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Abstract 
 

Background: 

Decision-making alterations are present in psychiatric illnesses like major depressive disorder (MDD), 

obsessive-compulsive disorder (OCD), and schizophrenia, linked to symptoms of the respective 

disorders. Understanding unique and shared decision-making alterations across these disorders is 

crucial for early diagnosis and treatment, especially given potential comorbidities. 

 

Methods: 

Using two computational modeling approaches – logistic regression and hierarchical Bayesian modeling 

– we analyzed alterations in model-based and model-free decision-making in a transdiagnostic cohort 

comprising MDD (N=23), OCD (N=25), and schizophrenia (N=27) patients. Our aim was to identify 

disorder-specific and shared alterations and their associations with symptoms. 

 

Results: 

Overall, participants of all groups relied on model-free decision-making. Our results revealed that 

schizophrenia patients had the lowest learning rate and highest switching rate, indicating low 

perseverance. Further, OCD patients were more random in both task stages compared to controls and 

MDD patients. All patient groups exhibited more randomness in responses than controls, with 

schizophrenia patients showing the highest levels. Importantly, the study showed that increased model-

free behavior correlated with elevated depressive symptoms and more model-based decision making 

was linked to lower anhedonia levels across all patients. 

 

Conclusions: 

This study highlights disorder-specific and shared decision-making alterations in individuals with MDD, 

OCD, and schizophrenia. This study suggests that anhedonia and depressive symptoms, which are 

present in all three disorders, share underlying behavioral mechanisms. Improving model-based 

behavior may which may be a target for intervention and treatment. 
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Introduction 

Decision-making and learning impairments are core characteristics of a wide range of psychiatric 

disorders1–3 such as major depressive disorder (MDD)4,5, obsessive-compulsive disorder (OCD)6,7, and 

schizophrenia8,9 and link to their specific symptoms. As these disorders share symptoms, it is important 

to identify decision-making alterations which are specific to each disorder and those that occur across 

several disorders. A better understanding of these associations may facilitate therapeutic rehabilitation 

strategies for these patients. 

 

MDD is characterized with persistent symptoms like anhedonia, rumination, and cognitive biases10–12. 

Decision-theoretic approachs13,14 suggest that alterations in reward anticipation15,16, effort-cost 

evaluation17–19, and a negative bias20,21 could be underlying mechanisms. A study by Ang and 

colleagues22 revealed that MDD patients show steeper discounting of effort-based rewards and reduced 

willingness to invest cognitive effort. Similarly, Treadway and colleagues19 demonstrated that MDD 

patients were less inclined to expend efforts for rewards and less able to use information about reward 

magnitude and probabilities for optimal decision-making, and that motivational deficits were associated 

with higher symptom severity. Furthermore, general deficits in reinforcement learning especially the 

brain signals in response to reward prediction error and expected value (i.e., wanting), decreased 

reward sensitivity (i.e., liking) and model-free (i.e., habitual) or model-based (i.e., goal-directed) learning 

have been proposed23–26. In probabilistic reward tasks, MDD patients lack the typical preference for 

frequently rewarded choices, which correlates with anhedonia scores27,28. These findings highlight the 

involvement of reward-related mechanisms in core MDD symptoms, as revealed by cognitive 

neuroscience approaches. 

 

OCD is characterized by chronic doubting, and compulsive behaviors  reflected in dysfunctional decision-

making29. OCD patients exhibit difficulty in adapting reward perception and tend to make rigid, 

repetitive decisions30. Some studies suggesting that OCD may result from dysfunctional goal-directed 

control and an over-reliance on habitual control6,31,32. The literature presents conflicting evidence 

regarding the associations between symptom severity and decision-making abnormalities6,33–36. This 

inconsistency may be partially explained by effects of illness duration36. In a probabilistic learning 

paradigm, Murray and colleagues37 reported that dysfunctions during reward processing in OCD may 

be of dopaminergic origin, which may be similar to those alterations seen in schizophrenia patients38–

40. Furthermore, in a two-step decision-making task, OCD individuals exhibited more model-free choices 

in rewarded outcomes and more model-based choices in loss outcomes, with compulsions severity 

linked to habitual learning of rewarded outcomes and obsessions severity linked to increased choice 

switching following losses41. Various imaging studies have also indicated altered activations in brain 
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regions that are associated with habit formation42–45, highlighting the importance of investigating 

decision-making alterations in OCD. 

