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Abstract: 
Background:  Our purpose was to investigate the most relevant and discriminating clinical feature set of 

Scanning laser ophthalmoscopy (SLO) images, which could differentiate multiple sclerosis (MS) and 

healthy control (HC) patients.  

Methods: In this work, SLO images were used for the first time to measure the most valuable manual and 

clinical features from some retinal structures, optic disc, cup and blood vessels, for MS and HC 

classifications. For this, first an age-matching algorithm along with a subject-wise k-fold cross-validation 

data splitting approach were applied for construction of training, validation and test dataset, minimizing the 

risk of model overestimation. Then, it was needed to segment the retinal structures from the SLO images, 

and due to the lack of ground truth for our SLO images, we took advantage of a previously proposed deep 

learning algorithm for anatomical segmentation using color fundus images. But owing to different imaging 

modalities of SLO images, we also used two stages of pre-processing and post-processing to obtain accurate 

results for the segmentation step. Following that, a set of manual and clinical features was measured from 

the segmented optic disc, cup and vessels to gain a better comprehension of the features playing an 

important role in classification of MS and HC images. Finally, three simple machine learning models were 

applied to evaluate the measured features and the most valuable and effective features were computed.   

Results: The measured feature set from the segmented optic disc, cup and blood vessels resulted in a mean 

accuracy (ACC) of 83%, sensitivity (SE) of 79%, specificity (SP) of 85%, and AUROC of 84%, when 

testing on validation data by using a XGBoost classifier model. Furthermore, horizontally disc location, 

fractal dimension and intensity variation of blood vessels were selected as the most important and effective 

features for MS and HC classification.   



Conclusion: The location of optic disc, fractal dimension and vessel intensity, the ratio between intensity 

of vessels to intensity of he whole SLO image, were selected as three most valuable features for MS and 

HC classification. Regarding the optic disc location, we found out the used SLO images had been captured 

with two different imaging techniques. So, this feature could not be trusted as the most important feature. 

Two other features were confirmed by one expert as clinically distinguishing features for MS and HC 

classification.   

Keywords: Multiple Sclerosis; Scanning Laser Ophthalmoscopy; Deep Learning; Feature Extraction; 

Machine Learning; Feature important, Fractal dimension.  

1.Introduction 
Multiple sclerosis (MS) is an immune-mediated disease of the central nervous system (CNS) characterized 

by chronic inflammation, demyelination, gliosis, and axonal degeneration [1]. MS most frequently affects 

young adults, with about 2.3 million people suffering from it worldwide [1]. The disease presents with a 

variety of signs and symptoms, including limb weakness and paresthesia, autonomic nervous system 

dysfunction, and visual impairment [2]. To date, numerous structural and functional changes have been 

reported in the retinas of MS patients, even in the absence of any history of optic neuritis [3]. A large 

number of optical coherence tomography (OCT) studies have revealed that the thickness of retinal nerve 

fiber layer (RNFL) and ganglionic cell-inner plexiform layer (GCIPL) become thinner in MS, compared to 

healthy control (HC) individuals [4]; this has also been observed in other neurodegenerative conditions like 

Alzheimer’s disease (AD) [5] and Parkinson’s disease (PD) [6]. Indeed, the retina, as a unique window to 

study the brain pathology, may contain potential markers for diagnosing neurodegenerative diseases 

including MS, without the need to employ current invasive, costly, and time-consuming diagnostic 

procedures like magnetic resonance imaging (MRI) and lumbar puncture [3].   

In addition to OCT, other retinal imaging modalities have also been employed to study MS. For instance, 

fundus camera photography has revealed optic nerve atrophy [7–9] and a decline in retinal vessel diameter 

[10, 11] in patients with MS. Disruption of oxygen metabolism by retinal tissue has also been demonstrated 

using retinal oximetry, which is a technology based on the conventional fundus photography [10, 12]. 

Similarly, OCT angiography (OCT-A) studies showed that vessel density (VD) of superior capillary plexus 

(SCP) within parafoveal and peripapillary regions decreases in eyes positive for optic neuritis [13–16]. 

Overall, the analysis of retinal changes in MS has mainly focused on OCT, with much less emphasis on 

OCT-A and fundus camera photographs thus far.  

Infrared scanning laser ophthalmoscopy (IR-SLO) is an imaging technology often performed along with 

OCT to lock B-scans at a fixed position, thus enhancing image quality by mitigating the impact of eye 

motion-induced noise during image acquisition. Additionally, IR-SLO technology enables 

ophthalmologists to observe disease progression and response to treatments at longitudinal follow-up visits 

[17]. IR-SLO works by illuminating the retina with a laser beam in a raster pattern, and creating en-face 

two-dimensional images using the backscattered light passed through a confocal aperture [17].  The 

resulting images are very similar to conventional fundus photographs but have superior resolution; this is 

why IR-SLO is also known as monochromatic fundus photography. However, no prior research has delved 

into IR-SLO images in patients with MS, leading to a lack of evidence to ascertain whether any potential 

biomarker of MS can be found in such images.  



In the current study, our aim is to investigate whether IR-SLO images exhibit distinctive features specific 

for MS, thereby enabling differentiation between MS patients and HC individuals. We first applied a 

number of image processing algorithms to extract 26 features concerning the optic disc and retinal vessels; 

notably, certain features, such as vessel tortuosity and fractal dimension, have not been previously 

investigated in an MS population previously, even when considering studies on fundus camera photographs. 

