1	DPYD genetic polymorphisms in non-European patients
2	with severe fluoropyrimidine-related toxicity: A
3	systematic review
4	
5 6	Tsun Ho Chan ^{*1} , J. Eunice Zhang ^{*1} , Munir Pirmohamed ¹
7 8 0	¹ Wolfson Centre for Personalised Medicine, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, 1.5 Prownlow Street Liverpool, L60.3CL, LIK
10	Liverpool, 1-5 blownow Succi, Liverpool, E07 50E, UK
10 11 12	*These authors contributed equally to this work.
12 13 14 15 16	Correspondence: Professor Sir Munir Pirmohamed, Wolfson Centre for Personalised Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, 1-5 Brownlow Street, Liverpool, L69 3GL, UK. Email: munirp@liverpool.ac.uk
17 18 10	Funding: This work is supported by the NHS Race & Health Observatory.
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34	Keywords: <i>DPYD</i> ; DPD, dihydropyrimidine dehydrogenase; genetic variant; polymorphism; haplotype; pharmacogenetics; pharmacogenomics; fluoropyrimidine; 5-fluorouracil; capecitabine; tegafur; chemotherapy; severe toxicity; adverse reactions; side effects
35	
36	
37	
38	
39	
40	
41	
42	
43	

44	Abstract
45	
46	Background: Pre-treatment DPYD screening is mandated in the UK and EU to reduce the
47	risk of severe and potentially fatal fluoropyrimidine-related toxicity. Four DPYD gene
48	variants which are more prominently found in Europeans are tested.
49	
50	Methods: Our systematic review in patients of non-European ancestry followed PRISMA
51	guidelines to identify relevant articles up to April 2023. Published in silico functional
52	predictions and in vitro functional data were also extracted. We also undertook in silico
53	prediction for all DPYD variants identified.
54	
55	Results: In 32 studies, published between 1998 and 2022, 53 DPYD variants were
56	evaluated in patients from 12 countries encompassing 5 ethnic groups: African American,
57	East Asian, Latin American, Middle Eastern, and South Asian. One of the 4 common
58	European DPYD variants, c.1905+1G>A, is also present in South Asian, East Asian and
59	Middle Eastern patients with severe fluoropyrimidine-related toxicity. There seems to be
60	relatively strong evidence for the c.557A>G variant, which is found in individuals of
61	African ancestry, but is not currently included in the UK genotyping panel.
62	
63	Conclusion: Extending UK pre-treatment DPYD screening to include variants that are
64	present in some non-European ancestry groups will improve patient safety and reduce race
65	and health inequalities in ethnically diverse societies.
66	

69 Introduction

70 Fluoropyrimidines are antimetabolite chemotherapy drugs comprising the 71 parenterally administered 5-fluorouracil (5-FU) and its prodrugs, capecitabine and tegafur. 72 They are commonly used either as monotherapy or in combination with other antineoplastic 73 agents in neo-adjuvant, adjuvant and palliative settings for a variety of solid tumour types 74 including colorectal, breast, oesophago-gastric and head and neck cancers ^{1,2}. 5-FU and 75 capecitabine have been on the World Health Organization (WHO) Essential Medicines List (EML) since 1977 and 2015, respectively ^{3,4}. Annually, over two million patients worldwide 76 77 and approximately 600,000 patients in Europe receive treatment with fluoropyrimidines ⁵⁻⁷. 78 Due to a narrow therapeutic index, 10-30% of patients who receive standard 79 fluoropyrimidine doses develop severe toxicity including bone marrow suppression, 80 diarrhoea, mucositis and hand-foot syndrome, usually within the first 1-2 cycles of treatment $^{8-11}$. Severe fluoropyrimidine-related toxicity leads to mortality in approximately 0.5-1% of 81 82 patients (with up to 5% lethal toxicity reported in elderly patients) $^{12-16}$.

83 Development of toxicity is in part due to inter-individual variability in 84 dihydropyrimidine dehydrogenase (DPD) activity. The first case report of a patient 85 presenting with 5-FU-related severe toxicity due to DPD deficiency was in 1985¹⁷. DPD is 86 the primary enzyme responsible for the catabolism and elimination of >80% of the administered 5-FU to the inactive metabolite dihydrofluorouracil (DHFU)^{1,15,18,19}. 87 88 Deficiency of the DPD enzyme, either complete or partial, leads to inadequate clearance of 89 5-FU which increases drug exposure and accumulation, increasing the risk of severe and sometimes fatal toxicity ²⁰⁻²². DPD deficiency can be detected in 39–61% of patients with 90 severe fluoropyrimidine-related toxicity ²³. In individuals of European ancestry, the 91 frequency of partial DPD enzyme deficiency ranges from 3 to 5% while complete DPD 92 enzyme deficiency is less frequent, with an estimated prevalence of $0.1-0.2\%^{24,25}$. 93

94 The DPD gene (DPYD) is expressed in a wide variety of human tissues; high levels are observed in the liver and peripheral blood mononuclear cells (PBMCs)^{26,27}. Located on 95 96 chromosome 1p21.3, DPYD is a large pharmacogene spanning ~920 kb in length, with 23 97 relatively small exons (69-961 bp) surrounded by large intronic regions ^{28,29}. The coding sequence totals ~3 kb in length and encodes a polypeptide comprising 1,025 amino acid 98 99 residues ^{28,29}. *DPYD* is highly polymorphic: the Genome Aggregation Database (gnomAD v2.1.1) includes 204 synonymous variants and 569 missense variants, 40 of which are 100 101 predicted to lead to loss of enzymatic function ³⁰.

102 The latest version of the Clinical Pharmacogenetics Implementation Consortium 103 (CPIC) guideline includes 82 known DPYD variants, among which, 21 are considered to 104 have no DPD function and 6 to have diminished DPD function ⁶. Prospective genotyping of 105 DPYD can identify patients with DPD enzyme deficiency and allow for prophylactic 106 fluoropyrimidine dose adjustments, thereby reducing the likelihood of fluoropyrimidinerelated toxicity without compromising cancer treatment effect ³¹⁻³⁵. 107

108 In June 2020, the European Medicines Agency (EMA) recommended DPD testing either by phenotyping or genotyping prior to treatment with fluoropyrimidines ³⁶. In 109 110 November 2020, the National Health Service (NHS) commissioned DPYD genetic testing making this one of the first pharmacogenomic tests to be applied nationally in the UK³⁷. A 111 112 variety of genotyping methods are used by the labs but they all test for the four pathological 113 DPYD variants commonly described in Europeans:

- c.1905+1G>A (IVS14+1G>A, rs3918290, *DPYD* *2A), a splice-site variant causing 114 exon 14 skipping which results in the production of an inactive protein ^{38,39}; 115
- 116

• c.2846A>T (p.Asp949Val, rs67376798, DPYD*9B), a non-synonymous variant that 117 leads to reduced DPD activity;

- c.1236G>A/HapB3 (p.Glu412=, rs56038477), a synonymous variant which tags for 118 119 c.1129-5923C>G (rs75017182), a deep-intronic splice-site variant causing significant 120 loss of DPD activity, which is in near perfect linkage disequilibrium (LD) with the 121 DPYD haplotype HapB3 encompassing three intronic variants (rs56276561, 122 rs6668296, rs115349832); and
- 124

123 • c.1679T>G (p.Ile560Ser, rs55886062, DPYD*13), a missense variant causing decreased DPD activity.

125 This is because the three key clinical studies which provided evidence for the clinical utility 126 of DPYD testing to reduce the incidence of severe fluoropyrimidine-related toxicity were all undertaken in European populations ^{11,31,32}. The minor allele frequencies (MAF) of these 127 128 four prominent European DPYD variants across non-European population groups from the 1000 Genomes Project Phase 3⁴⁰ and gnomAD v3.1.2 and v4.0.0⁴¹ databases are shown in 129 130 Supplementary Table 1.

131 It is known that there are inter-ethnic differences in DPYD variant frequency. In fact, several studies have reported the absence of the European DPYD variants in populations 132 from East and Southern Africa, namely Somalia, Kenya⁴² and Zimbabwe⁴³, and East Asia 133 including China⁴⁴ and Japan⁴⁵⁻⁴⁸. In addition, variants that are not present in Europeans can 134 have a profound impact in non-European populations, and vice versa ⁴⁹. Hence, the testing 135

136 being undertaken by EU countries and the UK NHS will not identify genetic variants in 137 non-European populations, who will be treated as wild-type, and given conventional doses of the fluoropyrimidine drugs, with the likelihood of toxicity, and in the worst-case scenario, 138 139 death. This has the potential to exacerbate health and race inequalities in ethnically diverse 140 societies. Furthermore, it does not help countries where the population is predominantly of 141 non-European ancestry, as *DPYD* genetic testing will not be implemented because of lack 142 of evidence. It is crucial that all global populations benefit equally from this important 143 genetic test. We have therefore undertaken a systematic review to evaluate DPYD genetic 144 variants which have been reported in patients of non-European ancestry who developed 145 severe fluoropyrimidine-related toxicity.

146

147 Methods

148 **Design and registration**

A systematic review was conducted in accordance to the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) 2020 guideline ⁵⁰. The review protocol was registered in the PROSPERO repository of systematic reviews (registration number CRD42023385227). The EndNote[™] X9 software was used to manage all articles (both included and excluded records) throughout the research process.

154

155 Search strategy

A literature search was performed using the MEDLINE (PubMed), Web of Science, Embase (OVID) and Scopus electronic databases to identify relevant articles published prior to 04 April 2023. The search strategy employed a combination of MeSH terms and keywords using the Boolean operators "AND" and "OR". In addition, syntax adjustments were made appropriate to each database. The search terms used in the MEDLINE (PubMed) search are described in Supplementary Table 2; similar terms were used in the Web of Science, Embase (OVID), and Scopus searches.

163

164 Eligibility criteria

We limited our search to clinical research studies, case series and case reports that genotyped for *DPYD* genetic variants in patients of non-European ancestry who had developed severe fluoropyrimidine-related toxicity after chemotherapy treatment containing 5-FU, capecitabine or tegafur. We accepted the definition of severe toxicities as (1) grade \geq 3 severe adverse events according to the Common Terminology Criteria for Adverse Event (CTCAE) ⁵¹, (2) grade \geq 3 severe adverse events in accordance to the World Health Organization (WHO) ⁵², and (3) dose-limiting toxicity (DLT) which is defined as pre-specified severe adverse events of grade 3 or higher based on the CTCAE classification. In order to maximise the number of included studies, we also accepted author-defined severity grading of fluoropyrimidine-related toxicities where terms 'grade 3', 'grade \geq 3', 'grade 4', or 'severe' were used but no classification tool was specified.

Only publications with full text availability were included. Publications in all languages were assessed with non-English articles translated either via Google Translate or with assistance from colleagues who were native speakers of the foreign language. Authors and titles of conference meeting abstracts were used to check whether full-text articles had been published. Editorials, opinion letters, and unrefereed preprints were not considered.

- 181
- 182

2 Screening process and study selection

183 After study duplications were removed, T.H.C screened the titles and abstracts of all 184 articles in accordance with the above eligibility criteria to identify the relevant studies for 185 first phase inclusion; irrelevant studies were excluded. In the second phase of the review 186 process, full-text articles of the relevant studies were retrieved, and in-depth full-text 187 screening was carried out. Detailed full-text screening also included the inspection of all 188 cited references. In addition, the reference lists of clinical guidelines, policy statements from 189 regulatory agencies, pertinent narrative and systematic reviews were also screened to check 190 for additional eligible studies. In the situation of any uncertainty during the selection 191 process, the full text was checked and resolved by consensus with J.E.Z.

192

193 **Quality assessment**

T.H.C and J.E.Z independently assessed the methodological quality of each included
study and relied on peer-review to ensure included studies were methodologically sound. A
formal assessment of the risk of bias was not undertaken.

197

198 **Data extraction**

Relevant summary and patient-level data from published manuscripts and appendix materials of included studies were independently extracted by T.H.C and J.E.Z. A data extraction form was compiled and data items collected are detailed in the Supplementary Methods. For studies which included patients of European and non-European ancestries, only data reported for non-Europeans were extracted. In instances where information provided in the published manuscript was unclear, we contacted the study authors by email for clarification but amongst the six emails sent out, no response was received, and therefore these 6 articles were excluded. If the exact number for a data item could not be extracted, meticulous estimation was undertaken where possible. All extracted data were presented and compared between T.H.C and J.E.Z, with any disagreements resolved by discussion to reach consensus.

210

211 Data synthesis

Due to the heterogeneity of articles included in this systematic review and the small number of studies conducted in each ethnicity, it was impossible to perform a quantitative analysis, and so the findings are described in a narrative way and data extracted from each article presented in tables. No meta-analysis was undertaken.