 

In schizophrenia patients, dysfunctional decision-making relates to both positive (hallucinations and 

delusions) and negative symptoms (apathy, social withdrawal)8,46. Delusions have been associated with 

"jumping-to-conclusions," which may lead to hasty judgments and false beliefs47–49. Deficits in reward 

anticipation50–52, prediction error processing38–40 and reward and punishment sensitivity53–55 have been 

shown in early and late stages of schizophrenia. Furthermore, alterations reward processing have been 

found to contribute to diminished motivation, affecting future reward assessment56–58. Impaired 

habitual decision-making has also been identified as a contributing factor to negative symptoms in 

schizophrenia59. Impaired effort-based decision-making may be linked to motivational anhedonia in 

psychosis as patients are unwilling to expend effort to gain rewards60–62. Compared to controls, 

schizophrenia patients exhibit reduced reliance on goal-directed decision-making, indicating more 

unpredictable behavior63. 

 

The literature suggests alterations in distinct reinforcement learning systems in psychiatric disorders 

like OCD, MDD, and schizophrenia59,63–68, which underlie model-free and model-based decision-making 

processes69. These processes can be studied using the two-step Markov decision task69, yet no study 

has examined these in a transdiagnostic sample. Our study aims to identify disorder-specific and general 

decision-making alterations in MDD, OCD, and schizophrenia patients in remission, using computational 

modeling and linking them to symptoms. We hypothesized MDD patients to perform better with a mix 

of model-based and model-free strategies, OCD patients to exhibit more model-free decisions, and 

schizophrenia patients to be more random in their choices compared to the other patient groups, 

respectively. Decision-making impairments were expected to correlate with symptoms within each 

group, with co-occurring symptoms showing similar trends. For instance, depression scores in MDD and 

schizophrenia patients were expected to correlate similarly with decision-making parameters. 

 
Methods 

Participants 

Twenty-five healthy controls (HC), 23 MDD patients, 25 OCD patients, and 27 schizophrenia (SCZ) 

patients in psychotic remission took part in the study. Sample sizes were determined based on a power 

analysis (G*Power 3.1 software70) with alpha=0.05, power=0.85, medium effect size of f=0.38 which 

revealed 90 participants. To account for poor data or outliers, we collected ~15% more participants per 

group. The demographic characteristics, cognitive and clinical scores are summarized in Table 1. 

Schizophrenia and MDD patients were recruited from the Clinic and Polyclinic for Psychiatry and 

Psychotherapy in Klinikum Rechts der Isar at the Technical University of Munich (TUM), and the OCD 
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patients were recruited from the Windach Institute and Hospital of Neurobehavioral Research and 

Therapy. Patients met Diagnostic and Statistical Manual of Mental Disorders (DSM)-IV criteria for SCZ, 

MDD, and OCD71. For schizophrenia patients, psychotic remission was based on Andreasen criteria72, 

with a score of £3 for each Positive and Negative Syndrome Scale (PANSS) positive item. MDD patients 

were in an acute depressive episode. Medication for all patients was kept stable for at least two weeks 

before assessments. Except for Obsessive-Compulsive Inventory – Revised73 (OCI-R) scores which was 

collected only for OCD patients, all other clinical scores were collected across all participants. Healthy 

controls were age and gender matched and did not report any personal history of severe neurological, 

psychiatric or medical disorders. The study was approved by the TUM ethics committee. All participants 

gave their informed, written consent after receiving a complete description of the study. 

 

Task description 

All participants completed the two-step task adapted from Daw et al69 (Figure 1), designed to 

differentiate between model-free and model-based decision-making (see detailed description in 

supplements) . The task involved maximizing monetary reward over 200 trials, split into four blocks of 

50 trials each. Each trial consisted of two decision stages, with participants choosing between two fractal 

images. Transition probabilities between stages were probabilistic, with common transitions occurring 

70% of the time and uncommon transitions 30% of the time. Participants developed strategies based 

on feedback in stage two to maximize reward. Model-based decision-making involved using transition 

probabilities to infer action likelihood, while model-free decision-making relied solely on trial outcomes. 

