 
Table 8 presents the breakdown of validation methods employed in the identified 
manuscripts. Most papers (120) focus on inside graph validation techniques, such as data 
splitting, cross-validation, and algorithm diversity to ensure robustness. Less than a third of 
papers (39) validate findings outside of the graph. Such validation techniques may include in 
vitro testing, or clinical trials. 37 manuscripts combine within and outside graph validation 
approaches.  

Table 9 provides a summary of planned or suggested next steps that authors have stated in 
Discussion sections of their manuscript The most frequently discussed future directions are 
data and algorithms, with 99 and 59 counts. Categories aligned with validation (clinical trials, 
other validation) feature less frequently at 3 and 11 counts. 

Table 10 provides a summary of Tables and Figures as related to aims of the scoping review, 
as recommended by PRISMA-ScR guidelines. (18) 
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Discussion  
 
Findings and implications 
KGs are becoming increasingly used in biomedical and healthcare sciences. The most 
prevalent applications of KGs are in medical science insights and drug repurposing – this is 
reflected in the common use of drug and protein datasets in KG construction. Research 
activity is concentrated in North America, China, and Europe. Location of research, together 
with location of data sources, contributes to bias in dataset curation for openly available 
datasets. (19) Despite significant commercial interest, the majority of academically published 
research in this domain continues to be government funded. 
 
The variation in KG utilization suggests that there are potential opportunities in use cases and 
disease/therapeutic areas where knowledge graphs have seen limited use. KGs tend to either 
focus on specific diseases or remain highly general, with fewer encompassing entire 
therapeutic areas or multiple domains. A challenge arises from enrichment of KGs with data 
for a specific disease; this approach may improve predictions when analysing a disease-
relevant question by adding relevant contextual data, but may introduce bias into the graph. 
(20) (21) 
 
KGs exhibit substantial heterogeneity in terms of size, as reflected by wide variation in node 
and edge counts, as well as counts of node and edge classes. This may in part reflect the 
diverse scope and use cases for knowledge graphs or represent limitations in available storage 
and compute for analysis but may also represent a lack of known best practice regarding 
optimal KG size and connectivity.   
 
This study reveals a wide array of data sources used in KG construction, with a preference for 
open datasets over closed ones. Despite the diversity, there is a clear concentration with some 
datasets, for example DrugBank, used frequently. Even the ostensible diversity hides a 
network of dependencies where certain datasets rely on others for primary data sources. For 
example, Open Targets uses many sources, including UniProt, STRING, Reactome, and 
ChEMBL. (22)  More generally, there are biases stemming from input data. For example, 
there is a correlation between information available for bio-entities and NIH funding for 
research into those entities. (23) 
 
Figure 5 suggests that on visual inspection, there is a grouping of biomedical node classes 
(here taken to mean concepts more often found in molecular biology or other ‘wet lab’ 
science or bioinformatics) and a grouping of clinical node classes (here used to indicate 
concepts predominantly patient-related or more commonly encountered in the patient facing 
context).  
 
This grouping of biomedical and clinical node classes may be due to different data pipelines 
that would be used to generate node classes in each cluster and the relative ease of capturing 
some concepts and edges in one type of graph versus the other.  
 
Biomedical node classes often use curated datasets where data has been methodically 
organized, corrected, annotated, and standardized through mapping and harmonizing to 
various ontologies and vocabularies. (24) This data is more likely to be available in the public 
domain through publications, hence the denser connectivity in this cluster.  
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In contrast, the construction of graphs using clinical node classes is more challenging. (25) 
First, EHR and public data backends are more individualised. For example, different 
hospitals may use different coding ontologies, electronic health records, and file storage types 
and methods from those systems. This lack of common standards makes transfer between 
health applications challenging.  Second, healthcare data tends to be noisy, with large 
amounts of missingness and censoring, including loss of follow-up, incomplete data 
recording from patients who present to a care setting, and challenges in capturing phenomic 
data such as lifestyle and diet. This results in systematic biases in data. Third, there is a data 
structuring challenge. EHRs contain large amounts of unstructured text, which requires 
processing and may need either additional, highly expensive manual curation or improved 
automated curation, for example, through large language models. (26)(27) Non-text data such 
as radiologic and pathologic images would require transformation for ingestion to preserve 
underlying, complex features and latent variables that might be lost in simple feature 
extraction. Fourth, regulation may require higher privacy safeguards to ensure that released 
data does not contain patient details. In the USA, this is governed through the Health 
Insurance Portability and Accountability Act (HIPAA).  
 