Subsequently, the discriminating capacity of each feature was quantitively calculated using well-known 

feature importance techniques. This study would be the first comprehensive analysis of IR-SLO images in 

patients with MS. 

2. Methods and Materials 
In this study, our goal was to evaluate the fundamental clinical characteristics that effectively differentiate 

SLO images of MS and HC. To accomplish this objective, we employed a classification application. 

Initially, we generated a set of manual features derived from anatomically segmented structures, including 

the optic disc, cup, and blood vessels. Subsequently, we assessed these features using basic machine 

learning (ML) classifiers and determined the value and significance of each characteristic through three 

distinct methods. This process aimed to pinpoint the most critical and valuable features from the entire 

feature set for the categorization of SLO images into MS and HC groups. A brief overview of our proposed 

approach is illustrated in Figure 1. 

 

 
Figure 1. Overview of the proposed method to analyze the morphological changes in SLO images related to MS  

 



2.1. Dataset 

We utilized two independent datasets, namely the Isfahan and Johns Hopkins datasets, which included OCT 

scans and SLO images obtained from individuals with MS and HC subjects. These datasets were captured 

using the Heidelberg SPECTRALIS SD-OCT device (Heidelberg Engineering, Heidelberg, Germany). The 

Isfahan dataset, acquired from a prior study by Ashtari et al. [18], comprised a total of 282 SLO images. 

Among these, 146 images were from 35 patients with MS, and 136 images were from 71 HC individuals. 

The study took place between April 2017 and March 2019 at the Kashani Comprehensive MS Center in 

Isfahan, Iran, which serves as a primary referral center for MS in the region. The publicly available Johns 

Hopkins dataset included SLO and OCT images from the right eyes of 35 individuals, consisting of 14 HCs 

and 21 patients with MS [19]. Notably, this dataset exhibited demographic and clinical differences 

compared to those in the Isfahan dataset." 

2.1.1. Test, validation, and train data splitting  

The two distinct datasets discussed in the previous section were combined into a unified dataset by stacking 

them together. To prevent any leakage among test, validation, and training samples, a subject-wise approach 

was adopted, wherein all images associated with a specific subject were exclusively designated for either 

the test, validation, or training set [20].  

For the division of the test dataset, stochastic matching based on age and gender was employed initially to 

address potential confounding variables between the HC and MS groups. This was done before proceeding 

with the subsequent separation of training and validation data [21]. Initially, 20% of subjects with MS in 

the dataset were randomly chosen and designated as the test dataset. For each selected MS case, an HC 

patient with the closest age and the same gender was also included in the age-gender matching test dataset. 

Following this, the splitting of train and validation data was conducted using k-fold cross-validation (CV) 

on the remaining patients. This approach, preferred over a random split for its completeness and 

generalization, ensures that the entire dataset is utilized for training. In this method, predictive models are 

evaluated by dividing the dataset into k folds and training and evaluating the model k times, each time using 

a different fold as the validation set. Moreover, to maintain an equal proportion of certain labels (MS or 

HC) in each fold, stratified sampling was employed.  

 

2.1.2. Data augmentation 

Data augmentation is a well-known technique in ML studies used to artificially expand the size of a limited 

training dataset to mitigate the risk of over-fitting.  This involves making minor alterations to the existing 

training dataset to create new and plausible examples. In this study, several geometric and color space 

transformations were performed, including vertical and horizontal flips, height and width shifts within the 

range of ±5 pixels, rotation within the range of ±15 degree, and adjustments to image brightness in the 

range of 0.8 to 1.5.  

2.2. Feature Extraction 

To identify alternative and tangible clinical characteristics in MS SLO images, we employed basic machine 

learning models. These models were trained using manually extracted features related to the optic disc, cup, 



and vascular morphology, rather than utilizing deep learning models. This approach provided a clearer 

insight into the clinical significance of different features in the classification of MS and HC. To accomplish 

this, the initial steps involved the segmentation of the optic disc, cup, and vessels from the SLO images, 

followed by the extraction of clinically relevant features. 

2.2.1. Anatomical Segmentation 

As the quantity of SLO images at our disposal was limited, and we lacked corresponding ground truth for 

these images, we leveraged the pre-trained anatomical segmentation models outlined in [22]. These models 

had been trained on public datasets comprising retinal fundus photographs with associated ground truth. 

However, the inherent differences in imaging modalities between SLO images (characterized as 

monochromatic fundus imaging with single-wavelength laser light) and fundus photographs (using red, 

green, and blue wavebands for imaging light) [23] may lead to errors in the initially proposed deep learning 

models in [22] when our dataset is applied as test data for these models. Consequently, we implemented 

several pre-processing and post-processing techniques to tailor the segmentation for the optic disc, cup, and 

vessels in SLO images. Following sections provide a detailed explanation of the models utilized for the 

segmentation of optic disc, cup, and vessels, respectively. 

2.2.1.1. Optic Disc Segmentation 

To achieve optic disc localization and segmentation, we employed the pre-trained LW-Net model outlined 

in [22]. However, as mentioned earlier, adjustments were made to the model outputs to make them 

applicable to monochromatic SLO images. The optic disc segmentation phase utilized in this study 

comprises three primary sub-stages: pre-processing, identification of optic disc candidates, and post-

processing. Detailed explanations of each stage are provided below. 