216

217 In silico prediction

In silico prediction was undertaken for all *DPYD* genetic variants evaluated in this systematic review and is described in the Supplementary Methods. The scoring thresholds and software weblinks of the *in silico* prediction tools used are summarised in Supplementary Table 3.

222

223 **Published** *in silico* functional predictions and *in vitro* functional data

To acquire a more nuanced understanding of the *DPYD* variants identified in our systematic review, published data from previously developed *in silico* functional prediction models with high accuracy, the DPYD-varifier⁵³ and the ADME-optimised Prediction Framework (APF) ^{54,55}, were extracted (described in Supplementary Methods). In addition, functional data on DPD enzyme activity from *in vitro* experiments where HEK293T/c17, HEK293-Flp-In and 293FT cells were transiently expressed with *DPYD* variants and treated with either 5-FU or thymine were extracted ^{42,45,56-59}.

231

232 **Results**

233 Identification and selection of articles

A detailed flow diagram showing the identification and selection process for study inclusion, according to the PRISMA statement, is depicted in Figure 1. All articles included were in English; none of the non-English articles met the criteria for inclusion.

237

238 Characteristics of included articles

239 Table 1 details the 32 included articles and a summary breakdown of the 240 characteristics is provided in Supplementary Table 4. All articles were published between 241 September 1998 and December 2022. Two studies were case series, 10 studies were case 242 reports and 20 were cohort studies with an equal split between prospective and retrospective 243 study designs. Patients were from 12 countries encompassing 5 ethnic groups: African 244 American (United States), East Asian (China, Japan, Korea, Thailand), Latin American 245 (Chile), Middle Eastern (Jordan, Lebanon, Saudi Arabia, Tunisia), and South Asian 246 (Bangladesh, India, United States).

247 248 Heterogeneity was present across the 32 articles included and are described in the Supplementary Results.

249

250 **Patient characteristics**

251 A summary of the patient characteristics is presented in Table 2. A total of 1431 252 patients were included across the 32 studies. Their age ranged between 15 to 90 years, and 253 slightly more men than women were enrolled in most studies. The most common type of 254 tumour was colorectal cancer and most patients received either 5-FU or capecitabine-based 255 combination chemotherapy treatment that included oxaliplatin. All patients were reported 256 to have experienced grade 3 or higher fluoropyrimidine-related toxicities (as defined above). 257 Clinical manifestations included haematological, gastrointestinal, dermatological, hepatic, 258 neurological, and renal toxicities, with many with neutropenia, myelosuppression, 259 diarrhoea, mucositis and hand-foot-syndrome.

260

261 **DPYD** genetic variants, haplotypes and *in silico* predictions

262 Across the 32 included studies, a total of 53 DPYD genetic variants were reported, 263 of which 20 have been reported in the CPIC guideline⁶ (Figure 2). Genotype counts of variants reported in patients with severe fluoropyrimidine-related toxicity across the 5 264 265 ethnicities with details of all extracted data items are presented in Supplementary Table 5. 266 Our *in silico* prediction results for all 53 DPYD variants identified are summarised in Table 267 3 with scores obtained from each *in silico* prediction tool detailed in Supplementary Table 268 6. In addition, 13 studies reported a combination of DPYD genetic variants at individual 269 patient-level and we were able to identify 26 haplotype combinations as presented in 270 Supplementary Table 7. Subsequent paragraphs in this section will focus on variants which 271 were reported in more than 1 individual in each ethnicity with either: (1) CPIC-reported decreased or loss of DPD enzyme function or (2) unreported DPD enzyme function in the
CPIC guideline but predicted to be deleterious by >60% of the *in silico* tools we utilised.
Variants which were excluded due to this filtering process and haplotype combinations are
described in the Supplementary Results.

276

277 African American

19 *DPYD* variants (2 missense, 2 frameshift, 11 intronic, one 5'-upstream, one
3'UTR, two 3'-downstream) were reported across 3 case studies ⁶⁰⁻⁶² and 1 cohort study ⁶³
conducted in patients of African American ancestry in the United States (Supplementary
Table 5).

282 Heterozygous carriage of the missense variant c.557A>G (Tyr186Cys) was reported in all 3 case studies 60,62,64 . This variant has a mean prevalence of ~2% in reference 283 populations of African descent (Supplementary Table 1)^{40,41} and the presence of either 1 or 284 285 2 copies of the c.557A>G variant allele is considered to cause a decrease in DPD enzyme function (intermediate metaboliser) by the CPIC guideline with moderate strength of 286 287 evidence. Up to 77% of the in silico prediction tools we utilised predicted this variant to be 288 deleterious or probably damaging and this variant was classified as deleterious by APF 289 (Table 3). In vitro functional analysis containing the Tyr186Cys amino acid substitution showed a ~15% reduction in DPD enzyme activity relative to the wild-type (Table 3) 57,65 . 290 291 Maharjan and colleagues (2019) did not include c.557A>G genetic testing in their cohort of 292 African American patients ⁶³.

293

294 East Asian

A total of 30 *DPYD* variants (2 nonsense, 15 missense, 3 synonymous, 2 splice donor, and 8 intronic) were reported in patients of East Asian ancestry which included 5 cohort studies ⁶⁶⁻⁷⁰, 2 case reports from China ^{71,72}, 2 cohort studies ^{46,48}, 3 case reports from Japan ⁷³⁻⁷⁵, 1 cohort study from Korea ⁷⁶, and 1 cohort study from Thailand ⁷⁷ (Supplementary Table 5).

Amongst the 30 variants identified, 15 have been reported in the CPIC guideline including 3 loss of function variants, c.1156G>T (Glu386Ter), c.1774C>T (Arg592Trp) and c.1905+1G>A, with moderate, weak, and high strength of evidence respectively. Heterozygous carriers of 1 of these 3 variants lead to decreased enzyme function and are classified as intermediate metabolisers by CPIC; while homozygous carriers of either of these 3 variants lead to loss of enzyme function and are classified by CPIC as poor metabolisers. In reference populations of East Asian descent, these 3 variants are rare with zero MAF observed for c.1156G>T and c.1905+1G>A, and a MAF of 0.1% for c.1774C>T (Supplementary Table 1) 40,41 .

309 Heterozygous carriage of the truncating c.1156G>T variant was reported in three Japanese patients, two from case reports who both exhibited >10 fold decrease in PBMC 310 DPD enzyme activity in comparison to normal/healthy individuals ^{74,75}, and one from a 311 312 cohort study where heterozygous carriage of 1 of the 7 rare pathogenic DPYD variants, 313 c.596G>A, c.733A>G, c.914C>A, c.1156G>T, c.1666A>C, c.1712C>A, or c.1863G>T 314 was significantly associated with grade 3-4 toxicity in comparison to patients without the 7 315 rare variants (OR = unreported; p = 0.0271; Supplementary Table 5)⁴⁸. 100% of the *in silico* prediction tools we utilised predicted c.1156G>T to be deleterious and published in vitro 316 317 expression analysis reported complete loss of DPD enzyme activity (Table 3) ^{57,65}.

Two patients, one from a Korean cohort study and one from a Thai cohort study, were heterozygous for the nonsynonymous variant c.1774C>T ^{76,77}. Up to 92% of the *in silico* prediction tools we utilised predicted c.1774C>T to be deleterious and the APF classified this variant as deleterious (Table 3). Previously published *in vitro* functional characterization of c.1774C>T reported a reduction in DPD catalytic activity compared to the wild-type (Table 3) ^{45,57,59,65}.

Heterozygous carriers of the intron 14 splice donor variant c.1905+1G>A were reported in one Thai cohort patient ⁷⁷ and 14 Chinese cohort patients in which significantly higher incidences of grade 3-4 myelosuppression, hand-foot syndrome, diarrhoea, gastrointestinal reactions and mucositis were observed (OR = unreported; p < 0.001 for each severe side effect) compared to wild-type carriers ⁶⁹. 100% of the *in silico* prediction tools we utilised predicted this variant to be deleterious and published *in vitro* expression analysis reported c.1905+1G>A to be catalytically inactive (Table 3) ^{56,65}.

331 Two Chinese patients from a cohort study, one with grade 4 bone marrow inhibition 332 (BMI) and one with grade 4 BMI and grade 4 gastrointestinal toxicity, were reported to be 333 heterozygous carriers for the nonsense variant, c.464T>A (Leu155Ter). This variant is not 334 reported in the CPIC guideline. The DPD enzyme activity in PBMCs from both patients was ~45% lower than that in non-carriers with Grade 1-2 toxicity (Supplementary Table 5) 335 336 ⁷⁰. In addition, when c.464T>A was analysed in composite with c.85T>C and c.2194G>A, 337 the carriage of either c.464T>A, c.85T>C, and/or c.2194G>A was associated with an 338 increased incidence of bone marrow toxicity (OR = 24; p = 0.0001) and gastrointestinal 339 toxicity (OR = 8; p = 0.0019) in comparison to non-variant carriers (Supplementary Table

5) ⁷⁰. 70% of the *in silico* prediction tools we used predicted the c.464T>A to be deleterious
(Table 3, Supplementary Table 6). No allele frequency information in reference populations
of East Asian descent and other ancestries has been reported for this variant (Supplementary
Table 1) ^{40,41}.

344

345 Latin American

Only 1 cohort study from Chile was identified in the Latin American population ⁷⁸ and the authors examined 3 missense *DPYD* polymorphisms considered to have normal DPD enzyme function by the CPIC guideline, c.85T>C, c.496A>G and c.1627A>G (Supplementary Table 5, Supplementary Results).

- 350
- 351 Middle Eastern

352 13 *DPYD* variants (1 splice donor, 8 missense, 4 intronic) were reported in patients
of Middle Eastern ancestry. There were 2 cohort studies from Tunisia ^{79,80}, 1 cohort study
from Jordan ⁸¹ 1 case report from Lebanon ⁸² and 1 case series from Saudi Arabia ⁸³
(Supplementary Table 5). None of the variants passed our filtering process (Supplementary
Results).

357

358 South Asian

7 *DPYD* variants (6 missense, 1 splice donor) were reported in patients of South
Asian ancestry across 5 cohort studies from India ⁸⁴⁻⁸⁸, one Indian case series ⁸⁹, one case
study of an Indian patient in the USA ⁹⁰, and 1 cohort study from Bangladesh ⁹¹
(Supplementary Table 5).

With a prevalence of 0.3-1.5% in reference populations of South Asian descent 363 (Supplementary Table 1) ^{40,41}, the splice donor variant c.1905+1G>A was reported in 364 patients from Bangladesh and India^{84,85,87-89,91}. The Bangladeshi cohort study reported a 365 significant association with anaemia (OR = 4.7, p = 0.042), neutropenia (OR = 6.47, p =366 0.018), thrombocytopaenia (OR = 8.08, p = 0.05), nausea (OR = 10.06, p = 0.012), and 367 368 diarrhoea (OR = 5.76, p = 0.026) when patients with grade 3-4 toxicities were compared to patients with grade ≤ 2 toxicities ⁹¹. The Bangladeshi cohort study genotyped for only the 369 370 c.1905+1G>A variant, and whether there were other mutations was not investigated. One 371 of the four Indian cohort studies reported a decreased incidence of mucositis (p = 0.016) 372 and diarrhoea (p = 0.006) in DPYD variant carriers of either c.85T>C, c.496A>G,

c.1627A>G, c.1905+1G>A and/or c.2194G>A after 50% capecitabine dose reduction in
 cycle 2 of chemotherapy ⁸⁷.

375

376 **Discussion**

This systematic review has identified numerous variants in the *DPYD* gene which have been reported in non-European individuals with severe toxicity associated with the use of fluoropyrimidines. In the UK and EU, testing for 4 *DPYD* genetic variants is undertaken before the use of fluoropyrimidines ^{36,37} – in England, we currently do 38,000 tests per year. This is an important success story for the implementation of pharmacogenomics, but there is still a need to improve the testing pathway, both in terms of increasing the number of genetic variants tested, and ensuring that we are not disadvantaging particular ethnic groups.