For detailed imaging results, refer to 59, Brandl et al.(in submission), Sen et al.(in submission).  
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Table 1. Demographic characteristics, clinical characteristics, and the cognitive function of the healthy controls and patients with major depressive disorder, 
obsessive-compulsive disorder, and schizophrenia 

 CON (n=25) MDD (n=23) OCD (n=25) SCZ (n=27) Group Differences 

Demographic characteristics 
Age 36.6  (11.9) 41.6  (15.4) 33.8  (12.5) 40.9  (11.9) H (3,  100)=7.405, p=ns 
Gender 15M, 10F 9M, 14F 5M, 20F 18M, 8F χ2 (3,  100)=15.4, p<0.001 
Cognitive score 
Symbol-coding task 60  (10.6) 53  (3.32) 57.5  (10.6) 41.6  (9.62) H (3,  100)=28.802, p<0.001 
Clinical Scores   
HAMD 1.48  (1.81) 13.5  (3.01) 12.6  (4.75) 3.65  (2.38) H (3,  100)=69.863, p<0.001 
PANSS      
   Positive 7 (0) 7.52 (0.68) 7.68 (0.748) 10.9  (3.46) H (3,  100)=12.67, p=0.005 
   Negative 7  (0) 12.4  (3.11) 8.2  (0.913) 14.8  (6.12) H (3,  100)=62.235, p<0.001 
   General 16.7 (0.802) 27  (3.57) 22.2  (3.06) 25.9  (7.11) H (3,  100)=59.931, p<0.001 
   Total 30.6  (0.783) 47.6  (6.12) 37.6  (3.11) 50.5  (12) H (3,  100)=68.52, p<0.001 
YBOCS 0 0 21.2  (6.74) 0 H (3,  100)=58.659, p<0.001 
OCI-R NA NA 26.8  (9.76) NA  
Anhedonia      
   Chapman Social 4.16  (2.91) 11.6  (4.62) 9.72 (6.1) 9  (3.95) H (3,  100)=28.859, p<0.001 
   Chapman Physical 2.08  (1.21) 5.83  (3.51) 5.28  (3.61) 4.89  (3.19) H (3,  100)=17.726, p<0.001 
   Chapman Total 5.65  (2.76) 17.4  (7.20) 15  (8.11) 14.3  (6.85) H (3,  100)=32.403, p<0.001 
Note: Data are presented as mean (SD) except for Gender. Abbreviations: ns=non-significant; CON, healthy controls; MDD, major depressive disorder patients; 
OCD, obsessive-compulsive disorder patients; SCZ, schizophrenia patients; n, number of subjects; M, male; F, female; HAMD, Hamilton Depression Scale74; 
PANSS, Positive and Negative Syndrome Scale75; Y-BOCS, Yale-Brown Obsessive-Compulsive Scale76, OCI-R, Obsessive-Compulsive Inventory – Revised73; Scales 
for Physical and Social Anhedonia – Chapman77; Symbol coding task of the Brief Assessment of Cognition in Schizophrenia (BACS)78 
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Figure 1 Two-step Markov decision task. Showing the state transition structure which allows 
discrimination between model-based and model-free behavior. Note: All stimuli in stage 2 are 
associated with a probabilistic reward changing slowly and independently based on Gaussian random 
walks, forcing subjects to continuously learn and explore the second stage choices. 

  

Analysis 

Stay Probability 

Stay-probability was assessed to investigate an action bias. It is the probability of an individual selecting 

the same first stage choice as in the previous trial, which can show a model-free or a model-based 

strategy depending on the results of the previous trial (i.e., outcome and transition type). See 

supplements for exact description. Stay-probabilities were compared across groups using a robust 

mixed ANOVA with stay probability as the dependent variable, group as the between-subject variable, 

and previous trial transition type (common/uncommon) and previous trial outcome 

(rewarded/unrewarded) as within-subject variables. For post-hoc analysis for the factors that resulted 
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in a significant effect, we performed pairwise t-tests corrected for multiple comparisons using 

Bonferroni adjustments for each of the parameters. 

 

Logistic Regression Analysis 

We used a hierarchical logistic regression to estimate in a classical approach model-free and model-

based decision-making by including independent contributions of choices (stay/shift) on the subject 

level depending on outcome (rewarded/unrewarded) and transition type of the previous trial (common/ 

uncommon), similar to previous reports63,79. We controlled for BACS and illness duration as fixed effects. 

We used the following equation: 

 

stay ~ 1 + reward_previous + transition_type + reward_previous * transition_type + BACS + 

Illness_duration + (1 + transition_type + reward_previous + reward_previous * transition_type | 

Subject) 

 

We extracted individual beta estimates for reward reflecting model-free behavior and for the 

interaction of reward and transition reflecting model-based behavior for each individual subject to 

explore which decision-making strategy individuals were more likely to use. 

 

We performed a robust mixed ANOVA and robust post hoc tests for significant effects based on trimmed 

means using the bootstrap method, with beta estimates as the dependent variable, group as the 

between-subject factor and decision-making strategy (reward beta=model-free/interaction beta= 

model-based) as the within-subject factor. We then conducted post-hoc analyses for significant effects 

using one-way robust ANOVA with the bootstrap method. 