Pre-Processing 

Typically, the optic disc presents as a bright yellowish or white area in color fundus images (brighter than 

the background when the image is converted to grayscale), but it appears as a dark region in SLO images 

(darker than the background). To address this difference, in the initial stage, the pixel intensity values in 

SLO images were inverted, swapping black pixels with white and vice versa. As a result of this adjustment, 

the optic disc manifested as bright regions in the SLO images. 

In this study, many SLO images exhibited variations in brightness and uneven illuminations, potentially 

leading to inaccuracies in identifying optic disc candidates in subsequent stages. To address this issue, we 

employed a specific SLO image as a reference, characterized by a clearly discernible optic disc and minimal 

intensity fluctuations Figure 2 shows the SLO image selected as a reference. As can be seen, this is an SLO 

image where the optic disc is clearly visible in comparison to the background and the variations in 

background intensity are also negligible. Subsequently, in order to manipulate the intensity distributions 

and mitigate contrast level variations in other SLO images, their histograms were matched with the 

histogram of the chosen reference image. 



 

 

 

In SLO images, the central reflection of blood vessels is observable on both arteries and veins [23]. This 

reflection tends to be more pronounced on arteries than on veins, especially when working with color fundus 

images. These central reflections on veins, which are the thicker, clear vessels around the optic disc, were 

observed as dark strips with an intensity level nearly similar to that of the cup in some of the inversed SLO 

images derived from the previous step. This phenomenon poses the risk of generating inaccurate optic disc 

candidates in subsequent stages. To mitigate this effect, two morphological closing and opening operation 

with a rectangular structure element were applied to the intensity of the inversed SLO images obtained from 

the previous stage.  Figure 3 represents these central reflections as dark strips on veins, along with the image 

resulting from the removal of their effects —depicted in the left and right images, respectively.    

 

 

 

Finally, every SLO image was resized to (512,512) to accommodate the large batch size required by the 

LW-Net model [22]. The application of the LW-Net model in calculating optic disc candidates is explained 

in detail in the following section.  

 

Optic Disc Candidates: 

To identify candidate regions for the optic disc in the SLO images after undergoing pre-processing, we 

utilized the LW-Net model, which comprises two U-Nets as described in [22]. However, as mentioned 

Figure 3. Inversed matched SLO images with central reflection as dark strip on veins, the left image, and the image resulted 

from applying morphological closing and opening operation, the right image. The windows containing veins around the optic 

disc are also magnified. 

Figure 2. The SLO image selected as the reference image for the histogram matching algorithm.  



earlier, the monochromatic nature of SLO images, in contrast to the 3 color channels of fundus images used 

in [22] as a dataset, necessitated adjustments and modifications in the output of the second U-Net within 

LW-Net.  

Initially, the SLO images were utilized as inputs for the encoder, which corresponds to the first U-Net in 

the LW-Net. The outputs of the decoder, associated with the second U-Net in the LW-Net, underwent 

classification into three categories: background, optic disc and cup. We specifically regarded the second 

channel resulting from the decoder as the segmentation map for disc candidates. Finally, we examined these 

candidates to delineate the optic disc area.    

 

Post Processing: 

During this stage, the binary images containing optic disc candidates underwent evaluation based on distinct 

characteristics such as shape, bounding box, and coordinates. Hence, the optic disc was segmented utilizing 

the following five main sub-stages:  

 In order to eliminate noise pixels between two or more candidates and to isolate each candidate, 

particularly in low-quality SLO images exhibiting intensity variations despite the application of the 

histogram matching method, morphological closing and opening operations, using a structure 

element in the shape of ellipse, were conducted on the binary images that encompass the candidates.  

 Since the optic disc appears as bright areas in inverted images (generated during the pre-processing 

phase), dark regions cannot be identified as the optic disc. To filter out candidate areas with a low 

probability of being the optic disc, candidates with a mean intensity lower than a specific threshold 

were excluded. This threshold was determined based on the mean intensity values of all candidates 

in each image. 

 Candidate regions in each image with an area smaller than a certain threshold were excluded (2300 

pixels for candidates located on both sides of the images and 3000 pixels for those located near the 

center of the images).  

 The shape and area of the remained candidates were determined using connected component 

analysis, and those that with a line shape or a low width-to-length ratio in their bounding box were 

eliminated. For candidate regions located near the center of the images, those with a low length-to-

width ratio in their bounding box were also removed. Ultimately, the candidate with maximum area 

was designated as the final optic disc candidate.   

 The final optic disc candidate underwent a blob detection algorithm to delineate the boundary of 

the optic disc. While the optic disc typically appears nearly circular, an ellipse transform was 

employed because in some images only one arc of the optic disc may be visible. The algorithm 

used to calculate the boundary and radius of the Optic disc candidate positioned on the sides of the 

SLO images is summarized in supplementary material on page 1.    

  

2.2.1.2. Cup Segmentation 

To localize and segment the cup in the SLO images, we utilized the outcome obtained from optic disc 

segmentation stage. Initially, a window surrounding the segmented optic disc in the original data (not the 

inversed one) was considered and then provided as input to the first U-Net in the LW-Net model described 



in [22]. The first channel of the output of the LW-Net model was treated as a segmentation map for cup 

candidates. 

Subsequently, the mean intensity value of each candidate was compared to a certain threshold (the mean 

intensity of all candidates in each image), and if the intensity value of the candidate was smaller than the 

threshold, it was excluded. Then, within each image, the center of bounding box of every remaining 

candidate and its distance from the center of segmented optic disc were computed. The cup candidate with 

the smallest distance was chosen as the final candidate. However, it must adhere to three main criteria 

(unless it should be omitted):  

i. The bounding box of the candidate should be entirely situated within the optic disc boundary.  

ii. The candidate's width-to-length or length-to-width ratio must be less than 2 (as the cup does not 

have a narrow oval shape.). 

iii. The area of the candidate must have been greater than a certain threshold (700 in this work).  