384 It is interesting to note that our systematic review has identified 3 of the 4 DPYD variants tested in the UK and EU^{36,37}, in non-European individuals. The c.1905+1G>A 385 variant, which leads to exon 14 skipping, has been reported in 1 Thai ⁷⁷, 14 Chinese ⁶⁹, 1 386 Lebanese⁸², 7 Bangladeshi⁹¹ and 18 Indian⁸⁴⁻⁸⁹ patients with fluoropyrimidine-related 387 388 toxicity. The frequency of this variant is 0% in East Asian reference populations, 0.3% in 389 Middle Eastern reference populations, and 0.3-1.5% in South Asian reference populations 390 ^{40,41}. The c.1679T>G and c.1236G>A/HapB3 variants have been reported in 1 Tunisian patient 80 and 1 Thai patient 77 , respectively. The prevalence of c.1679T>G is 0% in Middle 391 Eastern reference populations ⁴¹ and the frequency of c.1236G>A/HapB3 ranges from 0.01-392 393 0.1% in East Asian reference populations ⁴¹. According to the 2021 UK census ⁹², South Asians, East Asians, and Arabs represent 6.7%, 1.3%, and 0.6% of the UK population, 394 395 respectively, and thus they will benefit from the genetic testing which is offered to all 396 patients in the UK if they require treatment with 5-FU or its analogues.

397 Clearly, there are other variants in these ethnic groups which need further 398 investigation. For example, in South Asians and Middle Easterners, our systematic review 399 identified single occurrence of missense variants c.704G>A (p.Arg235Gln, rs755416212) ⁹⁰ and c.257C>T (p.Pro86Leu, rs568132506) ⁸³, respectively. These variants are not 400 reported in the CPIC guideline but are predicted to be deleterious by >80% of the *in silico* 401 402 tools we used, with one research study reporting significant reduction of DPD activity in 403 *vitro* with the c.257C>T variant ⁴². Further functional work and greater interrogation of patients who have had toxicity is warranted to confirm these findings and to identify other 404 405 functionally relevant variants.

406 It is important to briefly consider some other variants. First, c.464T>A (p.Leu155Ter, 407 rs2101026231), a nonsense variant, located on exon 5, causes the replacement of leucine 408 155 by a stopping codon, resulting in a truncated protein. This variant was first reported in 409 a Spanish patient who died from severe, multi-system toxicity following the first administration of 5-FU for adjuvant colon cancer therapy ⁹³. Two Chinese patients with 5-410 FU-related severe toxicity who both patients exhibited ~45% lower DPD enzyme activity 411 in PBMCs compared to non-carriers have also been reported ⁷⁰. This variant is not included 412 413 in the current CPIC guideline and its allele frequency across global ethnic populations in 414 the 1000 Genomes and gnomAD databases is currently unknown, but our *in silico* analysis 415 predicted this variant to be deleterious or probably damaging but further *in vitro* functional 416 work is required to confirm the impact of this variant on DPD enzyme activity. Second, the 417 exon 11 truncating variant, c.1156G>T (p.Glu386Ter, rs78060119, *12), leads to premature 418 protein truncation at amino acid position 386 and is classified as a loss-of-function variant 419 with moderate evidence level by the CPIC guideline. Heterozygous carriage of this variant was detected in three Japanese patients with severe fluoropyrimidine-related toxicity across 420 421 2 case studies and 1 cohort study identified in our systematic review ^{48,74,75}. In vivo and in *vitro* studies of this variant observed over 90% reduction in DPD activity ^{57,74,75}. Currently, 422 423 there is no guideline or mandate for *DPYD* testing before fluoropyrimidine treatment in 424 Japan but *DPYD* genetic testing that includes the c.1156G>T variant is available in several 425 hospital pharmacies and can be requested by the attending physician. Data from the latest 426 gnomAD release (v4.0) showed very low prevalence (<0.005%) of this variant across East 427 Asian, Admixed American, South Asian, and European populations. Third, the c.1774C>T 428 (p.Arg592Trp, rs59086055) variant has a prevalence of 0.1% in East Asian reference 429 populations ^{40,41}; heterozygous carriage of c.1774C>T was detected in 1 Korean patient ⁷⁶ and 1 Thai patient ⁷⁷ in our systematic review. This exon 14 missense variant causing 430 431 Arg592Trp substitution is considered a loss-of-function variant by the CPIC guideline with 432 weak evidence. No *in vivo* data have been published for this variant but *in vitro* functional work reported over 90% reduction in DPD activity 45,57,59,65. These variants seem to be 433 434 important but further work is required both to understand the functional relevance of these 435 variants, and identify other variants in East Asian individuals, to improve the prediction of 436 fluoropyrimidine-related toxicity in the different ethnic groups that constitute East Asian 437 populations in the UK and globally.

Our systematic review has identified 3 case studies detecting the c.557A>G variant
 (rs115232898, p.Tyr186Cys) in African Americans with severe 5-FU-related toxicity ⁶⁰⁻⁶²,

440 one of which was fatal ⁶¹. In addition, in an editorial which was not eligible for inclusion in 441 our systematic review, this variant was reported in an African-Caribbean patient with severe 442 5-FU-related toxicity ⁹⁴. This is a nonsynonymous variant located on exon 6 where carriers have 46% lower DPD enzyme activity in PBMCs than non-carriers ⁹⁵. In vitro functional 443 444 analysis of DPD containing the Tyr186Cys amino acid substitution has shown a ~15% reduction in DPD activity relative to wildtype ⁵⁷. Data from the 1000 Genomes Project Phase 445 446 3 confirms that c.557A>G is mainly found in African populations (Afro-Caribbeans in 447 Barbados, African Americans in southwest United States, Yoruba in Ibadan (Nigeria), 448 Luhya in Webuye (Kenya), Gambian in Western Divisions in the Gambia, Mende in Sierra Leone, and Esan in Nigeria), with allele frequency ranging between 1-4% ⁴⁰. This variant is 449 450 virtually non-existent in Europeans, East Asians and South Asians. In the United States, the 451 Mayo Clinic and several commercial laboratories includes c.557A>G in their pre-treatment 452 DPYD testing to identify individuals at increased risk of toxicity when considering 453 fluoropyrimidine chemotherapy treatment. However, this variant is currently not included in the UK NHS DPYD genetic testing. In the 2021 UK Census, 4% (2.4 million) of the total 454 455 population in England and Wales identified their ethnic group within the "Black, Black 456 British, Black Welsh, Caribbean or African" category ⁹².

457 Our systematic review also shows that few novel variants in the DPYD gene have been reported in Middle Eastern⁸¹ populations with a paucity of data in Latin American 458 populations ⁷⁸, highlighting the need for more studies in these populations. Indeed, further 459 460 studies are needed in all populations (European and non-European) to fully understand the 461 spectrum of harmful mutations which occur in this gene. This will require careful 462 identification and assessment of patients with toxicity caused by 5-FU or its analogues, and 463 subsequent sequencing of the DPYD gene together with functional characterisation of any 464 mutations identified. To this end, we have initiated a programme of work (called "DPYD-465 International") which has the aim to identify affected patients globally so that evidence can be generated to optimise the pathway for DPYD genetic screening to maximise benefits for 466 467 all populations and minimise any unintended inequalities.

Previous studies have shown that *DPYD* intermediate and poor metabolizers receiving conventional doses of fluoropyrimidine are at significantly higher risk for severe toxicity and treatment-related mortality ^{31,32} and pre-treatment testing followed by genotype-guided dose reduction in variant carriers significantly reduces toxicity and mortality risks ³¹⁻³⁵, and associated hospitalisations ^{32,96-98}. This strategy has also been shown to be cost-effective. For example, a UK-based study of an extended *DPYD* genetic 474 panel showed that genotyping was dominant over standard of care, with a saving of £78,000 475 per patient over a lifetime ⁹⁹. Two other studies, one from Canada¹⁰⁰ and another from 476 Iran¹⁰¹, have also shown pre-prescription *DPYD* genotyping to be cost saving, while studies 477 from the US⁹⁶ and Spain¹⁰² showed it to be cost-effective.

478 Our systematic review has limitations. We had to rely on observational studies, 479 including case reports, to identify affected patients. Clearly this represents selective 480 reporting, and many patients with important variants are either not reported, or more likely 481 not genotyped or sequenced. It is therefore important to identify and sequence these patients 482 to evaluate the full spectrum of mutations associated with toxicity from 5-FU or its 483 analogues. For many of the variants identified, the functional consequences are unknown. 484 In this review, we have undertaken a comprehensive in silico evaluation of the likely 485 functional consequences of the mutations, but further functional evaluation will be needed 486 for many of the variants. Notably, our systematic review has identified a number of patients 487 carrying more than one *DPYD* variant and in particular one African-American carrying 2 488 loss-of-function variants c.295_298delTCAT and c.1898delC in addition to the decreased 489 function variant c.557A>G (Supplementary Results)⁶²; how the co-expression of functional DPYD variants affects overall DPD activity and the consequences for the severity of 490 491 fluoropyrimidine-related toxicity remains to be elucidated. Our focus has been on the DPYD 492 gene, but there are other potential genes (e.g. MIR27A, TYMS, ENOSF1, MHTFR) which 493 may be important in predisposing to toxicity from the fluoropyrimidines, and these will need 494 a separate evaluation.

495 In conclusion, our systematic review has focused on non-European patients and has 496 identified numerous variants in the DPYD gene which have been reported in patients with 497 severe toxicity after treatment with 5-FU or its oral analogues. The UK is an increasingly 498 multi-cultural and ethnically diverse society but we test for 4 variants which have been 499 identified from studies undertaken in European populations. However, our analysis shows 500 that 3 of these 4 variants are also important in South Asian, East Asian and Middle Eastern 501 individuals. From the evidence gathered, and based on practice elsewhere in the world, we 502 feel that it would be important to extend DPYD genetic testing in the UK NHS to include 503 the c.557A>G variant which has been identified in individuals of African ancestry. The 504 other variants described in this systematic review need further evaluation for incorporation 505 into the testing pathways either in the UK or elsewhere, but of course, if sequencing 506 becomes the standard method for characterising DPYD variation, we hope the information 507 contained within this systematic review will be of use to diagnostic labs and policy makers.

508	
509	Additional Information
510	
511	Authors' contributions
512	Conceptualization, M.P. and E.J.Z.; Methodology, T.H.C. and E.J.Z.; Data review, T.H.C.
513	and E.J.Z; In silico analysis, T.H.C.; Writing - Original Draft Preparation, T.H.C. and
514	E.J.Z.; Writing – Review and Editing, T.H.C., E.J.Z. and M.P.; Supervision, E.J.Z. and M.P.
515	All authors have read and agreed to the published version of the manuscript.
516	
517	Ethics approval and consent to participate
518 519	Ethics approval was not required for this review.
520	Data availability
521	Data used in this review is provided in Supplementary Appendices; any additional data are
522	available upon request to the corresponding author.
523	
524	Competing interests
525	MP has received partnership funding for the following: MRC Clinical Pharmacology
526	Training Scheme (co-funded by MRC and Roche, UCB, Eli Lilly and Novartis). He has
527	developed an HLA genotyping panel with MC Diagnostics, but does not benefit financially
528	from this. He is part of the IMI Consortium ARDAT (www.ardat.org). None of the funding
529	MP received is related to the current paper.
530	The remaining authors declare that the research was conducted in the absence of any
531	commercial or financial relationships that could be construed as a potential conflict of
532	interest.
533	
534	Funding information
535	This work was supported by the NHS Race & Health Observatory.
536	
537	
F 20	