 

To explore associations of the beta estimates with clinical scores, we computed, across and within all 

groups, Spearman’s correlations. We excluded one participant from the MDD group for this analysis due 

to missing values. 

 

Computational Modeling 

Furthermore, we used hierarchical Bayesian modeling to estimate computational parameters describing 

neurocognitive processes underlying decision-making behavior. We fitted four models under one 

hierarchical prior across all subjects independent of group using the hBayesDM package (version 

1.2.1)80. We fitted four chains for each model with 1,000 burn-in samples and 3,000 samples. All models 

are shown in Table 2. The winning model – the 6-parameter model – was determined based on model-

convergence with Rhat < 1.04, pareto k < 0.7 and lowest leave one out information criterion (LOOIC) 

values. 
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Table 2. Models with LOOIC values 

Model Description  Parameters LOOIC 

4-parameter As implemented by Wunderlich and 

colleagues81, this model comprised of the 

following four parameters: 

Learning rate (‘⍺’): showing the efficiency of 

learning over the trials, the higher the score, 

the better the subjects understand and 

perform the task 

Inverse-temperature/choice randomness (‘β’): 

influence of reward prediction on choices, beta 

referring to the proportions of random choices 

made during the task, with β=0 for completely 

random responding and β=∞ for 

deterministically choosing the highest value 

option 

Perseverance (‘π’): Perseverance determines 

how strongly the subject(s) stick to their 

decisions. The higher the score on the 

perseverance scale, the lower the chance of 

switching to a different image. 

Model-weights (‘⍵’): referring to the degree of 

model-based influence on choices, takes 

values from 0 to 1, ‘0’ indicating more model-

free decisions, and ‘1’ being more model-

based. 

 

⍺, β, π, ⍵ 39841.237 

5-parameter Five-parameter model: As implemented by 

Culbreth and colleagues63, in addition to ‘⍺’ 

and ‘π’, this model had ‘β-1MF’ and ‘β-1MB’ 

(choice randomness in stage 1 for model-free 

and model-based choices respectively), and ‘β-

2’ (choice randomness for decisions in stage 2) 

⍺, β-1MF, β-1MB, β-

2, π 

40083.131 
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6-parameter Six-parameter model: In addition to ‘β-1’ 

(choice randomness in stage 1, not separate 

for model-free and model-based choices), ‘β-

2’, ‘π’, and ‘⍵’, this model included ‘⍺-1’ and 

‘⍺-2’ referring to the learning rate of stage 1 

and stage 2 respectively 

⍺-1, ⍺-2, β-1, β-2, π, 

⍵ 

39160.12 

7-parameter Seven-parameter model: An extension of the 

six-parameter model as implemented in the 

study by Daw and colleagues69, included the 

above-mentioned six parameters along with ‘λ’ 

(eligibility parameter, governing the relative 

importance of model-free and model-based 

reinforcer, with λ=1 in which only the final 

reward is important, and λ=0 in which only the 

second-stage value plays a role). 

⍺-1, ⍺-2, β-1, β-2, π, 

⍵, # 

No 

convergence 

 

After removing outliers (see description below), we explored group differences for the modeling 

parameters using robust one-way ANOVA followed by robust post-hoc tests for significant effects 

corrected for multiple comparisons using Bonferroni adjustments based on trimmed means with 

bootstrapping method, with each parameter as the dependent variable and group as the between 

subject variable. 

 

To study the associations between modeling parameters and clinical scores, we performed partial 

Spearman’s correlations controlling for cognitive function using the symbol-coding task of the BACS, as 

decision-making is highly dependent on cognitive abilities, and illness duration. These correlations were 

performed across and within all groups. We focused on the parameters model weights ⍵	to reflect the 

concept of model-free (<0.5) and model-based (>0.5) behavior more closely, and on perseverance π 

which reflects stickiness or the ability of being able to change a response pattern. We had to exclude 

one participant from the MDD group for this analysis due to missing values. See supplements for 

additional correlations. 

 

General procedure 

All statistical analyses were conducted using the R Statistical Software (version 4.1.1)82. Data was 

visualized using the ggplot2 package (version 3.4.2)83, the ggpubr package (version 0.6.0)84, and the 

Hmisc package (version 4.5-0)85. Shapiro-Wilks tests, ANOVA analyses, t-tests, were conducted with the 
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rstatix package (version 0.7.2)86. Robust ANOVAs and robust post-hoc tests were conducted using the 

WRS2 package (version 1.1-4)87. Correlation analyses were completed and visualized with the ggcorrplot 

package (version 0.1.3)88. Partial correlations were implemented using the ppcor package (version 

1.1)89. Logistic regression analysis was carried out using the lmer4 package (version 1.1-33)90. 

