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Abstract  

Improvements in digital microscopy are critical for the development of a malaria diagnosis 

method that is accurate at the cellular level and exhibits satisfactory clinical performance. Digital 

microscopy can be enhanced by improving deep learning algorithms and achieving consistent 

staining results. In this study, a novel miLabTM device incorporating the solid hydrogel staining 

method was proposed for consistent blood film preparation, eliminating the use of complex 

equipment and liquid reagent maintenance. By leveraging deformable staining patches, miLabTM 

ensures consistent, high-quality, and reproducible blood films across various hematocrits. 

Embedded-deep-learning-enabled miLabTM was used to detect and classify malarial parasites 

from the autofocused images of stained blood cells by using an internal optical system. The results 

of this method were consistent with manual microscopy images. This method not only minimizes 

human error but also facilitates remote assistance and review by experts through digital image 

transmission. This method can set new paradigm for on-site malaria diagnosis. The miLabTM 

algorithm for malaria detection achieved a total accuracy of 98.86% for infected red blood cell 

(RBCs) classification. Clinical validation performed in Malawi demonstrated an overall percent 

agreement of 92.21%. Thus, miLabTM can become a reliable and efficient tool for decentralized 

malaria diagnosis.  
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Introduction 

With over 249 million reported cases and 608,000 casualties as of 2022, malaria is a global public 

health concern (Geneva: World Health Organization, 2023). The majority of malaria cases 

(exceeding 99%) are concentrated in low- and middle-income nations, with sub-Saharan Africa 

accounting for 95% of cases. Despite cost-effective rapid diagnostic tests (RDTs) and precise 

polymerase chain reaction (PCR), manual microscopy coupled with visual inspection by highly 

trained experts is widely used for malaria diagnosis because of its robustness and limited false 

positives and false negatives (Beck, 2022; Fitri et al., 2022). However, smearing and staining 

quality as well as the expertise of microscopists who read smeared blood slides considerably 

affect the quality of microscopy-based diagnosis. Malaria eradication in malaria-endemic 

countries is hindered by the lack adequate healthcare facilities, reagents, trained professionals, 

vector control, and surveillance systems (Oduola et al., 2018; Sori et al., 2018; Gaston and 

Ramroop, 2020). 

 To overcome the challenges of manual microscopic examinations in malaria diagnosis, 

researchers have proposed digital microscopy and computational image analysis algorithms 

(Mody et al., 2006). Diagnosis based on digital images can reduce human labor, aid local 

healthcare workers, and enable experienced experts in remote locations to review microscopic 

results. Advances in image analysis techniques based on deep learning (Krizhevsky et al., 2012) 

have rendered this approach more affordable because of its higher accuracy than that of 

traditional machine learning algorithms (Liang et al., 2016; Gopakumar et al., 2018; Rajaraman 

et al., 2019; Zhao et al., 2020; Li et al., 2021; Meng et al., 2022; Madhu et al., 2023). However, 

these studies have only conducted cell-level evaluations on datasets, without clinical tests (Liang 

et al., 2016; Gopakumar et al., 2018; Rajaraman et al., 2019; Molina et al., 2020; Zhao et al., 

2020; Li et al., 2021; Meng et al., 2022; Madhu et al., 2023). Although studies have reported 

patient-level malaria diagnosis using image analysis in clinical settings, the accuracy of these 

methods is limited (Yoon et al., 2019; Das et al., 2022). Despite computer algorithms exhibiting 



greater consistency than that of manual readers, slide quality considerably affects the 

performance of these computer algorithms (Das et al., 2022). Therefore, computer algorithms 

should be scaled up with more datasets to overcome their dependency on blood-film preparation 

quality and ensure adaptability to the variability of slides. 

 Traditional machine learning algorithms tend to saturate with the increase in the amount 

of training data. By contrast, deep learning algorithms can learn from larger datasets to train larger 

models to attain improved accuracy. For example, in 2012, the best model for image classification 

had 62 million trainable parameters (Krizhevsky et al., 2012), whereas in 2022, the number of 

parameters increased to 2,44 trillion in 2022 (Wortsman et al., 2023). The required computational 

resources should be increased to accommodate larger models. Cloud computing or server-level 

computing is generally used to run current state-of-the-art models. However, in many malaria-

endemic countries, using large, extensive, deep models that require powerful computing 

capabilities or a consistently stable Internet connection is not feasible. By contrast, embedding an 

efficient deep learning model into a portable device can be prove useful in real clinical 

environments. Furthermore, consistent blood film preparation is essential to achieve high 

accuracy by reducing image variability. 

 In this study, we introduced miLabTM, an embedded-deep-learning-based sample-to-

answer device capable of automated blood film preparation and autofocused imaging using digital 

microscopy for on-site malaria diagnostics (Figure 1A). We provided a quick, inexpensive, and 

environment-friendly method to stain smears with dyes by using deformable staining patches. The 

automated preparation provided by miLabTM reduces differences in staining methods between 

technicians or institutions, resulting in consistent and high-quality preparation results for blood 

samples over a broad range of hematocrits. (Choi et al., 2021; Bae et al., 2023). The embedded 

deep learning algorithm was used to analyze malaria-suspected morphology from the blood cells 

stained in this device, and the autofocused digital images were captured by the optical system of 

the same device. The proposed miLabTM device can perform continuous autofocus imaging, 



providing the same effect as continuous field-of-view (FoV) readings applied when examined 

under a microscope. Digital microscopy allows scanning of more than 200,000 RBCs within 7–10 

min without errors, which is more than the number of RBCs recommended by WHO guidelines. 