538

539 **References**

- 5401Thorn, C. F. et al. PharmGKB summary: fluoropyrimidine pathways.541Pharmacogenet Genomics 21, 237-242 (2011).
- 5422Lee, A. M. et al. DPYD variants as predictors of 5-fluorouracil toxicity in543adjuvant colon cancer treatment (NCCTG N0147). J Natl Cancer Inst 106544(2014).
- 545 3 WHO. Model List of Essential Medicines–1st List, 1977. 546 https://www.who.int/publications/i/item/9241206152 (1977).
- WHO. Selection and Use of Essential Medicines: Report of the WHO Expert
 Committee, 2015 (including the 19th WHO Model List of Essential Medicines
 and the 5th WHO Model List of Essential Medicines for Children). 994, 1550 546 (2015).
- 551 5 European Medicines Agency (EMA). Referral under Article 31 of Directive 552 2001/83/EC resulting from pharmacovigilance data: fluorouracil and 553 fluorouracil-related substances (capecitabine, tegafur and flucytosine) 554 containing medicinal products. Available at 555 https://www.ema.europa.eu/en/documents/referral/fluorouracil-fluorouracil-
- 556 related-substances-article-31-referral-assessment-report_en.pdf (2020).
- Amstutz, U. *et al.* Clinical Pharmacogenetics Implementation Consortium
 (CPIC) Guideline for Dihydropyrimidine Dehydrogenase Genotype and
 Fluoropyrimidine Dosing: 2017 Update. *Clin Pharmacol Ther* **103**, 210-216
 (2018).
- 561 7 Sung, H. *et al.* Global Cancer Statistics 2020: GLOBOCAN Estimates of 562 Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. *CA* 563 *Cancer J Clin* **71**, 209-249 (2021).
- 564 8 Meta-Analysis Group In, C. *et al.* Toxicity of fluorouracil in patients with 565 advanced colorectal cancer: effect of administration schedule and prognostic 566 factors. *J Clin Oncol* **16**, 3537-3541 (1998).
- Rosmarin, D. *et al.* Genetic markers of toxicity from capecitabine and other
 fluorouracil-based regimens: investigation in the QUASAR2 study,
 systematic review, and meta-analysis. *J Clin Oncol* **32**, 1031-1039 (2014).
- 570 10 Froehlich, T. K., Amstutz, U., Aebi, S., Joerger, M. & Largiader, C. R. Clinical 571 importance of risk variants in the dihydropyrimidine dehydrogenase gene for 572 the prediction of early-onset fluoropyrimidine toxicity. *Int J Cancer* **136**, 730-573 739 (2015).
- 574 11 Meulendijks, D. *et al.* Clinical relevance of DPYD variants c.1679T>G, 575 c.1236G>A/HapB3, and c.1601G>A as predictors of severe 576 fluoropyrimidine-associated toxicity: a systematic review and meta-analysis 577 of individual patient data. *Lancet Oncol* **16**, 1639-1650 (2015).
- 578 12 Saltz, L. B. *et al.* Irinotecan plus fluorouracil and leucovorin for metastatic
 579 colorectal cancer. Irinotecan Study Group. *N Engl J Med* 343, 905-914
 580 (2000).
- 581 13 Bajetta, E. *et al.* Safety and efficacy of two different doses of capecitabine in
 582 the treatment of advanced breast cancer in older women. *J Clin Oncol* 23,
 583 2155-2161 (2005).
- 58414Tsalic, M., Bar-Sela, G., Beny, A., Visel, B. & Haim, N. Severe toxicity related585to the 5-fluorouracil/leucovorin combination (the Mayo Clinic regimen): a586prospective study in colorectal cancer patients. Am J Clin Oncol 26, 103-106587(2003).
- 588 15 Hoff, P. M. *et al.* Comparison of oral capecitabine versus intravenous 589 fluorouracil plus leucovorin as first-line treatment in 605 patients with

- 590 metastatic colorectal cancer: results of a randomized phase III study. *J Clin* 591 *Oncol* **19**, 2282-2292 (2001).
- 592 16 Van Cutsem, E. *et al.* Oral capecitabine compared with intravenous 593 fluorouracil plus leucovorin in patients with metastatic colorectal cancer: 594 results of a large phase III study. *J Clin Oncol* **19**, 4097-4106 (2001).
- 595 17 Tuchman, M. *et al.* Familial pyrimidinemia and pyrimidinuria associated with 596 severe fluorouracil toxicity. *N Engl J Med* **313**, 245-249 (1985).
- 597 18 Sommadossi, J. P. *et al.* Rapid Catabolism of 5-Fluorouracil in Freshly 598 Isolated Rat Hepatocytes as Analyzed by High-Performance Liquid-599 Chromatography. *Journal of Biological Chemistry* **257**, 8171-8176 (1982).
- Traut, T. W. & Loechel, S. Pyrimidine catabolism: individual characterization
 of the three sequential enzymes with a new assay. *Biochemistry* 23, 25332539 (1984).
- Diasio, R. B., Beavers, T. L. & Carpenter, J. T. Familial deficiency of
 dihydropyrimidine dehydrogenase. Biochemical basis for familial
 pyrimidinemia and severe 5-fluorouracil-induced toxicity. *J Clin Invest* 81,
 47-51 (1988).
- Harris, B. E., Carpenter, J. T. & Diasio, R. B. Severe 5-fluorouracil toxicity
 secondary to dihydropyrimidine dehydrogenase deficiency. A potentially
 more common pharmacogenetic syndrome. *Cancer* 68, 499-501 (1991).
- Takimoto, C. H. *et al.* Severe neurotoxicity following 5-fluorouracil-based
 chemotherapy in a patient with dihydropyrimidine dehydrogenase deficiency.
 Clin Cancer Res 2, 477-481 (1996).
- van Kuilenburg, A. B. Dihydropyrimidine dehydrogenase and the efficacy
 and toxicity of 5-fluorouracil. *Eur J Cancer* 40, 939-950 (2004).
- Lunenburg, C. *et al.* Dutch Pharmacogenetics Working Group (DPWG)
 guideline for the gene-drug interaction of DPYD and fluoropyrimidines. *Eur J Hum Genet* 28, 508-517 (2020).
- 61825Morel, A. et al. Clinical relevance of different dihydropyrimidine619dehydrogenase gene single nucleotide polymorphisms on 5-fluorouracil620tolerance. Mol Cancer Ther 5, 2895-2904 (2006).
- 621 26 van Kuilenburg, A. B., van Lenthe, H. & van Gennip, A. H. Activity of
 622 pyrimidine degradation enzymes in normal tissues. *Nucleosides Nucleotides*623 *Nucleic Acids* 25, 1211-1214 (2006).
- Van Kuilenburg, A. B., van Lenthe, H., Blom, M. J., Mul, E. P. & Van Gennip,
 A. H. Profound variation in dihydropyrimidine dehydrogenase activity in
 human blood cells: major implications for the detection of partly deficient
 patients. *Br J Cancer* **79**, 620-626 (1999).
- Johnson, M. R., Wang, K., Tillmanns, S., Albin, N. & Diasio, R. B. Structural
 organization of the human dihydropyrimidine dehydrogenase gene. *Cancer Res* 57, 1660-1663 (1997).
- 63129Wei, X. et al.Characterization of the human dihydropyrimidine632dehydrogenase gene.Genomics 51, 391-400 (1998).
- 63330Karczewski, K. J. *et al.* The mutational constraint spectrum quantified from634variation in 141,456 humans. *Nature* **581**, 434-443 (2020).
- Henricks, L. M. *et al.* DPYD genotype-guided dose individualisation of
 fluoropyrimidine therapy in patients with cancer: a prospective safety
 analysis. *Lancet Oncol* **19**, 1459-1467 (2018).
- 63832Deenen, M. J. et al. Upfront Genotyping of DPYD*2A to Individualize639Fluoropyrimidine Therapy: A Safety and Cost Analysis. J Clin Oncol 34, 227-640234 (2016).

- 641 33 Henricks, L. M. *et al.* Effectiveness and safety of reduced-dose
 642 fluoropyrimidine therapy in patients carrying the DPYD*2A variant: A
 643 matched pair analysis. *Int J Cancer* 144, 2347-2354 (2019).
- 644 34 Glewis, S. *et al.* A systematic review and meta-analysis of toxicity and 645 treatment outcomes with pharmacogenetic-guided dosing compared to 646 standard of care BSA-based fluoropyrimidine dosing. *Br J Cancer* **127**, 126-647 136 (2022).
- 64835Wigle, T. J. *et al.* Impact of pretreatment dihydropyrimidine dehydrogenase649genotype-guided fluoropyrimidine dosing on chemotherapy associated650adverse events. Clin Transl Sci 14, 1338-1348 (2021).
- European Medicines Agency (EMA). 5-Fluorouracil (i.v.), capecitabine and 651 36 tegafur containing products: Pre-treatment testing to identify DPD-deficient 652 653 patients increased risk of severe toxicity. Available at at 654 https://www.ema.europa.eu/en/medicines/dhpc/5-fluorouracil-ivcapecitabine-tegafur-containing-products-pre-treatment-testing-identify-655 dpd#documents-sectio (2020). 656
- 65737NHS England. Clinical Commissioning Urgent Policy Statement:658Pharmacogenomic Testing for DPYD Polymorphisms with Fluoropyrimidine659Therapies. Available at https://www.england.nhs.uk/publication/clinical-660commissioning-urgent-policy-statement-pharmacogenomic-testing-for-661dpyd-polymorphisms-with-fluoropyrimidine-therapies/
- Wreken, P. *et al.* A point mutation in an invariant splice donor site leads to
 exon skipping in two unrelated Dutch patients with dihydropyrimidine
 dehydrogenase deficiency. *J Inherit Metab Dis* **19**, 645-654 (1996).
- Wei, X., McLeod, H. L., McMurrough, J., Gonzalez, F. J. & FernandezSalguero, P. Molecular basis of the human dihydropyrimidine
 dehydrogenase deficiency and 5-fluorouracil toxicity. *J Clin Invest* 98, 610615 (1996).
- Auton, A. *et al.* A global reference for human genetic variation. *Nature* 526, 68-74 (2015).
- 67141Chen, S. *et al.* A genome-wide mutational constraint map quantified from
variation in 76,156 human genomes. In: 10.1101/2022.03.20.485034
(bioRxiv, 2022).
- Elraiyah, T. *et al.* Novel Deleterious Dihydropyrimidine Dehydrogenase
 Variants May Contribute to 5-Fluorouracil Sensitivity in an East African
 Population. *Clin Pharmacol Ther* **101**, 382-390 (2017).
- Afolabi, B. L. *et al.* Pharmacogenetics and Adverse Events in the Use of
 Fluoropyrimidine in a Cohort of Cancer Patients on Standard of Care
 Treatment in Zimbabwe. *J Pers Med* 13 (2023).
- He, Y. F. *et al.* Analysis of the DPYD gene implicated in 5-fluorouracil
 catabolism in Chinese cancer patients. *J Clin Pharm Ther* 33, 307-314
 (2008).
- Hishinuma, E. *et al.* Functional Characterization of 21 Allelic Variants of
 Dihydropyrimidine Dehydrogenase Identified in 1070 Japanese Individuals. *Drug Metab Dispos* 46, 1083-1090 (2018).
- Kanai, M. *et al.* Poor association between dihydropyrimidine dehydrogenase
 (DPYD) genotype and fluoropyrimidine-induced toxicity in an Asian
 population. *Cancer Med* **12**, 7808-7814 (2023).
- Maekawa, K. *et al.* Genetic variations and haplotype structures of the DPYD
 gene encoding dihydropyrimidine dehydrogenase in Japanese and their
 ethnic differences. *J Hum Genet* **52**, 804-819 (2007).

Yokoi, K. et al. Impact of DPYD, DPYS, and UPB1 gene variations on severe 692 48 693 drug-related toxicity in patients with cancer. Cancer Sci 111, 3359-3366 694 (2020). White, C. et al. Ethnic Diversity of DPD Activity and the DPYD Gene: Review 695 49 of the Literature. Pharmgenomics Pers Med 14, 1603-1617 (2021). 696 697 Page, M. J. et al. PRISMA 2020 explanation and elaboration: updated 50 698 guidance and exemplars for reporting systematic reviews. BMJ 372, n160 699 (2021).700 51 Common Terminology Criteria for Adverse Events (CTCAE). National Cancer Institute (NCI), National Institutes of Health (NIH), US Department of 701 702 Health and Human Services. Available at 703 https://ctep.cancer.gov/protocoldevelopment/electronic applications/ctc.ht 704 m. WHO Handbook for reporting results of Cancer Treatment. WHO offset 705 52 706 publication No. 48. Available at https://apps.who.int/iris/handle/10665/37200. Geneva (1979). 707 708 Shrestha, S. et al. Gene-Specific Variant Classifier (DPYD-Varifier) to 53 709 Identify Deleterious Alleles of Dihydropyrimidine Dehydrogenase. Clin 710 Pharmacol Ther 104, 709-718 (2018). Zhou, Y., Dagli Hernandez, C. & Lauschke, V. M. Population-scale 711 54 712 predictions of DPD and TPMT phenotypes using a quantitative pharmacogene-specific ensemble classifier. Br J Cancer 123, 1782-1789 713 714 (2020).Zhou, Y., Mkrtchian, S., Kumondai, M., Hiratsuka, M. & Lauschke, V. M. An 715 55 optimized prediction framework to assess the functional impact of 716 717 pharmacogenetic variants. Pharmacogenomics J 19, 115-126 (2019). 718 56 Offer, S. M., Wegner, N. J., Fossum, C., Wang, K. & Diasio, R. B. Phenotypic profiling of DPYD variations relevant to 5-fluorouracil sensitivity using real-719 time cellular analysis and in vitro measurement of enzyme activity. Cancer 720 721 Res 73, 1958-1968 (2013). Offer, S. M. et al. Comparative functional analysis of DPYD variants of 722 57 723 potential clinical relevance to dihydropyrimidine dehydrogenase activity. 724 Cancer Res 74, 2545-2554 (2014). 58 Kuilenburg, A. et al. Phenotypic and clinical implications of variants in the 725 dihydropyrimidine dehydrogenase gene. Biochim Biophys Acta 1862, 754-726 727 762 (2016). Hishinuma, E. et al. Importance of Rare DPYD Genetic Polymorphisms for 728 59 729 5-Fluorouracil Therapy in the Japanese Population. Front Pharmacol 13, 730 930470 (2022). Leung, M., Rogers, J. E. & Shureiqi, I. Use of Uridine Triacetate to Reverse 731 60 732 Severe Persistent Myelosuppression Following 5-fluorouracil Exposure in a 733 Patient With a c.557A>G Heterozygous DPYD Variant. Clin Colorectal 734 Cancer 20, 273-278 (2021). Saif, M. W. et al. A DPYD variant (Y186C) specific to individuals of African 735 61 descent in a patient with life-threatening 5-FU toxic effects: potential for an 736 individualized medicine approach. Mayo Clin Proc 89, 131-136 (2014). 737 Sissung, T. M. et al. Case report: severe toxicity in an African-American 738 62 patient receiving FOLFOX carrying uncommon allelic variants in DPYD. 739 740 Pharmacogenomics 22, 81-85 (2021). Maharjan, A. S. et al. The Prevalence of DPYD*9A(c.85T>C) Genotype and 741 63 742 the Genotype-Phenotype Correlation in Patients with Gastrointestinal