 

Before assessing for group-comparisons, data was inspected for normality of distribution using Shapiro-

Wilks test. If data was normally distributed, ANOVA and t-tests were conducted, and if assumptions for 

normality were not met (Shapiro-Wilks p>0.05), robust ANOVA and robust post hoc tests were 

conducted based on 20% trimmed means and 2000 bootstrap samples. Spearman Rank tests were used 

for correlation analyses. Correlations were not controlled for multiple comparison due to the 

explorative nature of the correlations and the small sample sizes of each groups, which would otherwise 

lead to excessively conservative results. Correlations across all participants are presented in the 

supplementary material. In all the tests, a p-value<0.05 was considered significant. 

 

Potential outliers with values >1.5 times the interquartile range of the respective score were identified 

and excluded from the dataset. Outlier exclusion has only been applied to those analyses were stated.  

 

Results 

 

Task learning 

To assess whether participants understood the task we compared task outcomes for each group 

contrasting the first and the last 50 trials. There was a significant effect for first and last trials, but not 

for group or the interaction between both (see supplements for details), indicating that all groups 

performed similarly independent of the strategy. Interestingly the results indicated that all participants 

did worse on the last 50 trials. 

 

Stay probability – Group differences 

Stay probabilities for ideal model-free and model-based behavior are displayed in Figure 2a and actual 

stay probabilities in the current task are displayed in Figure 2b. The visual inspection and comparison to 

simulated behavior revealed that controls and OCD patients employed model-free decision-making 

behavior, MDD patients used a hybrid strategy and schizophrenia patients were largely random in their 

choice profile. The mixed factor ANOVA identified significant main effects of group (F(3, 96)=6.61, 

p<0.001; ηp
2=0.17) and reward outcome in previous trial (F(1, 96)=43.08, p<0.001; ηp

2=0.31), and 

significant interaction effects between group and reward outcome in previous trial (F(3, 96)=2.99, 

p=0.035; ηp
2=0.09), and transition type in previous trial and reward outcome in previous trial (F(1, 

96)=6.46, p=0.013; ηp
2=0.06). See Supplementary Table 1 for post hoc tests. 
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Figure 2 Ideal and actual stay probabilities. Note: (a) Ideal, simulated model-based decision-making 
behavior: Model-free reinforcement learning predicts that a first-stage choice yielding a reward is likely to 
be repeated on the upcoming trial, regardless of a common or an uncommon transition; Ideal model-based 
decision-making behavior: Model-based reinforcement learning predicts that an uncommon transition 
should affect the value of the next first stage option, leading to a predicted interaction between reward 
and transition probability; (b) Rewarded trials, independent of transition show higher stay probabilities 
across healthy controls, MDD and OCD suggesting increased model-free behavior; the plot slightly displays 
an influence of both strategies in MDD; and random choice behavior in SCZ patients. 
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Logistic regression results and correlations 

The robust mixed ANOVA revealed a significant effect for the decision-making strategy 

(F(1,50.51)=20.43, p<0.001, ηp
2=0.42), but no effect for group or an interaction. Post-hoc tests revealed 

that all participants favored model-free decision strategies (Mean=0.034, SD=0.08) over model-based 

decisions (Mean=-0.03 e-9, SD=0.01), psihat=0.05, p<0.001, 95% CI [0.04, 0.08]. Based on our 

hypotheses, we investigated group differences within model-free and model-based behavior separately 

comparing individual betas for reward and reward*transition, respectively. We found a significant 

difference for the estimate of model-free decision-making – reward beta (F(3,30.91)=3.84, p=0.03, 

ηp
2=0.48); but no differences for model-based behavior. Post-hoc pairwise comparisons revealed that 

MDD patients and OCD patients employed significantly more model-free behavior compared to 

schizophrenia patients (Supplementary Table 2). 

 

Correlation analyses revealed that more model-free behavior is linked to stronger depressive symptoms 

(r=0.34, p=0.004, Figure 3a); and in a trend that more model-based behavior would be associated with 

less anhedonia (r=-0.21, p=0.075, Figure 3b).  Within groups separately, we found a negative correlation 

between reward beta and HAMD in MDD patients (r=-0.52, p=0.02), indicating that more model-free 

behavior is associated with fewer depressive symptoms. This correlation is driven by two individuals, 

see supplements for further analysis. 