Ultimately, should a cup candidate be present, the boundary of the cup would be established using an ellipse 

transform, akin to the method outlined in the optic disc segmentation section. 

 

2.2.1.3.   Vessel Segmentation 

To segment the vessels in SLO images, we employed the pre-trained method proposed in [22], 

complemented by a post-processing step that played a crucial and effective role in accurately segmenting 

blood vessels. These two main stages are explained in detail in bellow. 

Binary Vessel Segmentation Map 

Because of uneven illumination and intensity variations among the SLO images in the utilized dataset, our 

initial step involved employing the histogram matching algorithm using a proper reference image. This 

reference image, displayed in the supplementary material on page 2, is characterized by minimal intensity 

changes, served to eliminate variations in brightness and prevent the segmentation of false candidate pixels 

that may represent vessels.  

Afterward, we employed the SEGAN model designed in [22], which is a variant of U-Net comprising a 

segmentor and a discriminator trained using an adversarial learning strategy. The SLO images, having 

undergone histogram matching, were initially resized to (912,912) to alleviate the computational demands 

before being used as inputs for the SEGAN model. The output from the discriminator provided a 

segmentation map, where each pixel represented the likelihood of being a blood vessel. In this study, pixels 

with a likelihood greater than 0.3 were chosen to create the binary representation of blood vessels.  

 

Post Processing 

Since we used the proposed SEGAN model [22] trained by six public dataset containing fundus images and 

only tested the model on our dataset, there were some discontinuities in the segmented blood vessels 

resulting from the proposed SEGAN model. To solve this problem, we used a post-processing step and took 

advantage of two useful algorithms, a region growing method and a missing algorithm [24], to fill 

discontinuous parts of the segmented blood vessels.   



At the first stage, to overcome the discontinuities occurring in the segmented vessels, especially along the 

big blood vessels, we utilized the region growing algorithm which starts with some seed pixels in an image 

and grows regions from them by iteratively adding unassigned neighboring pixels that satisfy some certain 

criterion with the existing regions of the seed pixels found in. Figure 4 represents a region growing 

algorithm.  For this, we first computed an image skeleton of the blood vessels segmented from previous 

step and then construct an undirected vessel graph and considered terminal or end nodes, pixels that belong 

to vessel skeleton and have only one neighboring skeleton pixel. 

To implement the region growing algorithm, for each terminal point that its intensity is greater than a certain 

value, 40 for this work, the intensity of its neighboring pixels not belonging to segmented vessels were 

considered and those whose brightness difference with a certain threshold were less than a predetermined 

value,10 for this work, were selected as candidate points and the candidate point with lowest brightness 

difference was selected as new seed. The threshold value for selecting candidate points is the intensity of 

the terminal point and will be updated with mean intensity of the terminal point and the new selected seed. 

For each selected new seed, the above algorithm was repeated until no neighboring point satisfied the 

criterion. Algorithm 1 states our proposed region growing approach in detail in which pi represent ith 

terminal point, S1 is a set of neighboring points satisfying a certain criterion that was explained above and 

finally PS1,i represent ith point in S1.   

 

 

  

Region growing algorithm for filling continuities in the segmented blood vessels 

for each terminal point in skeleton of blood vessels: 

    threshold = intensity of node pi 

    seed = pi 

       S1=Ø 

    new_seed = Ø 

    If intensity of seed > 40 : 

 

Algorithm 1. The region growing model proposed for addressing discontinuities in binary vessel map 

Figure 4. The region growing algorithm used for vessel segmentation.  



        ALGORITHM A 

         neighboring set=neighboring pixels of seed not belonging to vessel 

         If exist pixel in the neighboring set whose intensity difference with threshold < 10: 

               new_seed.append(neighboring pixel with lowest difference) 

                   S1.append (other neighbors satisfying the criterion) 

                   threshold = mean (intensity of seed, intensity of pixels in new_seed) 

                   Seed=neighboring pixels with lowest difference 

 

          repeat algorithm A until no neighboring pixels satisfy the criterion. 

 

 

 

           ALGORITHM B 

           S = S1 

           S1 = Ø 

           for each point in S: 

                      threshold = intensity of  PS1,i 

                      new_seed = Ø 

                      If intensity PS1,i >  40 : 

                                 lgorithm A 

                      repeat algorithm A until no neighboring pixel satisfy criterion 

 

             repeat algorithm B until S1=Ø 

 

 

In the next step, we used the missing algorithm proposed [24] to compensate for some small 

discontinuities left over from the first step. The proposed missing algorithm corrected the small 

disconnected segments in vessel segmentation by taking advantage of the vessel graph and determining 

the landmark points on it.  

2.2.2.   Feature Measurement 

In this work, a series of clinically relevant manual features from segmented optic disc, cup and blood vessels 

[22] was calculated to classify individuals in 2 classes, i.e. MS and HC, as summarized in table 1, 

Radius of disc, cup and ratio between them, plus location of disc in the SLO images were the feature set 

measured form Optic Disc and Cup in the training, validation and test datasets.  