- Malignancies Treated With Fluoropyrimidines: Updated Analysis. *Clin Colorectal Cancer* 18, e280-e286 (2019).
- Wasif Saif, M. M. D. a. *et al.* A DPYD Variant (Y186C) Specific to Individuals
 of African Descent in a Patient With Life-Threatening 5-FU Toxic Effects:
 Potential for an Individualized Medicine Approach. *Mayo Clinic Proceedings*89, 131-136 (2014).
- Hishinuma, E., Gutierrez Rico, E. & Hiratsuka, M. In Vitro Assessment of
 Fluoropyrimidine-Metabolizing Enzymes: Dihydropyrimidine
 Dehydrogenase, Dihydropyrimidinase, and beta-Ureidopropionase. *J Clin*Med 9 (2020).
- Deng, X., Hou, J., Deng, Q. & Zhong, Z. Predictive value of clinical toxicities
 of chemotherapy with fluoropyrimidines and oxaliplatin in colorectal cancer
 by DPYD and GSTP1 gene polymorphisms. *World J Surg Oncol* 18, 321
 (2020).
- Liu, D. *et al.* Examination of multiple UGT1A and DPYD polymorphisms has
 limited ability to predict the toxicity and efficacy of metastatic colorectal
 cancer treated with irinotecan-based chemotherapy: a retrospective
 analysis. *BMC Cancer* 17, 437 (2017).
- Nie, Q. H. *et al.* Effects of DPYD and TS gene polymorphisms on chemosensitivity of 5-FU in advanced colorectal cancer. *International Journal of Clinical and Experimental Medicine* **12**, 9380-9386 (2019).
- Sun, W., Yan, C., Jia, S. & Hu, J. Correlation analysis of peripheral DPYD
 gene polymorphism with 5-fluorouracil susceptibility and side effects in colon
 cancer patients. *Int J Clin Exp Med* 7, 5857-5861 (2014).
- 767 70 Zhang, X., Sun, B. & Lu, Z. Evaluation of clinical value of single nucleotide
 768 polymorphisms of dihydropyrimidine dehydrogenase gene to predict 5769 fluorouracil toxicity in 60 colorectal cancer patients in China. *Int J Med Sci*770 10, 894-902 (2013).
- 771 **71** Shao, T. *et al.* Capecitabine-induced enterocolitis: a case report and pharmacogenetic profile. *Pharmacogenomics* **23**, 953-959 (2022).
- 773 72 Tong, C. C., Lam, C. W., Lam, K. O., Lee, V. H. F. & Luk, M. Y. A Novel
 774 DPYD Variant Associated With Severe Toxicity of Fluoropyrimidines: Role
 775 of Pre-emptive DPYD Genotype Screening. *Front Oncol* 8, 279 (2018).
- 776 73 Ishiguro, M. *et al.* A Japanese Patient with Gastric Cancer and
 777 Dihydropyrimidine Dehydrogenase Deficiency Presenting with DPYD
 778 Variants. *Acta Med Okayama* 74, 557-562 (2020).
- Kouwaki, M. *et al.* Identification of novel mutations in the dihydropyrimidine
 dehydrogenase gene in a Japanese patient with 5-fluorouracil toxicity. *Clin Cancer Res* 4, 2999-3004 (1998).
- 782 75 Yoshida, Y. *et al.* 5-Fluorouracil Chemotherapy for Dihydropyrimidine
 783 Dehydrogenase-deficient Patients: Potential of the Dose-escalation Method.
 784 Anticancer Res 35, 4881-4887 (2015).
- 76 Cho, H. J., Park, Y. S., Kang, W. K., Kim, J. W. & Lee, S. Y. Thymidylate
 synthase (TYMS) and dihydropyrimidine dehydrogenase (DPYD)
 polymorphisms in the Korean population for prediction of 5-fluorouracilassociated toxicity. *Ther Drug Monit* **29**, 190-196 (2007).
- 789 77 Sirachainan, E. Pharmacogenetic Study of 5-Fluorouracil-Related Severe
 790 Toxicity in Thai Cancer Patients: A Novel SNP Detection. Journal of
 791 Pharmacogenomics & Pharmacoproteomics 03 (2012).
- 79278Cordova-Delgado, M. et al. A case-control study of a combination of single793nucleotide polymorphisms and clinical parameters to predict clinically

- relevant toxicity associated with fluoropyrimidine and platinum-based chemotherapy in gastric cancer. *BMC Cancer* **21**, 1030 (2021).
- 796 79 Ben Fredj, R., Gross, E., Ben Ahmed, S., Hassine, H. & Saguem, S. The dihydrouracil/uracil ratio in plasma, clinical and genetic analysis for screening of dihydropyrimidine dehydrogenase deficiency in colorectal cancer patients treated with 5-fluorouracil. *Pathol Biol (Paris)* 57, 470-476 800 (2009).
- 801 80 Khalij, Y. *et al.* DPYD and TYMS polymorphisms as predictors of 5 802 fluorouracil toxicity in colorectal cancer patients. *J Chemother* **35**, 425-434 803 (2022).
- 804 81 Almashagbah, N. A., Mahasneh, A. A. & Bodoor, K. G. Pharmacogenetic
 805 Study of the Dihydropyridine Dehydrogenase Gene in Jordanian Patients
 806 with Colorectal Cancer. *Asian Pac J Cancer Prev* 23, 3061-3069 (2022).
- 807 82 Mukherji, D., Massih, S. A., Tfayli, A., Kanso, M. & Faraj, W. Three different 808 polymorphisms of the DPYD gene associated with severe toxicity following 809 administration of 5-FU: a case report. *J Med Case Rep* **13**, 76 (2019).
- 810 83 Bukhari, N. *et al.* Fluoropyrimidine-Induced Severe Toxicities Associated 811 with Rare DPYD Polymorphisms: Case Series from Saudi Arabia and a 812 Review of the Literature. *Clin Pract* **11**, 467-471 (2021).
- 813 84 Dhawan, D., Panchal, H., Shukla, S. & Padh, H. Genetic variability & 814 chemotoxicity of 5-fluorouracil & cisplatin in head & neck cancer patients: a 815 preliminary study. *Indian J Med Res* **137**, 125-129 (2013).
- 816 85 Hariprakash, J. M. *et al.* Pharmacogenetic landscape of DPYD variants in
 817 south Asian populations by integration of genome-scale data.
 818 Pharmacogenomics **19**, 227-241 (2018).
- 819 86 Patil, V. M. *et al.* Dihydropyrimidine dehydrogenase mutation in neoadjuvant
 820 chemotherapy in head and neck cancers: Myth or reality? South Asian J
 821 Cancer 5, 182-185 (2016).
- 822 87 Sahu, A., Ramaswamy, A. & Ostwal, V. Dihydro pyrimidine dehydrogenase 823 deficiency in patients treated with capecitabine based regimens: a tertiary 824 care centre experience. *J Gastrointest Oncol* **7**, 380-386 (2016).
- 825 88 Vinin, N. V., Jones, J. & Geetha, M. Clinical Suspicion & Dpd/Dypd Mutation
 826 Positivity In Patients Receiving Chemotherapy With Capecitabine / 5
 827 Fluorouracil (5 Fu). *Journal of Cancer Research & Therapeutics* 13, S218828 S218 (2017).
- 89 Rastogi, S., Sirohi, B., Deodhar, K., Shetty, N. & Shrikhande, S. V. Dilemma
 830 of dihydropyrimidine dehydrogenase deficiency in colorectal cancer patients:
 831 is Uftoral(R) the right answer? *Colorectal Cancer* **3**, 315-319 (2014).
- 832 90 Ly, R. C. *et al.* Severe Capecitabine Toxicity Associated With a Rare DPYD
 833 Variant Identified Through Whole-Genome Sequencing. *JCO Precis Oncol*834 4, 632-638 (2020).
- Nahid, N. A. *et al.* DPYD*2A and MTHFR C677T predict toxicity and efficacy,
 respectively, in patients on chemotherapy with 5-fluorouracil for colorectal
 cancer. *Cancer Chemother Pharmacol* 81, 119-129 (2018).
- 83892Office for National Statistics. Ethnic group, England and Wales: Census8392021.Available840https://www.ons.gov.uk/peoplepopulationandcommunity/culturalidentity/eth
- 841 <u>nicity/bulletins/ethnicgroupenglandandwales/census2021</u> (2021).
- Morel, A., Boisdron-Celle, M., Fey, L., Laine-Cessac, P. & Gamelin, E.
 Identification of a novel mutation in the dihydropyrimidine dehydrogenase
 gene in a patient with a lethal outcome following 5-fluorouracil administration

- 845 and the determination of its frequency in a population of 500 patients with 846 colorectal carcinoma. *Clin Biochem* **40**, 11-17 (2007).
- 847 94 Zaanan, A., Dumont, L. M., Loriot, M. A., Taieb, J. & Narjoz, C. A case of 5848 FU-related severe toxicity associated with the p.Y186C DPYD variant. *Clin*849 *Pharmacol Ther* **95**, 136 (2014).
- 95 Offer, S. M. *et al.* A DPYD variant (Y186C) in individuals of african ancestry
 is associated with reduced DPD enzyme activity. *Clin Pharmacol Ther* 94,
 158-166 (2013).
- Brooks, G. A., Tapp, S., Daly, A. T., Busam, J. A. & Tosteson, A. N. A. Costeffectiveness of DPYD Genotyping Prior to Fluoropyrimidine-based Adjuvant
 Chemotherapy for Colon Cancer. *Clin Colorectal Cancer* 21, e189-e195
 (2022).
- Morris, S. A. *et al.* Cost Effectiveness of Pharmacogenetic Testing for Drugs
 with Clinical Pharmacogenetics Implementation Consortium (CPIC)
 Guidelines: A Systematic Review. *Clin Pharmacol Ther* **112**, 1318-1328
 (2022).
- 861 98 Rivers, Z. *et al.* A cost-effectiveness analysis of pretreatment DPYD and
 862 UGT1A1 screening in patients with metastatic colorectal cancer (mCRC)
 863 treated with FOLFIRI plus bevacizumab (FOLFIRI plus Bev). *Journal of*864 *Clinical Oncology* 38, 168 (2020).
- 865 99 Koleva-Kolarova, R. *et al.* Budget impact and transferability of cost866 effectiveness of DPYD testing in metastatic breast cancer in three health
 867 systems. *Per Med* 20, 357-374 (2023).
- 100 Ontario, H. DPYD Genotyping in Patients Who Have Planned Cancer
 R69 Treatment With Fluoropyrimidines: A Health Technology Assessment. Ont
 R70 Health Technol Assess Ser 21, 1-186 (2021).
- Fariman, S. A., Jahangard Rafsanjani, Z., Hasanzad, M., Niksalehi, K. &
 Nikfar, S. Upfront DPYD Genotype-Guided Treatment for FluoropyrimidineBased Chemotherapy in Advanced and Metastatic Colorectal Cancer: A
 Cost-Effectiveness Analysis. *Value Health Reg Issues* 37, 71-80 (2023).
- 875 102 Cortejoso, L. *et al.* Cost-effectiveness of screening for DPYD polymorphisms
 876 to prevent neutropenia in cancer patients treated with fluoropyrimidines.
 877 *Pharmacogenomics* 17, 979-984 (2016).
- 878 879
- 0/9
- 880
- 881
- 882
- 883
- 884
- 885
- 886
- 887
- 888
- 889
- 890
- 891

- 892 Figure Legends
- 893

894 Figure 1: PRISMA flow diagram of study selection. Our search of four electronic databases 895 identified a total of 10310 records, 447 from MEDLINE (PubMed), 1355 from Web of Science, 896 3192 from Embase (OVID), 5316 from Scopus. After removing 2178 duplicates, 8132 unique 897 records remained which included 18 conference abstracts and 3 non-English articles. Following the 898 title and abstract screening phase, 8052 records that did not meet the inclusion criteria were 899 excluded. Full-text inspection of the remaining 80 articles identified 31 articles that met the 900 eligibility criteria for inclusion. Screening the reference lists of these 31 articles identified one more 901 relevant article, and so 32 articles were finally included in the present systematic review.