 

 

Figure 3 Correlations between model-free and model-based behavior and clinical scores across all 
groups. (a) reward beta estimate from the logistic regression and HAMD (b) reward x transition 
interaction beta estimate from the logistic regression and Anhedonia total (c) Perseverance (π) from 
the computational model and HAMD (d) Model-weights (⍵) from the computational model and 
Anhedonia – Total. 
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Modeling parameters – Group differences 

The computational modeling analysis allowed the investigation of differences in six computational 

parameters underlying the decision-making behavior. Significant group differences (Figure 4) were 

identified in the learning rate at stage one ⍺-1 (F(3,22.04)=9.12, p=0.01, ηp
2=0.43), but not in the 

learning rate at stage two, in the choice randomness at stage one β-1 (F (3,29.16)=3.52, p=0.06, 

ηp
2=0.41) and stage two β-2 (F(3,30.07)=9.68, p=0.002, ηp

2=0.68), and the perseverance π (F (3, 

29.58)=11.05, p<0.001, ηp
2=0.51). Although not showing any group differences the parameter model 

weights (⍵) indicating model-free vs model-based behavior showed clear evidence for model-free 

behavior in all groups. Post-hoc analyses (Supplementary Table 3) showed that schizophrenia patients 

learned least at stage 1, while there were no differences at stage 2. Furthermore, they revealed that 

OCD patients were significantly more random at stage 1 compared to controls and MDD patients, while 

schizophrenia patients were more random at stage 2 compared to all other groups. Lastly, the post-hoc 

analyses showed that perseverance was lowest in schizophrenia patients compared to all other groups.
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Figure 4 Group differences in model-parameters. Note: (a) Learning rate stage 1 (⍺-1); (b) Inverse temperature stage 2 (β-1); (c) Learning rate stage 1 (⍺-
1); (d) Inverse temperature stage 2 (β-2); (e) Perseverance (π); (f) Model-weights (⍵); Group differences are calculated with robust post-hoc tests based on 
trimmed means using bootstrapping method *: significant differences at p<0.05; **: significant differences at p<0.01; ***: significant differences at 
p<0.001; ; ****: significant differences at p<0.0001; p-values are adjusted using Bonferroni correction. The individual box plots represent the minimum, 
maximum, median, first quartile and third quartile and the outliers in the data set. 
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Across all patients, correlation analyses revealed that greater unwillingness to adapt the decision 

strategy was linked to stronger depressive symptoms (r=0.269, p=0.047, Figure 3c); and that more 

model-based behavior would be associated with less anhedonia (r=-0.271, p=0.047, Figure 3d). Within 

groups separately, we found that more model-free behavior is associated with less anhedonia (r=-0.48, 

p=0.038), and in a trend that more model-based behavior is also associated with less anhedonia (r=-

0.39, p=0.098). 

 

Additionally, we explored association between modeling parameters and beta estimates from logistic 

regressions. The results are presented in the supplementary materials. 

 

Discussion 

 

In this study, we investigated disorder-general and disorder-specific decision-making patterns and their 

associations with symptoms in individuals diagnosed with MDD, OCD, and schizophrenia using two 

computational approaches. We found that controls and OCD patients predominantly utilized model-

free decision-making, while MDD patients exhibited a hybrid strategy, and schizophrenia patients 

showed largely random decision-making. These results were confirmed by regression and Bayesian 

analyses. Regression analysis revealed a stronger reliance on model-free strategies in OCD and MDD 

patients compared to schizophrenia patients. Bayesian analysis showed that schizophrenia patients had 

the lowest learning rate and perseveration, indicating random behavior, while OCD patients exhibited 

the lowest influence of reward at stage one, and schizophrenia patients showed the least influence at 

stage two. Importantly, both approaches revealed consistent symptom correlations across all patients 

showing that more model-free decision-making was associated with stronger depressive symptoms, 

whereas more model-based decision-making was linked to lower anhedonia. These disorder-general 

alterations spanning various psychiatric disorder offer insights into similarities and potential targets for 

interventions, especially for co-occurring symptoms. 