 Also, average width, a measure describing average change of vessels width, fractal dimension value [25], 

a metric of vessel complexity,  vessel density indicating the ratio between the area of vessels to the whole 

image, vessel intensity, the ratio between intensity of vessels to intensity of whole image,  plus three 

different methods for calculating vessel tortuosity, including distance measure tortousity [26] , providing a 

ratio of the actual path length to the linear distance between curve endpoints, Squared curvature tortuosity 

[26] and tortuosity density [27], were computed  as vascular features from the whole image.   

Furthermore, Vascular features in standard regions of SLO images including zone B, the region between 2 

and 3 times the radius of optic disc from the center of optic disc, and zone C, the area between 2 and 5 times 

the radius of optic disc from the center of optic disc, were considered as other manual features [28].  A 

figure representing zone B and zone C from the center of optic disc is shown in the Supplementary Material 

on page 3.  These features consist of average width, fractal dimension value, vessel density, linear regression 

tortuosity, a coefficient measuring the linearity of each segment of vessel, distance measure tortousity, 

Squared curvature tortuosity and tortuosity density.  



 

Manual features extracted from SLO images 

Features from Optic Disc / Cup 

Disc radius 

Cup radius 

Disc radius-to-Cup radius 

Disc location 

Vascular features from whole image 

Average width 

Fractal dimension 

Vessel density 

Vessel intensity 

Distance measure tortousity 

Squared curvature tortousity 

Tortousity density 

Vascular features from Zone B and Zone C 

Average width 

Fractal dimension 

Vessel density 

Linear regression tortousity 

Distance measure tortousity 

Squared curvature tortousity 

Tortousity density 

 

2.3. Classification 

As mentioned before, the aim of this work was to determine important, valuable and useful features that 

clinically differentiate and discriminate MS SLO images from HC ones. For this purpose, we employed 

classification application.   

First, to evaluate the features extracted from the Optic Disc, Cup and blood vessels of the SLO images, we 

used simple machine learning models including, SVM, Random Forest (RF) and XGBoost classifiers, and 

then measured the importance of each feature to determine which features are discriminative and tangible 

to classify individuals in two classes, namely MS and HC.  

Each of the aforementioned classifiers was trained by concatenating the extracted features from training 

data of each fold, constructed by k-fold cross validation, and their augmented SLO images, and then tested 

on the features extracted from the validation data in those folds. After that, a set of metrics were employed 

to evaluate the performance of each classifier and their average on k validation folds was reported as the 

classifiers performance (k=5 in this work). Then, the feature importance was calculated as a score 

representing the importance of each feature in the set extracted features, providing a clear insight into how 

effective is each feature in the behavior of the predictive machine learning model.       

 2.3.1. SVM Classifier 

At the first step, we utilized the SVM classifiers, a kind of supervised machine learning method for 

classification, regression and outlier detection tasks, with different kernel functions, including linear, radial 

basis function (RBF), polynomial (poly) and sigmoid function to classify the features extracted from SLO 

images in two classes, MS and HC.  

Furthermore, to search for optimal SVM hyperparameters, including regularization parameter (C) for linear, 

RBF, poly and sigmoid functions, kernel coefficient (gamma) for RBF, sigmoid and poly kernels and degree 

Table 1. The feature set extracted from Optic Disc, Cup and blood vessels in the SLO images.  



of polynomial kernel function, Optuna, an automatic hyperparameter optimization software framework 

particularly designed for machine learning was utilized [29].   

2.3.2. Random Forest 

A Random Forest (RF) or Random decision forest classifier, a supervised learning algorithm based on 

bagging technique consisting of a number of decision tree classifiers on various sub-samples of the dataset 

that uses averaging to improve the predictive accuracy and control over-fitting, was another simple 

classifier that was used in this work to evaluate the extracted features from the SLO images to classify them 

into two classes, MS and HC. Hyperparameters for RF classifier, including the number of trees in the forest, 

the maximum depth of the tree, the minimum number of samples required to split an internal node and the 

minimum number of samples required to be at a leaf node, were also determined and optimized by Optuna 

optimization framework [30].  

2.3.3. XGBoost classifier 

Also, we used XGBoost classifier, an implementation of boosting technique that sequentially creates 

decision trees and each tree improves upon the mistakes of the previous one, to classify MS and HC SLO 

images.  XGBoost is an ensemble learning method that offers a systematic solution to combine the 

predictive power of multiple learners. A model whose parameters adjust itself (XGBoost) will learn better 

than one with a fixed set of parameters for the entire ensemble (Random Forest).  Then, we took advantage 

of Optuna optimization software to get optimal hyperparameters for XGBoost classifier [30].   

2.3.4. Evaluation of Classifiers 

To evaluate the performance of aforementioned classifiers, a set of metrics including Accuracy (ACC), 

Sensitivity (SE), Specificity (SP), Precision (PR) and F1-score (harmonic mean between precision and 

recall) was employed with the following mathematical formula: 

 𝐴𝐶𝐶 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                                                                                                                                (1)                                                                                                                                                                                                                                                                              

𝑆𝐸 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                                                                                                                                (2)  

𝑆𝑃 =  
𝑇𝑁

𝑇𝑁+𝐹𝑃
                                                                                                                                                                (3) 

𝑃𝑅 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                                                                                                                                (4) 

𝐹1 =  
2 ×𝑇𝑃

2 ×𝑇𝑃+𝐹𝑃+𝐹𝑁
                                                                                                                                                      (5) 

Where TP, FN, TN, and FP are the metrics representing true positive, false negative, true negative and False 

positives, respectively. Furthermore, receiver operating characteristics (ROC), showing the relationship 

between true positives and false positives, and precision recall (PR), illustrating the trade-off between 

precision and recall, were utilized to measure the performance of the above classifiers.  