Aside from comparisons between graphs predominantly using biomedical or healthcare node 
classes, the breadth of use cases depends on graph design, which involves dataset inclusion, 
schema flexibility, and expansiveness of relevant vocabularies and ontologies. Graphs may 
also have broad coverage of diseases or be a narrower representation of a single disease or 
disease group. Though it is likely from current evidence that graph performance will scale in 
size, performance has also been demonstrated to improve with context. (28) This means that 
it is likely no single best all-purpose graph. Instead, there is a judgement based on the graph 
use-case.  
 
The prevalence of graph querying in KG research is surprising given the simplicity of the 
approach. However, this may be appropriate to the research objectives of those manuscripts if 
this is for data exploration or transparency in insight generation. Graph machine learning 
(ML) can perform a wider variety of tasks, for example, link prediction, node classification, 
or community detection. Graph ML can help mitigate data biases, for example, through graph 
rewiring or regularization techniques.  
 
Few manuscripts include outside graph validation (Table 8) or explicitly suggest outside 
graph validation as further work (Table 9).  This is concerning but understandable. There 
may be constraints on carrying out in vitro or in vivo experimental work or trials due to 
budgetary restrictions, regulatory constraints, lack of domain expertise, or challenges 
coordinating cross-disciplinary work. Outside graph validation would help translate insights 
from KGs into real-world applications.  
 
Future work 
There are several areas for further research. First, best practice in KG construction, especially 
concerning graph size, remains unresolved. Future reviews should further analyze specific 
use cases of KGs to interrogate tailored outcome measures for those graphs. Identifying 
factors associated with successful outcomes could inform best graph construction and 
analysis practices. In addition, it would be helpful to compare the effectiveness of KGs 
against alternative techniques for data source integration. Second, investigating ways to 
enhance the integration of -omics data and patient data within KGs could advance 
personalized medicine and disease understanding. Third, as the paper selection for this 
review concluded before the rising prevalence of generative AI and large language models 
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(LLMs), an exciting next phase in the field involves understanding how to integrate KGs with 
these techniques, presenting new possibilities for knowledge representation and utilization. 
(29) (30) Advancements in LLMs will facilitate the incorporation of unstructured data 
sources such as EHR data. Fourth, given the low percentage of graphs that are open sourced 
to consider how best to encourage sharing and coordination of KGs in this domain. An 
example is the Therapeutic Data Commons initiative. (31) One barrier to sharing graphs 
using clinical data may be regulatory and data privacy concerns.  
 
Ultimately, insights from KGs have yet to realise their potential in delivering clinically 
actionable findings, especially in patient-facing settings. Adding clinical data to biomedical 
graphs may be beneficial for drug repurposing and generation of medical science insights. 
Clinical data itself may be used to better understand disease clustering, patient pathways, and 
in construction of digital twins. In order to improve the use of clinical data for combination 
with biomedical data or on its own, the challenges are technical (ontology standardisation, 
data ingestion) and regulatory (ensuring de-identification, and legal clearance for data 
sharing). To overcome the challenge of using proprietary data sources, it is possible to use 
data that can be accessed on applications, such as MIMIC (32) or use publicly released 
graphs (25). 
 
Limitations 
This study has limitations, including the November 2021 screen cut-off date for manuscript 
inclusion, which may have excluded more recent developments in KGs. The criteria used for 
manuscript selection may have inadvertently excluded relevant studies, for example, those 
that use graphs but do not include this detail in keywords or MESH terms. As there is 
commercial activity in this area, complementary datasets such as patent screens might 
provide additional insights into the use of KGs in this area. In conducting this initial scoping 
review, we established categorizations for use cases, disease areas, and analysis methods 
through a consensus-driven process involving authors SB and JZ with input from HA and 
NS. This was followed by an iterative refinement during review, based primarily on ease of 
manuscript categorisation and identification of areas where manuscripts did not clearly 
belong to a category. These categorizations are a function of the exploratory nature of this 
study. Future research may further refine and adapt this framework of categorizations. 
 