 

Whereas all groups showed a preference for model-free behavior inspecting the stay-probabilities, the 

MDD group showed to some extent hybrid model-free decision-making behavior. This finding was 

quantified by the Bayesian computational parameters, which revealed that choice randomness in MDD 

patients was lowest compared to all other groups at the first stage, whereas choices at the second stage 

were more random compared to controls, but less random compared to all other groups. Although this 

is, to our knowledge, the first time that model-free and model-based decision-making has been 

investigated in patients with depression using a task that requires both strategies such as the two-step 
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task, research from healthy individuals with depressive symptoms indicated similar results. Blanco and 

colleagues91 showed in an earlier study using a leap frog task, that depressive participants used a 

reflexive, model-free decision-making strategies which did not integrate environmental changes and 

explored randomly. Similarly, Heller and colleagues67, suggested that individuals with stronger 

depressive symptoms transitioned to model-free behavior when exposed to stress. This is interesting as 

research has consistently shown that individuals with stronger depression, or with MDD also reported 

higher levels of stress92–94 and depressive symptoms respectively. Importantly, this notion is supported 

by the symptom correlations that we found across all patients. These indicated a reduction of depressive 

symptoms with less model-free behavior and consistently a reduction of anhedonia with more model-

based decision-making behavior. Interestingly, within the MDD group alone we found a negative 

correlation between model-free behavior and depressive symptom, indicating, fewer symptoms with 

more model-free behavior. This is in contrast to the overall correlation. We argue that while most MDD 

patients align with the correlation reported across all patients, only two individuals are driving this 

negative correlation, without whom the correlation within the MDDs is no longer significant, but 

remains across all patients (see supplementary materials for supportive analyses). Also, it has been 

shown that reward processing is sensitive to medication doses95 which could additionally impact the 

correlation. 

 

Our results, furthermore, showed that the OCD group used stronger model-free behavior compared to 

controls, which is consistent with the literature31,41,96. For example, Voon and colleagues41 found that 

OCD patients showed less goal-directed, model-based and more habitual, model-free choices to 

rewarding outcomes also using the two-step task. The increased model-free behavior was linked to 

stronger obsessions41. Thus, this overreliance on habituated behavior30 has been linked to the inability 

of inhibiting established responses, especially in novel situations. This may be due to difficulties in 

shifting attention from one aspect of a stimulus to another, and in suppressing or reverting to previously 

rewarded responses97,98. As individuals with OCD also exhibit neurocognitive deficits in attentional and 

extra-dimensional set-shifting, affective set-shifting and reversal learning, as well as task shifting99,100, 

this cognitive inflexibility may underlie the inability to dynamically balancing between model-free and 

model-based decision-making. While all analyses in our study confirmed a clear reliance on model-free 

decision-making behavior, the Bayesian computational parameters also revealed that decisions made 

by OCD patients were largely random, as seen by the decreased impact of preceding rewards (i.e., 

increased choice randomness) and more choice switches (i.e., reduced perseverance). These 

computational parameters indicate increased random exploration, which has been linked to 

impulsivity101 and compulsivity102. Although we did not find that more model-free or less model-based 

behavior was linked to stronger obsessions and compulsions, we did find an association with stronger 

depressive symptoms when patients made more model-free and less model-based choices. 
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Confirming our hypothesis, schizophrenia patients in our study made largely random choices, which was 

especially apparent in rewarded common transitions. This is partially in contrast to earlier findings by 

Culbreth and colleagues63 showing that chronic schizophrenia patients were impaired in model-based 

behavior, but employed model-free decision-making in the same task, and to findings by Waltz and 

colleagues103, who reported that schizophrenia patients showed alterations in goal directed 

explorations but not random exploration, whereas more simple probabilistic learning tasks have 

consistently shown increased randomness in decision-making38,55. The Bayesian computational 

parameters in the present analysis clearly showed increased random exploration through decreased 

impact of preceding rewards (i.e., increased choice randomness) and more choice switches (i.e., 

reduced perseverance), which is very similar to the behavior seen in OCD patients within this study. 

Interestingly, it seems that the schizophrenia patients in our sample were particularly insensitive to the 

outcome of their choices, causing a disruption of model-free decision-making strategies. The 

insensitivity to reward has been shown across all stages of schizophrenia and has been associated with 

negative symptoms, especially anhedonia, and cognitive deficits55,61,104,105. Thus, our findings are in line 

with previous literature elucidating that these patients generally possess an impairment in reward 

anticipation and effort-based decision-making8,61. Completely random choice behavior on the two-step 

task might be a useful indicator for schizophrenia patients in remission of positive symptoms, however, 

this requires further exploration. Again, this is supported by the correlations we found across all 

patients, showing that more model-free and less model-based behavior is linked to more depressive 

symptoms and higher anhedonia. 

 

Despite some differences across the groups, the results seem to converge in showing that higher reward 

effect or sensitivity, as indicated by less randomness and more model-based decision-making, are 

associated with a reduction of symptoms, especially anhedonia and depressive symptoms. This is in line 

with the previous literature suggesting impaired reward processing is associated with such symptoms 

across different psychiatric disorders56,61,106–110. This is an important finding of this transdiagnostic study, 

as anhedonia and depressive symptoms occur in all three disorders. The results seem to indicate a 

shared behavioral mechanism which underlies these symptoms, suggesting that model-based, or goal-

directed decision making, is beneficial for reducing symptoms. This provides a potential starting point 

for a behavioral intervention in order to reduce anhedonia and depressive symptoms. 