902

903 Figure 2: 53 DPYD variants identified in our systematic review. Variants listed in the CPIC

- guideline are highlighted in blue. The four prominent European *DPYD* variants are in bold blue font.
- 905 ^ac.2846A>T was not identified in our systematic review.
- 906

Table 1. Characteristics of included studies.

Authors, year	Study design	Ethnic population, Ethnic origin, Country	Severe toxicity patients / Total patients (n)	Gender	Age/ Age range (years)	Cancer type	Chemotherapy regimen ^{abc}	Severe toxicity grading tool	Grade 3-4 toxicity manifestations	DPYD variants identified	DPYD genetic testing method	FP dose modification/ discontinuation
Kouwaki et al, 1998	Case study	East Asia, Japanese, Japan	1/1	Female	57	Breast cancer	5-FU-based	WHO	Leukopenia, Thrombocytopenia, Mucositis	c.62G>A, Arg21Gln c.1003G>T, Val335Leu, *11 c.1156G>T, Glu386Ter, *12	PCR-RFLP of exons 2 & 11, Sanger sequencing of exon 10	Yes
Cho et al, 2007	Cohort retrospective	East Asia, Korean, Korea	21/21	43% Male	31 - 71	Colorectal cancer	5-FU-based	CTCAE version 2.0	Neutropenia, Stomatitis, Fatigue, Diarrhoea, Vomiting, Nausea, Fatigue	c.85T>C, Cyc29Arg, *9A c.496A>G, Met166Val c.1129-15T>C c.1525-11G>A c.1525-9A>G c.1627A>G, Ile543Val, *5 c.1737T>C, Asp579Asp c.1740+39C>T c.1774C-T, Arg592Trp c.1896T>C, Phe632=	Sanger sequencing of exons & flanking introns	No
Ben Fredj et al, 2009	Cohort prospective	Middle East, Tunisian, Tunisia	1/9	33% Male	25 - 79	Advanced colorectal cancer	5-FU-based	Unreported, used term 'grade 3'	Alopecia	c.85T>C, Cys29Arg, *9A c.496A>G, Met166Val c.1129-15T>C c.1601G>A, Ser534Asn, *4 c.1627A>G, Ile543Val, *5	DHPLC & Sanger sequencing	No
Sirachainan et al, 2012	Cohort retrospective	East Asia, Thai, Thailand	76/76	U/R	U/R	52% Breast cancer, 35% Gastrointestinal tract cancer, 12% Head and Neck cancer, 1% Squamous cell cancer	5-FU-based	Unreported, used term 'grade ≥3'	Neutropenia	c.967G>A, Ala323Thr c.1236G>A, Glu412= c.1627A>G, Ile543Val, *5 c.1774C>T, Arg592Trp c.1896T>C, Phe632= c.1905+1G>A, *2A	Sanger sequencing of exons 1, 8, 10, 11, 13, 14 & 17	No
Dhawan et al, 2013	Cohort prospective	South Asia, Indian, India	2/23	Male	U/R	Head and Neck cancer	5-FU-based	CTCAE version 3.0	Not specified, referred to as grade 4 toxicity	c.85T>C, Cys29Arg, *9A c.1905+1G>A, *2A	Allele-specific multiplex PCR and long-range PCR of selected variants c.85T>C, c.1905+1G>A, c.2194G>A, c.2846A>T	No
Zhang et al, 2013	Cohort prospective	East Asia, Chinese, China	14/60	57% Male	40 - 68	Colorectal cancer	5-FU-based	WHO	Bone marrow toxicity, Gastrointestinal toxicity	c.85T>C, Cys29Arg, *9A c.464T>A, Leu155Ter c.2194G>A, Val732IIe, *6	TaqMan genotyping of 5 selected variants c.85T>C, c.464T>A, c.1156G>T, c.1905+1G>A, c.2194G>A	No
Rastogi et al, 2014	Case series	South Asia, Indian, India	3/3	66% Male	44 - 65	Colon cancer	Combination of Capecitabine- based and Tegafur-based	Unreported, used term 'grade ≥3'	Neutropenia, Diarrhoea, Thrombocytopenia, Febrile neutropenia, Mucositis, Hand-Foot-Syndrome	c.496A>G, Met166Val c.1627A>G, Ile543Val, *5 c.1905+1G>A, *2A	Candidate genotyping	Yes
Saif et al, 2014	Case study	African American, African American, USA	1/1	Female	60	Colon cancer	5-FU-based	Unreported, used term 'severe'	Pancytopenia, Mucositis	1:n.688+20094C>T c.85T>C, Cyc29Arg, *9A c.557A>G, Tyr186Cys c.680+139G>A c.681-29G>T c.763+118A>G c.1906+123C>A c.1974+75T>C c.2766+37T>C c.2908-69A>G c.*768G>A	Sanger sequencing of all 23 exons in DPYD	No
Sun et al, 2014	Cohort prospective	East Asia, Chinese, China	14/100	57% Male	31 - 71	Colon cancer	5-FU-based	WHO	Myelosuppression, Diarrhoea, Mucositis, Gastrointestinal toxicity, Hand-Foot syndrome	c.85T>C, Cys29Arg, *9A c.1627A>G, Ile543Val, *5 c.1905+1G>A, *2A	High resolution melting of selected variants c.85T>C, c.1627A>G, c.1905+1G>A	No
Yoshida et al, 2015	Case study	East Asia, Japanese, Japan	1/1	Male	73	Intestinal cancer	5-FU-based	Unreported, used term 'grade 4'	Leukopenia, Neutropenia, Thrombocytopenia	c.1156G>T, Glu386Ter, *12	Sanger sequencing of all 23 exons in DPYD	Yes
Patil et al, 2016	Cohort prospective	South Asia, Indian, India	9/34	80% Male	21 - 59	Advanced Head and Neck cancer	5-FU-based	Unreported, used term 'grade ≥3'	Diarrhoea, Mucositis	c.85T>C, Cys29Arg, *9A c.496A>G, Met166Val c.1601G>A, Ser534Asn, *4	PCR & sequencing of 11 selected variants including c.85T>C, c.496A>G, c.1601G>A, c.1627A>G,	Yes

										c.1627A>G, lle543Val, *5 c.2194G>A, Val732lle, *6	c.1905+1G>A, c.2194G>A, c.2846A>T	
Sahu et al, 2016	Cohort prospective	South Asia, Indian, India	31/31	71% Male	26 - 67	70% Colorectal cancer, 29% Stomach cancer, 1% Gallbladder cancer	Capecitabine- based	CTCAE (unknown version)	Myelosuppression, Diarrhoea, Mucositis, Hand-Foot syndrome	c.85T>C, Cys29Arg, *9A c.496A>G, Met166Val c.1627A>G, Ile543Val, *5 c.1905+1G>A, *2A c.2194G>A, Val732Ile, *6	PCR & sequencing of 11 selected variants including c.85T>C, c.496A>G, c.1601G>A, c.1627A>G, c.1905+1G>A, c.2194G>A, c.2846A>T	Yes
Liu et al, 2017	Cohort retrospective	East Asia, Chinese, China	~75/~139	61% Male	47 - 63	Metastatic colorectal cancer	5-FU, Capecitabine or Tegafur-based (number unreported)	CTCAE version 4.0	Neutropenia, Diarrhoea	c.1627A>G, lle543Val, *5 c.1896T>C, Phe632=	Sanger sequencing of selected variants c.1627A>G, c.1896T>C, c.1905+1G>A	No
Hariprakas et al, 2018	Cohort retrospective	South Asia, Indian, India	17/77	68% Male	15 - 82	70% Colorectal cancer, 8% Stomach cancer, 6% Oesophageal cancer, 6% Gastrointestinal cancer, 10% other cancer	Capecitabine- based	Unreported, used term 'grade ≥3'	Diarrhoea, Hand-Foot syndrome	c.496A>G, Met166Val c.1905+1G>A, *2A	Sanger sequencing of 15 selected variants including c.496A>G, c.557A>G (absent), c.1905+1G>A, c.1679T>G, c.2846A>T	No
Nahid et al, 2018	Cohort prospective	South Asia, Bangladeshi, Bangladesh	78/161	60% Male	25 - 75	Colorectal cancer	5-FU-based	CTCAE version 3.0	Anaemia, Leukopenia, Neutropenia, Diarrhoea, Thrombocytopenia, Mucositis, Vomiting, Nausea, Dermatological toxicity	c.1905+1G>A, *2A	PCR-RFLP of c.1905+1G>A	No
Tong et al, 2018	Case study	East Asia, Chinese, Hong Kong	1/1	Female	49	Sigmoid colon carcinoma	Capecitabine- based and 5-FU-based	CTCAE version 4.0	Bone marrow toxicity, Diarrhoea	c.321+2T>C	Sanger sequencing of all 23 exons in DPYD	Yes
Vinin et al, 2018	Cohort retrospective	South Asia, Indian, India	16/24	65% Male	24 - 77	73% Colorectal cancer, 17% Stomach cancer, 7% Breast cancer, 3% Tongue cancer	54% Capecitabine- based, 46% 5-FU-based	Unreported, used term 'grade ≥3'	Diarrhoea, Haematological toxicity, Hand-Foot syndrome, Mucositis, Electrolyte imbalance, Fatigue	c.85T>C, Cys29Arg, *9A c.496A>G, Met166Val c.1627A>G, Ile543Val, *5 c.1905+16>A, *2A c.2194G>A, Val732Ile, *6	PCR & sequencing - region/variant unspecified	No
Maharjan et al, 2019	Cohort retrospective	Caucasian, African American, Asian, Hispanic, Native American American, USA	~9ª/26	~55% Male	21 - 90	GI malignancies	5-FU-based	CTCAE version 5.0	Neutropenia, Diarrhoea, Mucositis, Vomiting/Nausea, Skin toxicity, Neurotoxicity	c.85T>C, Cys29Arg, *9A	Candidate genotyping of 5 selected variants c1590T>C, c.85T>C, c.1679T>G, c.1905+1G>A, c.2846A>T	No
Mukherji et al, 2019	Case study	Middle East, Lebanese, Lebanon	1/1	Female	59	Metastatic pancreatic cancer	5-FU-based	Unreported, used term 'grade 4'	Mucositis	c.1601G>A, Ser534Asn, *4 c.1905+1G>A, *2A c.2194G>A, Val732IIe, *6	NGS of exons and highly conserved intron-exon splice junctions	Yes
Nie et al, 2019	Cohort prospective	East Asia, Chinese, China	14/100	56% Male	51 -77	Advanced colorectal cancer	5-FU-based	WHO	Myelosuppression, Mucosal damage, Gastrointestinal toxicity, Liver function damage	c.85T>C, Cys29Arg, *9A c.1627A>G, Ile543Val, *5	Sanger sequencing of selected variants c.85T>C, c.1627A>G	No
Deng et al, 2020	Cohort retrospective	East Asia, Chinese, China	~72/104	46% Male	25 - 78	Colorectal cancer	5-FU, Capecitabine or Oxaliplatin-based (number unreported)	CTCAE version 3.0	Anaemia, Leukopenia, Neutropenia, Diarrhoea, Thrombocytopenia, Mucositis, Vomiting, Hand- Foot syndrome, Skin ulceration	c.85T>C, Cys29Arg, *9A c.1627A>G, Ile543Val, *5	Sanger sequencing of selected variants c.85T>C, c.1627A>G, c.1905+1G>A	No
Ishiguro et al, 2020	Case study	East Asia, Japanese, Japan	1/1	Male	63	Stomach cancer	Capecitabine- based	CTCAE version 4.0	Neutropenia, Diarrhoea, Mucositis, Renal dysfunction	c.1615G>C, Gly539Arg c.1627A>G, Ile543Val, *5 c.1740+40A>G c.1740+39C>T c.1896T>C, Phe632= c.1974+75T>C IV\$22+585C>T IV\$23-69A>G	Sanger sequencing of all 23 exons in DPYD	Yes
Ly et al, 2020	Case study	South Asia, Indian, USA	1/1	Female	59	Metastatic colon cancer	Capecitabine- based and 5-FU- based	Unreported, used term 'grade 4'	Mucositis	c.704G>A, Arg235Gln	Candidate genotyping & whole genome sequencing	Yes
Yokoi et al, 2020	Cohort retrospective	East Asia, Japanese, Japan	55/301	44% Male	22 - 81	69% Colorectal cancer, 20% Stomach cancer,	5-FU-based	CTCAE version 4.0	Neutropenia, Diarrhoea, Vomiting, Nausea, Oral mucositis	c.85T>C, Cys29Arg, *9A c.496A>G, Met166Val c.596G>A, Ser199Asn	NGS of exons and flanking introns	No