Conclusion 
In summary, KGs have many possible uses within in biomedicine and healthcare, but their 
full potential is yet to be realised. The two most popular use cases to date are generation of 
medical science insights and drug repurposing. There is an opportunity to expand work areas 
across other use cases and across diseases. Heterogeneity in graph size and context specificity 
suggests further work is needed to understand optimum graph construction. There are many 
different techniques used in graph analysis -  deploying more sophisticated graph machine 
learning techniques may improve insights gained from KGs. Validation of findings from 
graphs through external testing will increase the robustness of conclusions drawn from 
graphs.  While there are many graph-specific factors preventing realisation of utility of KGs 
in clinical settings, there are many more general barriers to implementation in clinical AI. 
(33) (30) 
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Country Count 

USA 162 

China 155 

UK 33 

Germany 24 

Canada 20 

Netherlands 15 

Italy 12 

Rest of 
Europe 33 
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Funding 
mechanism count 

not stated 34 

government 
funding 166 

NGO funding 29 

commercial 
funding 40 
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Company Count 

Amazon (including AWS) 5 

AstraZeneca 5 

IBM 5 

Google 4 

Benevolent AI 3 

CoVar Applied Technologies 3 

Elsevier 3 

Enveda Biosciences 3 

Bayer 2 

Biogen 2 

Causality Biomodels 2 

Data2Discovery 2 

Euretos 2 

IQVIA 2 

nference 2 

QIAGEN 2 

Yidu Cloud 2 
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Value Node class numbers Edge class numbers  

Number of values 241 207

Skewness 3.3 9.3

kurtosis 15.0 109.5

Mean 6.0 8.0

Median 4 4

Lower IQR 3 3

Upper IQR 7 7

Lower bound 2 1

Upper bound 41 210
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Value Node numbers Edge numbers  

Number of values 123 115

Skewness 9.6 10.6

kurtosis 99.5 112.8

mean 3 016 830 152 556 781

median 46 983 906 737

lower IQR 6 415 66 272

upper IQR 460 948  9 894 909

lower bound 212 238

upper bound 180 200 000 14 000 000 000
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Source Count 
DrugBank 46 
PubMed 26 
UniProt 26 
String 21 
Sider 19 
Omim 18 
Reactome 18 
KEGG 18 
DisGeNet 16 
Gene Ontology 15 
CheMBL 15 
Human Phenotype Ontology 14 
Biogrid 12 
Comparative toxicogenomics database 12 
UMLS 12 
PubChem 11 
Intact 11 
DrugCentral 10 
Mondo 10 
SemmedDB 9 
GTEx 8 
GEO 8 
Stitch 7 
MESH 7 
Ensembl 7 
Hetionet 7 
ClinVar 7 
Orphanet 7 
PharmgKB 7 
Disease Ontology 6 
TCGA 6 
WikiPathways 6 
Interpro 6 
MINT 5 
Doid 5 
GWAS catalog 5 
TwoSIDES 5 
ChEBI 5 
OpenTargets 5 
OffSIDES 5 
Wikidata 5 
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Cord-19 5 
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Analysis method breakdown Count 

querying 52 

graph statistics 24 

node embedding 20 

graph embedding 43 

supervised classification methods (non-embedding) 17 

unsupervised graph clustering 13 

GCN 33 

graph attention networks 14 

deep learning (other) 17 

other 14 
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Validation method Count 

none 54 

inside graph 120 

outside graph 39 

inside graph, outside graph 37 
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Future plan category Count 

improve data 99 

improve algorithm 59 

extend use case 42 

other validation 21 

improve user interface 18 

clinical application 11 

clinical trials 3 

none 25 
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Aim of scoping review Relevant Tables and Figures 
use-cases Figures 3, 4  
data characteristics Table 4, 5, 6; Figure 5 
research characteristics Tables 1, 2, 3, 7, 9; Figure 2  
validation Table 8 
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