2.3.5. Feature Importance 

In general, feature importance provides a score indicating how useful and important each feature in a feature 

set contributes to the model prediction and therefore gives a highly compressed and global insight into the 

behavior of the model. The importance calculated for each feature in a feature set also allows features to be 



ranked and compared with each other. In this study, we used three different methods (XGBoost classifier, 

recursive feature elimination, RFE, and permutation importance, PI) for measuring importance of each 

feature in the feature set obtained from section 2.2.2.  

One advantage of using gradient boosting is that it can automatically provide estimates of feature 

importance from a trained predictive model and also is relatively simple to measure the importance scores 

for each feature after the boosted trees are constructed. The feature importance for a single decision tree is 

calculated by the amount by which each split point improves the performance measure, weighted by the 

number of observations that the node is responsible for, and then the importance of that feature is averaged 

across all decision tress in the model [31].  

Recursive feature elimination (RFE)[32], a wrapper-type feature selection method, was another method that 

we used for feature selection. RFE is a popular feature selection method that is easy to use and effective in 

selecting those features in the training data set that are more or less relevant in predicting the target variable. 

REF works by searching a subset of features starting with all features in the training set and then eliminating 

features one by one until the desired number remained. Finally, the important features obtained from the 

above two methods for feature selection were compared. 

Permutation importance (PI) [33] was the third algorithm used in this study for calculating feature 

importance. The concept behind PI is really straightforward: it calculates the importance of a single feature 

by increasing the model error. In this manner, a feature is important if shuffling its value increase model 

error, meaning that the feature plays an important role for the model. In the same way, a feature is 

unimportant if shuffling its value leaves the model error unchanged.  

3. Results: 
All the experiments in this study were performed by using Python programming language in backend Torch 

platform in python 3.7 software environment.   

Overall, 314 SLO images from stacking two independent datasets, Isfahan and Johns Hopkins datasets, 

consisting of 85 and 53 subject groups for HC and MS individuals, respectively, were used. To construct 

test dataset based on age-gender matching algorithm explained in section 2.1.1, 10 MS patients and HC 

individuals with the nearest age were selected. The remaining images from our dataset were utilized for 

splitting data into train and validation sets using k-fold CV (K=5). All images were resized to 512 × 512 × 

1with intensity level values in range [0 , 256).  Furthermore, all SLO images which belong to the left eyes 

were flipped.    

3.1 Segmentation 

We took advantage of the proposed LW-Net model [22], trained by REFUGE dataset containing retinal 

fundus photographs, to segment Optic Disc, Cup and vessels in SLO images. But, as mentioned in section 

2.2.1, to obtain an accurate segmentation from the SLO images in our dataset, we modified the proposed 

method and used pre-processing and post-processing stages as two effective steps.  

 Visualization results for optic disc and cup segmentations are represented in figure 5. In this study, we 

were able to segment the optic disc even when it was located on the left or right side of the image and only 

an arc of its circular border was visible. 



 

 

 

 

 

The segmentation results for blood vessels in the SLO images are also shown in figure 6.  The results for 

region growing and missing algorithms are displayed in the third and fifth columns, respectively. The fourth 

and sixth columns represent the results of these two stages for a small window of the images.  

Figure 5. visualization results for Optic Disc and cup segmentations, including pre-processing step for disc segmentation (the 

second column), optic disc candidates (the third column), post-processing step for disc segmentation (the fourth and fifth 

columns), windows surrounding the segmented optic disc (the sixth column) and finally the optic disc and cup segmented by 

green and red circles, respectively (the last column). The last column shows the zoomed state of the yellow window on the 

SLO images in the first column. 

 



 

 

                           

3.2. Classification 

To evaluate the extracted manual features from the SLO images, a set of simple machine learning classifiers 

consisting of SVM, RF and XGBoost algorithms were utilized for classifying MS and HC. The XGBoost 

classifier showed the best performance with a mean ACC of 83% (SP=0.85, SE=0.79, F1=0.83, 

AUROC=0.84, AUPRC=0.87) as the winner classifier.  Table 2 and 3 represent the performance of the 

used classifiers, and their corresponding hyperparameters optimized by Optuna, respectively. 

 

 

 

 

 

 

Model ACC SP SE F1 AUROC AUPRC 

Figure 6. visualization results for vessel segmentation, including the proposed algorithm [22] (the second column), the region 

growing and missing algorithms (the third and fifth columns) 

 

Table 2. Performance metrics of three simple machine learning models (SVM, RF and XGBoost classifiers) for classification 

of MS using SLO images. Best results are bolded, revealing that XGBoost classifier is the wining classifier.  

 



SVM 

(kernel : RBF) 
0.80 0.90 0.66 0.79 0.84 0.85 

RF 0.82 0.84 0.77 0.81 0.83 0.85 

XGBoost 0.83 0.85 0.79 0.83 0.84 0.87 

 

 

 

Model Optimal hyper parameters 

SVM (kernel : RBF) 
C =91.42 

Gamma = 0.008 

RF 

max_depth = 16 

n_estimators = 137 

min_samples_split = 7 

min_samples_leaf = 3 

criterian = gini 

XGBoost 

objective = binary :logistic 

tree method = auto 

booster = dart 

lambda = 1e-7 

alpha = 0.5 

subsample = 0.99 

colsample_bytree = 0.79 

max_depth = 4 

min_child_weight = 3 

eta = 0.34 

gamma = 0.2 

grow_policy = deptwise 

sample_type = forest 

rate_drope = 0.96 

skip_drop = 0.3 

 

Figure 7 also shows the confusion matrix for all the three classifiers to visualize and summarize the 

performance of the used machine learning classifiers.  