						11% other cancer				c.733A>G, Ile245Val c.1156G>T, Glu386Ter, *12 c.1627A>G, Ile543Val, *5 c.1712C>A, Ala571Asp c.1863G>T, Trp621Cys c.2194G>A, Val732Ile, *6 c.2303C>A, Thr768Lys		
Bukhari et al, 2021	Case series	Middle East, Saudi Arabian, Saudi Arabia	3/3	33% Male	64 - 66	Advanced distal rectal cancer	33% Capecitabine- based, 66% 5-FU-based	CTCAE (unknown version)	Diarrhoea, Fatigue, Mucositis, Pancytopenia	c.257C>T, Pro86Leu c.1601G>A, Ser534Asn, *4 c.2434G>A, Val812IIe	NGS of exons and eight selected intron-exon boundaries	Yes
Cordova-Delgado et al, 2021	Cohort retrospective	Latin American, Chilean, Chile	32/93	59% Male	28 - 77	Gastric cancer	10% Capecitabine- based, 90% 5-FU-based	CTCAE version 4.0	Anaemia, Neutropenia, Febrile Neutropenia, Diarrhoea, Vomiting, Nausea, Hand-Foot syndrome, Stomatitis, Peripheral neuropathy	c.85T>C, Cys29Arg, *9A c.496A>G, Met166Val c.1627A>G, Ile543Val, *5	TaqMan genotyping of 5 selected variants c.85T>C, c.496A>G, c.1627A>G	No
Leung et al, 2021	Case study	African American, African American, USA	1/1	Female	52	Splenic Flexure Colon cancer	5-FU-based	Unreported, used term 'grade 4'	Neutropenia	c.557A>G, Tyr186Cys	Sequencing of exons and intron-exon boundaries	Yes
Sissung et al, 2021	Case study	African American, African American, USA	1/1	Female	63	Metastatic colon cancer	5-FU-based	Unreported, used term 'severe'	Pancytopenia	c.40-3123T>A c.85T>C, Cys29Arg, *9A c.295_298deITCAT, Phe100fs, *7 c.557A>G, Tyr186Cys c.851-18271A>G c.1340-11501T>C c.1898deIC, Pro633fs, *3 c.1906-28506C>G c.*5132C>T c.*21528C>T	DMET Plus & Pharmacoscan arrays	Yes
Almashagbah et al, 2022	Cohort prospective	Middle East, Jordanian, Jordan	44/80	53% Male	U/R	Colorectal cancer	5-FU-based	Dose- limiting toxicity	Neutropenia, Thrombocytopenia, Haemorrhage, Thrombosis, Diarrhoea, Neurotoxicity, Proteinuria, Hypertension	c.85T>C, Cys29Arg, *9A g.97515583_97515584insA c.1740+40A>G c.1740+39C>T	Sanger sequencing of exons 2, 4, 13, 22, intron 13 and exon-intron boundaries	No
Kanai et al, 2022	Cohort retrospective	East Asia, Japanese, Japan	~64/~495	U/R	U/R	Colon cancer	Capecitabine or 5- FU-based (unknown number)	CTCAE version 3.0 and 4.0	Neutropenia, Diarrhoea, Mucositis, Hand-Foot syndrome	c.85T>C, Cys29Arg, *9A c.451A>G, Asn151Asp c.496A>G, Met166Val c.1003G>T, Val335Leu, *11 c.1627A>G, IE543Val, *5 c.2194G>A, Val732Ile, *6 c.2303C>A, Thr768Lys	Genome-wide genotyping	No
Khalij et al, 2022	Cohort prospective	Middle East, Tunisian, Tunisia	~2/~17	U/R	U/R	Colorectal cancer	5-FU-based	CTCAE version 3.0	Mucositis, Neurotoxicity	c.85T>C, Cys29Arg, *9A c.1679T>G, lle560Ser, *13	PCR-RFLP of selected variants c.85T>C, c.496A>G, c.1679T>G, c.1905+1G>A, c.483+18G>A (HapB3)	No
Shao et al, 2022	Case study	East Asia, Chinese, China	1/1	Male	68	Rectal cancer	Capecitabine- based	CTCAE version 5.0	Diarrhoea	c.85T>C, Cys29Arg, *9A c.1627A>G, Ile543Val, *5	Whole exome sequencing	Yes

5-FU: 5-fluorouracil; CTCAE: Common Terminology Criteria for Adverse Events; FP: Fluoropyrimidine; GI: gastrointestinal; U/R: unreported; WHO: World Health Organisation. ^a 5-FU-based regimens include FOLFOX / mFOLFOX6 / FOLFOX4: 5-FU + oxaliplatin + leucovorin , FOLFOXIRI: 5-FU + irinotecan + anti-VERG/anti-EGFR antibodies , FOLFIRI/FOLFOXIRI: 5-FU + irinotecan, FOLFIRINOX: 5-FU + oxaliplatin + leucovorin + irinotecan, CF: 5-FU + cisplatin, FLOT: 5-FU + oxaliplatin + leucovorin / FOLFOXIRI: 5-FU + oxaliplatin + leucovorin / FOLFOXIRI: 5-FU + oxaliplatin + leucovorin + docetaxel, ECF: 5-FU + cisplatin + etoposide, DCFm: 5-FU + cisplatin + docetaxel, 5-FU + gemcitabine, 5-FU + oxaliplatin, 5-FU + docetaxel/cisplatin, 5-FU + cisplatin + trastuzumab, CEF: 5-FU + cyclophosphamide + epi-adriamycin.

^b Capecitabine-based regimens include CAPOX / CAPEOX / XELOX: capecitabine + oxaliplatin , EOX: capecitabine + oxaliplatin + epirubicin, DOX: capecitabine + oxaliplatin + docetaxel.

^c Tegafur-based regimens include tegafur + uracil + oxaliplatin.

^d The cohort study by Maharjan et al 2019 [63] included patients of a range of ethnicities (Caucasian, African American, Asian, Hispanic, and Native American). Only data from patients of African American ancestry with severe fluoropyrimidine-related toxicity (grade ≥3) were extracted and presented in this table.

Table 2. Patient characteristics.

	All	African American	East Asian	Latin American	Middle Eastern	South Asian
Patients (n)ª	1431	25	1077	32	73	224
Age range (years)	15-90	21-90	22-81	28-77	25-79	15-82
Gender (% Male)	62	55	58	59	53	66
Cancer type (n)						
Gastrointestinal	1368	25	1028	32	73	210
Colorectal	1336	25	1028	0	73	210
Gastric	32	0	0	32	0	0
Breast	42	0	40	0	0	2
Head and Neck	21	0	9	0	0	12
Chemotherapy regimen (n)						
5-FU based	1122	25	872	29	70	126
FOLFOX / mFOLFOX6 / FOLFOX4 ^b	640	3	531	20	15	71
Other ^c	482	22	341	9	55	55
Capecitabine based	309	0	205	3	3	98
CAPOX / CAPEOX / XELOX ^d	171	0	120	3	1	47
Other ^e	138	0	85	0	2	51
Tegafur based ^f	1	0	0	0	0	1
Severe toxicity manifestations events (n)						
Haematological ^g	261	7	111	18	106	19
Gastrointestinal ^h	229	18	108	14	17	72
Dermatological ^j	47	6	11	8	5	17
Hepatotoxicity ^k	14	0	5	0	9	0
Neurotoxicity ^m	7	2	0	3	2	0
Renal toxicity ^p	10	0	0	0	10	0
Fluoropyrimidine dose modification (n)	31	1	0	0	1	29
Fluoropyrimidine discontinuation (n)	8	1	0	0	1	6
DPYD variants (n)	53	19	30	3	13	7
DPYD haplotypes (n)	26	2	17	4	2	5
DPD activity (n)						
PBMCs	3	0	3	0	0	0
Plasma UH2/U ratio	2	0	1	0	1	0

5-FU: 5-fluorouracil; DPYD: Dihydropyrimidine dehydrogenase gene; DPD: Dihydropyrimidine dehydrogenase; PBMCs: peripheral blood mononuclear cells; UH2/U: dihydrouracil/uracil plasma ratio.

^a Number of patients who developed fluoropyrimidine-related severe toxicity (grade ≥3).

^bFOLFOX / mFOLFOX6 / FOLFOX4: 5-FU + oxaliplatin + leucovorin.

^c5-FU combined with: cisplatin; cisplatin + docetaxel; cisplatin + etoposide; oxaliplatin + leucovorin + docetaxel; irinotecan + leucovorin; irinotecan + anti-VERG/anti-EGFR antibodies; gemcitabine; oxaliplatin; docetaxel/cisplatin; cisplatin + trastuzumab; cyclophosphamide + epiadriamycin; oxaliplatin + leucovorin.

d CAPOX / CAPEOX / XELOX: capecitabine + oxaliplatin.

^e Capecitabine combined with: oxaliplatin + docetaxel; oxaliplatin + epirubicin.

^fTegafur combined with: oxaliplatin + uracil.

⁸ Haematological toxicity: anaemia, leukopenia, neutropenia, thrombocytopenia, myelosuppression/bone marrow toxicity, haemorrhage, thrombosis, pancytopenia.

^h Gastrointestinal toxicity: diarrhoea, mucositis, vomiting, nausea, mucosal damage.

Dermatological toxicity: hand-and-foot syndrome, alopecia, stomatitis, skin ulceration.

^kHepatoxicity: hepatotoxicity and liver function damage.

^m Neurotoxicity: neurotoxicity and peripheral neuropathy.

P Renal toxicity: renal dysfunction and proteinuria.

Table 3: *In silico* predictions of *DPYD* variants evaluated in our systematic review.

Chr:BP	dbSNP rsID	HGVS nomenclature	Location,	CPIC		In silico predic	tion undertaken		Published in s	<i>ilico</i> predictio	ns	Published
(GRCh38)			Molecular consequence	Phenotype": Ref/Alt, Alt/Alt, (LoE)	Protein function/ structure ^b	Splicing	Transcription factor binding ^d	miRNA binding ^e	Published <i>in silico</i> protein function/ structure prediction	DPYD- varifier ^f	APF	data ^g
1:97921479	rs72981745	1:n.688+20094C>T	5'US		B (3 of 3)	B (3 of 3)	TF (1 of 3) NTF (2 of 3)	N/A				
1:97886497	rs4970722	c.40-3123T>A	Intron 1		N/A	SC (2 of 9) NSC (7 of 9)	N/A	N/A				
1:97883352	rs80081766	c.62G>A, Arg21Gln	Exon2, Missense	NM, NM (M)	D (7 of 13) PD (1 of 13) B (5 of 13)	SC (6 of 9) NSC (3 of 9)	N/A	N/A				N (1 of 1)
1:97883329	rs1801265	c.85T>C, Cys29Arg, *9A	Exon2, Missense	NM, NM (H)	D (1 of 11) B (10 of 11)	SC (2 of 9) NSC (7 of 9)	N/A	N/A	B (0) / B (0.18) ^p		N	I (1 of 3) R (2 of 3)
1:97740456	rs568132506	c.257C>T, Pro86Leu	Exon 4, Missense		D (12 of 13) PD (1 of 13)	SC (7 of 9) NSC (2 of 9)	N/A	N/A				SR (1 of 1)
1:97740411- 97740418	rs72549309	c.295_298delTCAT, Phe100fs, *7	Exon 4, Frameshift	IM, PM (M)	D (3 of 3)	SC (2 of 5) NSC (3 of 5)	N/A	N/A			D	LoF (1 of 1)
1:97740390	rs1193078195	c.321+2T>C	Intron 4, Splice donor		D (6 of 6)	SC (8 of 9) NSC (1 of 9)	N/A	N/A	D ^j			
1:97721542	rs200562975	c.451A>G, Asn151Asp	Exon 5, Missense	NM, NM (W)	D (11 of 13) PD (1 of 13)	SC (5 of 9) NSC (4 of 9)	N/A	N/A			D	N (1 of 3) I (1 of 3) R (1 of 3)
1:97721529	rs2101026231	c.464T>A, Leu155Ter	Exon 5, Nonsense		D (5 of 7) PD (1 of 7) B (1 of 7)	SC (6 of 4) NSC (1 of 7)	N/A	N/A				
1:97699535	rs2297595	c.496A>G, Met166Val	Exon 6, Missense	NM, NM (M)	D (8 of 13) PD (1 of 13) B (4 of 13)	SC (4 of 9) NSC (5 of 9)	N/A	N/A	D (1) / B (0.07) ^p		D	I (1 of 3) R (2 of 3)
1:97699474	rs115232898	c.557A>G, Tyr186Cys	Exon 6, Missense	IM, IM (M)	D (9 of 13) PD (1 of 13) B (3 of 13)	SC (5 of 9) NSC (4 of 9)	N/A	N/A			D	R (1 of 1)
1:97699435	rs776973423	c.596G>A, Ser199Asn	Exon 6, Missense		D (11 of 13) PD (1 of 13) B (1 of 13)	SC (5 of 9) NSC (4 of 9)	N/A	N/A	D (1) / D (0.02) ^p	D		
1:97699212	rs6668296	c.680+139G>A	Intron 6		N/A	SC (1 of 9) NSC (8 of 9)	N/A	N/A				
1:97691827	rs376597772	c.681-29G>T	Intron 6		N/A	SC (1 of 9) NSC (8 of 9)	N/A	N/A				
1:97691775	rs755416212	c.704G>A, Arg235Gln	Exon 7, Missense		D (12 of 13) PD (1 of 13)	SC (6 of 9) NSC (3 of 9)	N/A	N/A	D ^k	D		
1:97691746	rs767836989	c.733A>G, Ile245Val	Exon 7, Missense		D (2 of 13) B (11 of 13)	SC (3 of 9) NSC (6 of 9)	N/A	N/A	PD (0.853) / D (0) ^p	Ν		
1:97679300	rs3790387	c.763-118A>G	Intron 8		N/A	SC (2 of 9) NSC (7 of 9)	N/A	N/A				
1:97613437	rs2811196	c.851-18271A>G	Intron 9		N/A	NSC (9 of 9)	N/A	N/A				