 

Limitations 

Whereas previous studies were able to elicit both model-based and model-free behavior with the 

original set up41,59,69, using the standard two-step decision-making paradigm, we were unable to induce 

model-based behavior even in healthy controls. This might be due to implicit task instructions and using 
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Gaussian-randomized reward probabilities. Akam and colleagues111 and Da Silva and Hare112 were both 

able to induce model-based behavior changing reward distribution and paradigm instructions, 

respectively. The results of the Bayesian model elicited fewer and sometimes contradictive correlations 

with symptoms. One reason may be that we fitted the model under one hierarchical prior across all 

subjects independent of group which allows comparability between groups, which is necessary to 

understand distinct and shared associations. Previous work55,113 indicated clear differences in the 

parameters when using group specific vs. group general priors. The rational however for fitting the 

model across all participants is that this would allow us to investigate the most robust, albeit very 

conservative, model. None of the analyses has been controlled for medication. As we use a 

transdiagnostic sample, we were unable to calculate general equivalent doses combining medication 

for different symptoms and disorders. Furthermore, the correlations are not adjusted for multiple 

comparisons, given the exploratory nature of the analysis and the small sample sizes. Any significant 

findings will necessitate validation in subsequent studies. This study only tested one decision-making 

paradigm, a broader set of paradigms would further increase the significance of the findings, and allow 

a more fine-grained investigation of mechanisms underlying shared symptoms. 

 

Conclusion 

Taken together, this study revealed that while all groups performed more model-free decision making, 

there were differences in learning rates and randomness of choices. Importantly, the results indicated 

that more model-free behavior was linked to an increase in depressive symptoms and more model-

based behavior was associated with lower levels of anhedonia across all patients. Thus, this study 

highlights important general and specific decision-making alterations in individuals with MDD, OCD and 

schizophrenia and that co-occurring alterations and symptoms potentially share underlying behavioral 

mechanisms. 
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Legends for tables and figures 

 

Table 1 
Demographic characteristics, clinical characteristics, and the cognitive function of the healthy controls 
and patients with major depressive disorder, obsessive-compulsive disorder, and schizophrenia 
 
Table 2 
Models with LOOIC values 
 

Figure 1 
Two-step Markov decision task. Showing the state transition structure which allows discrimination 
between model-based and model-free behavior. Note: All stimuli in stage 2 are associated with a 
probabilistic reward changing slowly and independently based on Gaussian random walks, forcing 
subjects to continuously learn and explore the second stage choices. 
 
Figure 2 
Ideal and actual stay probabilities. Note: (a) Ideal, simulated model-based decision-making behavior: 
Model-free reinforcement learning predicts that a first-stage choice yielding a reward is likely to be 
repeated on the upcoming trial, regardless of a common or an uncommon transition; Ideal model-based 
decision-making behavior: Model-based reinforcement learning predicts that an uncommon transition 
should affect the value of the next first stage option, leading to a predicted interaction between reward 
and transition probability; (b) Rewarded trials, independent of transition show higher stay probabilities 
across healthy controls, MDD and OCD suggesting increased model-free behavior; the plot slightly 
displays an influence of both strategies in MDD; and random choice behavior in SCZ patients. 
 
Figure 3 
Correlations between model-free and model-based behavior and clinical scores across all groups. (a) 
reward beta estimate from the logistic regression and HAMD (b) reward x transition interaction beta 
estimate from the logistic regression and Anhedonia total (c) Perseverance (π) from the computational 
model and HAMD (d) Model-weights (⍵) from the computational model and Anhedonia – Total. 
 
Figure 4 
Group differences in model-parameters. Note: (a) Learning rate stage 1 (⍺-1); (b) Inverse temperature 
stage 2 (β-1); (c) Learning rate stage 1 (⍺-1); (d) Inverse temperature stage 2 (β-2); (e) Perseverance (π); 
(f) Model-weights (⍵); Group differences are calculated with robust post-hoc tests based on trimmed 
means using bootstrapping method *: significant differences at p<0.05; **: significant differences at 
p<0.01; ***: significant differences at p<0.001; ; ****: significant differences at p<0.0001; p-values are 
adjusted using Bonferroni correction. The individual box plots represent the minimum, maximum, 
median, first quartile and third quartile and the outliers in the data set. 