Table 3. The tuned optimal hyper parameters by Optuna for SVM, RF and XGBoost classifiers used for classification MS using 

SLO images 

 



 

 

Then, we tested the trained XGBoost classifier on age-gender matching test dataset. The designed XGBoost 

classifier resulted in a mean ACC of 0.72 (SP=0.86, SE=0.65, F1=0.73, AUROC=0.83, AUPRC=0.92).    

 

3.3. Feature Evaluation 

We measured feature importance for the build feature set in section 2.2.2 to get a better understanding of 

what features were more discriminative and useful for HC and MS classification. Since XGBoost was the 

classifier with the highest performance, we first took this advantage and used a built-in attribute of XGBoost 

classifier to estimate the importance of each feature in the feature set obtained from the section 2.2.2. The 

mean importance of each feature was shown in figure 8. As can be seen, the set of features including the 

location of disc horizontally, fractal dimension computed from the whole image, intensity of whole vessels, 

tortuosity density, vessel density in zone B and vessel density from the whole image were the most 

important and valuable features in the construction of boosted decision trees within XGBoost classifier.  

Figure 7. confusion matrix for three machine learning models including SVM, RF, XGBoost classifiers. 



 

 

Figure 9 represents the distribution and the relationship between of the first six important features calculated 

by XGBoost classifier, giving us a better comprehension of the features and the target variable, which 

allows us to visualize how the most important features relate to each other. In this Figure, the X-axis and 

y-axis represent the first eight effective features sorted by their importance for HC and MS, respectively, 

and each row and column summarize the relationship between two paired features of the first eight 

important features.  

Figure 8. The mean of importance of each feature, on 5 folds of training data set, by using a built-in attribute of 

XGBoost classifier. 



 

 

The importance of each feature was also measured by permutation importance (PI), as the second method) 

to explore the most effective features for HC and MS classification. We implemented PI method for 3 

machine learning models including: Random Forest (RF), Decision Tree (DT) and XGBoost classifiers. 

Figure 10 displays the importance scores calculated by PI method and its mean for these machine learning 

models. 

Figure 9.  The distribution and relationship between the first sixth important features obtained by XGBoost classifier. 



 

 

 

 

Finally, we used RFE technique as the third method to estimate the importance of each feature. As 

mentioned earlier, the goal of this algorithm is to recursively remove features and rank them based on the 

performance of a given estimator. We applied the three classifiers used in PI technique, DT, RF and 

XGBoost, as the estimators trained on the feature set. Figure 11 shows the feature ranking with RFE 

technique for the calculated feature set. As can be seen, the features named as disc location horizontally, 

whole fractal dimension and whole intensity value, were ranked as the three first important feature for all 

the three classifiers used as the estimators.  

Figure 10. The representation of the importance calculated for each feature by PI (with 3 different classifiers), mean of PI 

and XGBoost classifier. 



 

 

 

Comparing the results obtained for feature importance by XGBoost classifier, PI method for three machine 

learning models (Random Forest, Decision Three and XGBoost classifiers) and RFE method was figured 

out that three feature vectors including location of Disc horizontally, fractal dimension and intensity level 

of vessels from the whole image were the most important and valuable features for HC and MS 

classification. 

Then, to visualize these three important features in two dimensions, we used t-distributed stochastic 

neighbor embedding (t-SNE) known as an unsupervised non-linear dimensionally reduction technique for 

Figure 11.  visualization of the feature ranking with RFE method by using three different classifiers, DT, RF and XGBoost, 

as the estimators.  The number 1 on the y-axis indicates the first important feature and so on. 

 



data exploration to find patterns in lower-dimensional spaces [34]. It works by creating a probability 

distribution of feature vectors and finding a similar distribution for them as points on the map, meaning that 

objects that are close to each other in the feature space are more likely to be close to each other on the map. 

Figure 12 represents the high discriminative capacity of these three important features with t-SNE. 

 

 

These three important features were resulted in a mean ACC of 0.81 (SP=0.82, SE=0.78, F1=0.80, 

AUROC=0.85, AUPRC=0.87) when testing by the designed XGBoost classifier on validation dataset. This 

can ensure that these three important features successfully classified the SLO images in two classes, MS 

and HC, with a performance metric close to what had been resulted from testing on all features.  

Evaluating these three important features on age-gender matching test dataset also resulted in a mean ACC 

of 0.70 (SP=0.78, SE=0.66, F1=0.71, AUROC=0.81, AUPRC=0.91), close to the performance obtained on 

the whole feature set while testing on the age-gender matching test dataset.  

 

Figure 12. visualization of three important features in 2-space dimension using t-SNE. Label 0: HC images, label 1: MS 

images 



4. Discussion 
According to the results obtained from the section 3.3, location of Disc horizontally, fractal dimension and 

intensity level of vessels from the whole image were the most three important features to classify MS and 

HC. To evaluate these three valuable features, their values on the MS and HC images correctly classified 

on the all 5 training folds constructed by -fold cross validation (CV) were analyzed compared  

 Regarding the Disc location, it was seen that this could be appeared toward the left or right side of the HC 

images (before flipping the left eyes), while in MS images this could be located either on the macula region 

or on the sides of the image. Figure 13 shows the optic disc location in the SLO images of MS patients and 

HC people. The first row represents the MS images of test dataset correctly classified on 5 training folds, 

constructed by CV, while the second row illustrates the HC images of test dataset. The location of optic 

discs is also shown with a red colored rectangle on each image satisfying what is stated earlier.   