1:97593379	rs201018345	c.967G>A, Ala323Thr	Exon 10, Missense	NM, NM (W)	D (2 of 13) PD (1 of 13) B (10 of 13)	SC (3 of 9) NSC (6 of 9)	N/A	N/A			N (1 of 1)
1:97593343	rs72549306	c.1003G>T, Val335Leu, *11	Exon 10, Missense	NM, NM (M)	D (11 of 13) PD (1 of 13) B (1 of 13)	SC (6 of 9) NSC (3 of 9)	N/A	N/A	D (1) / D (0)°		N (1 of 1)
1:97573985	rs56293913	c.1129-15T>C	Intron 10		N/A	NSC (9 of 9)	N/A	N/A			
1:97573943	rs78060119	c.1156G>T, Glu386Ter, *12	Exon 11, Nonsense	IM, PM (M)	D (7 of 7)	SC (6 of 9) NSC (3 of 9)	N/A	N/A			LoF (1 of 1)
1:97573863	rs56038477	c.1236G>A, Glu412=	Exon 11, Synonymous	IM, IM (H)	D (3 of 6) B (3 of 6)	SC (2 of 9) NSC (7 of 9)	N/A	N/A			
1:97561245	rs2811219	c.1340-11501T>C	Intron 12		N/A	SC (1 of 9) NSC (8 of 9)	N/A	N/A			
1:97515952	rs55699321	c.1525-11G>A	Intron 12		N/A	NSC (9 of 9)	N/A	N/A			
1:97515950	rs56056384	c.1525-9A>G	Intron 12		N/A	NSC (9 of 9)	N/A	N/A			
1:97515865	rs1801158	c.1601G>A, Ser534Asn, *4	Exon 13, Missense	NM, NM (M)	D (8 of 12) PD (1 of 12) B (3 of 12)	SC (6 of 9) NSC (3 of 9)	N/A	N/A		D (False positive) ^q	l (1 of 2) R (1 of 2)
1:97515851	rs142619737	c.1615G>C, Gly539Arg	Exon 13, Missense	NM, NM (W)	D (12 of 13) B (1 of 13)	SC (4 of 9) NSC (5 of 9)	N/A	N/A			N (2 of 2)
1:97515839	rs1801159	c.1627A>G, Ile543Val, *5	Exon 13, Missense	NM, NM (H)	D (1 of 13) B (12 of 13)	SC (2 of 9) NSC (7 of 9)	N/A	N/A	B (0) / B (0.44) ^p	Ν	N (2 of 3) R (1 of 3)
1:97515787	rs55886062	c.1679T>G, Ile560Ser, *13	Exon 13, Missense	IM, PM (M)	D (11 of 13) PD (1 of 13) B (1 of 13)	SC (5 of 9) NSC (4 of 9)	N/A	N/A		D	l (1 of 2) R (1 of 2)
1:97515754	rs1195493601	c.1712C>A, Ala571Asp	Exon 13, Missense		D (7 of 9) B (2 of 9)	SC (3 of 7) NSC (4 of 7)	N/A	N/A	D (1) / D (0) ^p		
1:97515729		c.1737T>C, Asp579Asp	Exon 13, Synonymous		N/A	SC (1 of 7) NSC (6 of 7)	N/A	N/A			
1:97515583		g.97515583_975155 84insA	Intron 13, Insertion		U/N	U/N	U/N	U/N	PD ^m		
1:97515686	rs2811178	c.1740+40A>G	Intron 13		N/A	NSC (7 of 7)	N/A	N/A	PD ^m		
1:97515687	rs2786783	c.1740+39C>T	Intron 13		N/A	NSC (7 of 7)	N/A	N/A	PD ^m		
1:97450190	rs59086055	c.1774C>T, Arg592Trp	Exon 14, Missense	IM, PM (W)	D (12 of 13) PD (1 of 13)	SC (6 of 9) NSC (3 of 9)	N/A	N/A		D	SR (3 of 3)
1:97450101	rs1057516388	c.1863G>T, Trp621Cys	Exon 14, Missense		D (9 of 9)	SC (6 of 8) NSC (2 of 8)	N/A	N/A	D (1) / D (0) ^p		
1:97450068	rs17376848	c.1896T>C, Phe632=	Exon 14, Synonymous	NM, NM (M)	B (5 of 5)	NSC (9 of 9)	N/A	N/A			
1:97450066- 97450067	rs72549303	c.1898delC, Pro633fs, *3	Exon 14, Frameshift	IM, PM (M)	D (4 of 4)	SC (3 of 6) NSC (3 of 6)	N/A	N/A		D	LoF (1 of 1)
1:97450058	rs3918290	c.1905+1G>A, *2A	Intron 14, Exon 14 skipping, Splice donor	IM, PM (H)	D (6 of 6)	SC (7 of 9) NSC (2 of 9)	N/A	N/A			LoF (1 of 1)

1:97410967	rs4492658	c.1906-28506C>G	Intron 14		N/A	SC (1 of 7) NSC (6 of 7)	N/A	N/A			
1:97382584	rs56279424	c.1906-123C>A	Intron 14		N/A	NSC (7 of 7)	N/A	N/A			
1:97382318	rs72728438	c.1974+75T>C	Intron 15		N/A	SC (2 of 8) NSC (6 of 8)	N/A	N/A			
1:97305364	rs1801160	c.2194G>A, Val732lle, *6	Exon 18, Missense	NM, NM (M)	D (6 of 12) PD (1 of 12) B (5 of 12)	SC (4 of 9) NSC (5 of 9)	N/A	N/A	D (0.999)/ D (0) ^p	Ν	N (1 of 4) I (2 of 4) R (1 of 4)
1:97234991	rs56005131	c.2303C>A, Thr768Lys	Exon 19, Missense	NM, NM (W)	D (8 of 13) PD (1 of 13) B (4 of 13)	SC (4 of 9) NSC (5 of 9)	N/A	N/A	B (0) / B (0.18) ^p	D	N (1 of 2) R (1 of 2)
1:97234860	rs371313778	c.2434G>A, Val812Ile	Exon 20, Missense		D (4 of 13) PD (1 of 13) B (8 of 13)	SC (3 of 9) NSC (6 of 9)	N/A	N/A			
1:97098452	rs199712715	c.2766+37T>C	Intron 22		N/A	NSC (9 of 9)	N/A	N/A			
1:97079215	rs290855	c.2908-69A>G	Intron 22		N/A	NSC (9 of 9)	N/A	N/A			
		IVS22+585C>T	Intron 22		N/A	N/A	N/A	N/A			
		IVS23-69A>G	Intron 23		N/A	N/A	N/A	N/A			
1:97078208	rs291592	c.*768G>A	3' UTR		N/A	NSC (6 of 6)	N/A	miR (2 of 2)			
1:97073844	rs76387818	c.*5132C>T	~4kb 3'of DPYD		N/A	SC (3 of 7) NSC (4 of 7) ^h	N/A	N/A			
1:97057448	rs12132152	c.*21528C>T	~20kb 3'of DPYD		N/A	SC (3 of 7) NSC (4 of 7) ^h	N/A	N/A			

CPIC: Clinical Pharmacogenetics Implementation Consortium; DPYD: Dihydropyrimidine dehydrogenase gene; HGVS: Human Genome Variation Society; N/A: not applicable

^a Likely *DPYD* phenotype based on *DPYD* genotype in accordance with the CPIC guideline for fluoropyrimidines and *DPYD*. **Ref/Alt**: heterozygous variant carrier; **Alt/Alt**: homozygous carrier for the alternative variant; **NM**: Normal Metabolizer; **IM**: Intermediate Metabolizer; **PM**: Poor Metabolizer. Levels of evidence (LoE) linking *DPYD* genotype to *DPYD* phenotype assigned by CPIC. **H**: High; **M**: Moderate; **W**: Weak

^b Effect on DPD protein function or structure was predicted by Sorting Intolerant From Tolerant (SIFT), Polymorphism Phenotyping v2 (PolyPhen-2), MutPred2, Mendelian Clinically Applicable Pathogenicity (M-CAP), Cancer-Related Analysis of Variants Tool (CRAVAT), Rare Exome Variant Ensemble Learner (REVEL), MutationAssessor, MetaLR, Functional Analysis Through Hidden Markov Models (FATHMM), MutationTaster, MutationTaster2021, Combined Annotation Dependent Depletion (CADD) and PredictSNP2. *In silico* prediction scores were assigned as follows: **D** = deleterious/damaging/pathogenic/diseasing causing/ likely diseasing causing; **PD** = probably damaging/medium/possibly pathogenic; **B** = benign/low/tolerated/likely benign.

^c Effect on splicing was predicted using SpliceAI, Human Splicing Finder (HSF), NNSplice, SpliceRover, Functional Analysis Through Hidden Markov Models (FATHMM), MutationTaster, MutationTaster2021, Combined Annotation Dependent Depletion (CADD) and PredictSNP2. *In silico* prediction results were summarised as follows: **SC** = Change in splicing; **NSC** = No change in splicing.

^d Effect on transcription factor binding was predicted using PROMO, SNP2TFBS and sTRAP. In siilico prediction results were summarised as follows: **TF** = change in transcription factor binding; **NTF** = No change in transcription factor binding.

e Effect on binding affinity for target miRNAs was predicted using the PolymiRTS database and MicroSNiPer. In silico prediction results were summarised as follows: miR = miRNA binding site created.

^f Published data from previously developed *in silico* functional prediction models, DPYD-varifer (Shrestha *et al.*, 2018) and the ADME-optimised Prediction Framework (APF) (Zhou *et al.*, 2019 [55], Zhou *et al.*, 2020 [54]) were extracted. *In silico* prediction scores were assigned as follows: **D** = Deleterious; **N** = Normal/Neutral.

^g Published functional data on DPD enzyme activity from *in vitro* experiments transiently expressed with *DPYD* variants using HEK293T/c17 cells treated with 5-FU, HEK293T Flp-In cells treated with thymine and 293FT cells with 5-FU were reported (Offer *et al.*, 2013 [56], Offer *et al.*, 2014 [57], Kuilenburg *et al.*, 2016 [58], Elraiyah *et al.*, 2017 [42], Hishinuma *et al.*, 2018 [45], Hishinuma *et al.*, 2020 [65], Hishinuma *et al.*, 2022 [59]). The scores were assigned as follows: LoF =Loss of function; SR = Significantly reduced; R = Reduced; I = Increased; N = Normal.

^h In silico prediction was performed using DPYD intron 22 variant rs142861208 which is in perfect LD (r² = 1) with identified variant.

^j Predicted using Human Splicing Finder (Tong et al., 2018 [72]).

^k Predicted using DPYD-varifier (Ly et al., 2020 [90]).

^m Predicted using MutationTaster and PolyPhen-2 (Almashagbah et al., 2022 [81]).

^p Predicted using Polyphen-2 and SIFT (Yokoi *et al.*, 2020 [48]).

^q Identified as false positive by authors of APF (Zhou et al., 2019 [55]).