 Although this feature was selected as the first important feature in our proposed algorithm, we observed 

that there were two different imaging techniques in capturing the used SLO images, optic disc centered 

(ODC) and macula centered (MC). So, it did not make sense the location of optic disc could differentiate 

MS images from HC ones. Therefore, to trust artificial intelligence (AI) results, it is necessary that all the 

images come from the same imaging protocol.    

 

 

 

Respect to fractal dimension (FD), it is a factor measuring how an object details changes at different 

magnifications. So, Fractal objects shows self-similarity and complexity under a change of length scales 

[35]. This measurement had been considered as a potential biomarker to recognize some diseases like 

diabetes and hypertension through description of branching vascular distribution in tow-dimensional space 

[36]. There are different methods to calculate fractal dimension, including box counting, the mass-radius 

relation, the two points density-density or pair correlation function method [35]. Box-counting, the most 

common way to measure fractal dimension, was the method used in this work to determine fractal 

dimension in the SLO images. It works by overlaying the binary image (the map of segmented vessels) 

with a grid of boxes of side length ɛ and counting the number of boxes containing a part of vessel tree. This 

Figure 13. Representation of the first three important features on the images with MS, the first row, and the HC images, the 

second row. The location of optic discs is shown with a red colored rectangle on each MS and HC image. 

 



process is repeated under different value of ɛ to obtain more and more fine details of the vascular tree from 

the covering. Finally, the box-counting dimension can be calculated through following formulate in which 

𝑁(∈) represents the number of boxes containing vascular tree: 

𝐷𝑏𝑜𝑥  =  lim
∈→0

log 𝑁(∈)

log(1
∈⁄ )

                                                                                                                                            (6)  

Figure 14 shows the process of calculating FD for an SLO image based on box-counting method. The SLO 

image and its segmented blood vessel map are shown in the first and second columns, respectively. The 

third and fourth columns represents what is stated in equation 5.    

 

 

 

In figure 13, it was seen that the value of fractal dimension was more in HC images compared to its value 

on the MS images.  It should be noted that the value of FD is normalized by min-max normalization in 

which the FD values range gets transformed into the range from [0,1) that does not affect the role of this 

feature.  In this figure, it can be also seen that the MS images (the first row) are not self-similar based on 

box-counting method, while the complexity and similarity of blood vessels in HC images (the second row) 

can be clearly seen. 

And finally regarding to the ratio of intensity of blood vessels to intensity of whole image, it could be seen 

in some SLO MS images correctly classified as MS, not only there were some white patches in background 

of the images, but also the images were blurrier than the average scan.  In figure 13, the impact of this 

feature on MS and HC classification is visible.  As it was shown, there were some white patches on the 

SLO images with MS, resulting in lower values for this feature.   

It has been previously shown that the blood flow velocity (BFV) of retinal arteries and veins in MS patients 

is significantly lower than HC people [37]. Decreased blood flow will decrease the content of oxygen in 

the blood vessels. Blood oxygenation, the measure of oxygen present in arterial or venous blood, is a 

measure of how much hemoglobin is currently bound to oxygen compared to how much hemoglobin 

remains unbound. So, the low content of oxygenated hemoglobin in arteries absorb more light and therefore 

reflect low light [38]. This can be figure out as the main reason for the low values of the ratio of blood 

vessel intensity to intensity of the whole image in MS patients compared to HC subjects. 

Although this study demonstrates the most important and effective features of SLO images for classification 

of MS and HC subjects, there are several limitations to be addressed, helping to achieve more accurate 

results related to segmentation and feature extraction. Fist, the train and validation SLO images used for 

this study were considered of a limited number of samples obtained from a single center. Furthermore, this 

Figure 14. the process of measuring FD for an SLO image. 



could lead to improvement of the proposed methods for anatomical segmentation of optic disc, cup and 

blood vessels, if we have had their ground truth images, which in turn could end up in achieving more 

accurate results for the feature extraction step. Finally, if calculated, the arteries' and veins' features could 

result in improving the important and valuable feature set extracted from the SLO images for MS and HC 

classification. 

5. Conclusion 
To conclude, the aim of this work was to calculate the most important, effective and discriminating clinical 

features from SLO images to classify MS and HC subjects. To achieve this purpose, we decided to compute 

a set of manual features of some retinal structures, including optic disc, cup and blood vessels, to get a 

better understanding of the features that could be relevant for the classification of MS and HC patients. 

Therefore, the optic disc, cup and blood vessels had to be first segmented from the SLO images and then 

used for feature computation.  Following this, we took advantage of three different simple machine learning 

models, SVM, RF and XGBoost, to evaluate the obtained feature set and then computed the importance of 

each feature by using three different methods. The disc location, fractal dimension and intensity variations 

of vessels were selected as the most important clinical features. As the used SLO images had been captured 

with 2 different imaging protocols named ODC and MC, optic disc location could not be trusted as a 

valuable feature.  Fractal dimension and intensity of vessels, two other important features, were also 

confirmed by one expert, showing the consistency of these effective features for MS and HC classification. 
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