Therefore, digital microscopy is beneficial for samples from patients with low parasitemia (in cases 

of low infection). Therefore, this innovative device allows on-site users to analyze digital image 

data immediately and obtain immediate diagnostic results without high-performance computing. 

Simultaneously, digital images can be sent to experts from remote locations to assist with 

diagnosis (Figure 1B). On-site users can immediately check the suspected morphology of 

malaria-infected cells through the screen mounted on the device (Figure 1C), and other experts 

can access the same digital images on web-based software to review the suspected 

morphologies and diagnostic results (Figure 1D). The embedded deep-learning-based on-site 

malaria diagnostic platform not only provides similar results as in-person microscopy examination 

in the laboratory but also enables remote diagnosis. 

 

Figure 1 Schematic of the embedded deep-learning based on-site malaria diagnosis. (A) The miLabTM device not 
only automates the process (automated blood staining without liquid handling and autofocused digital images) of 
malaria diagnosis through microscopic analysis but also incorporates deep learning algorithm directly into the device 
for on-site review. (B) A web-based software allows experts to access the digital images for remotely reviewing the 
result through the internet. (C) Photograph of the result page in miLabTM for P.falciparum positive patient specimens. 
Users can review and confirm the results in the miLabTM for sample-to-answer, on-site malaria diagnosis. (D) 
Photograph of the screen shot of the result page from the same patient specimens on the web-based software, 



accessing remotely digital images and raw data from miLabTM. Other experts can remotely review and confirm the same 
results from miLabTM.  

 

Materials and Methods 

miLabTM Platform  

The miLabTM platform was designed to provide fully automated microscopic analysis, 

which is the standard for malaria diagnostics. Each cartridge (40 mm (width) × 92 mm (length) × 

15 mm (height). w: width, l: length, and h: height) of the miLabTM device (212 mm (w) × 390 mm 

(l) × 244 mm (h). w: width, l: length, h: height) consisted of a spreader film for preparing the blood 

film and three types of staining patches, facilitating consistent RBCs smearing and staining 

(Supplementary Figure S1). The cells can be smeared and stained by simply moving 5 μL of 

blood-loaded cartridge without any controlling the aqueous solution. Thus, automated processes 

for blood films can be designed to stain the morphology of Plasmodium effectively and 

appropriately on-site. We used a solid staining method using hydrogels to eliminate the need to 

control complex equipment or maintain the liquid reagents (Choi et al., 2021). In this approach, 

the hydrogel is brought into contact with appropriately smeared and fixed cell surfaces, allowing 

the dye to efficiently stain the cells. Depending on the type of dye used, the dye from the hydrogel 

was applied to the smear in a short time, under 1 minute, depending on the type of dye used (Bae 

et al., 2023). Furthermore, hydrogels without dye can absorb any remaining dye on the cell 

surface and attain suitable staining quality depending on the pH of the buffer in the hydrogel, 

which is similar to the role of the conventional buffer solution in blood cell staining (Oktiyani et al., 

2023). After automated blood-film preparation, the optical system of the device captured the digital 

images of the stained blood cells. At least 200,000 RBCs and up to 500,000 RBCs were scanned 

in continuously obtained digital images from each blood film. The optical system was designed to 

capture multifocal images from the blood film by considering the size and location of the stained 

parasites within the RBCs. 



Subsequently, a machine learning algorithm was applied to analyze the captured images 

and detect malarial parasites in the blood. To incorporate the machine learning model into the 

limited resources of the embedded hardware, all neural network architectures were designed to 

reduce computational complexity. To identify parasites that are rarely present in RBCs, we 

devised a two-step image analysis algorithm, including RBC detection and subsequent 

classification. The subimages were extracted from the image to obtain one RBC for each event 

(1st step: detection). Each of the cropped subimages was then tested for the presence of malarial 

parasite (2nd step: classification). In the two-step algorithm, images are divided into meaningful 

units and each unit is analyzed comprehensively, instead of finding scarce malarial parasites 

directly in numerous images. 

In the detection module of miLabTM, a semantic segmentation algorithm is used to detect 

each RBC in the images. Because our target images were full of RBCs, we adopted a semantic 

segmentation algorithm instead of a general object detector to achieve compactness and 

efficiency (Ronneberger et al., 2015; Tran et al., 2019; K.T. et al., 2022). The model was 

specifically designed to produce two outputs, namely objectness and contours, as segmentation 

mask images. After running the semantic segmentation algorithm, the contour image is subtracted 

from the objectness image to separate the aggregated cells. The cell locations were determined 

by performing the connected component analysis from the resulting mask (Supplementary Figure 

S3A). Detected blood cells were cropped and passed through the classification module. 

In the classification module, we used the fact that uninfected cells were the dominant 

component of a large number of detected cells. Because passing all cells through the entire 

classification procedure is inefficient, we designed the classification module as two cascaded 

classifiers to reduce the computational burden imposed by the skewed ratio of parasite-positive 

to parasite-negative cells (Supplementary Figure S3B). The first classifier consists of only three 

convolutional layers for the maximum speed and screens for obviously “clean” uninfected cells. If 

a cell was clearly classified as uninfected, then it was not passed on to the second classifier. This 



prior “screening” classifier considerably reduces the number of cells delivered to the subsequent 

classifier. The second “main” classifier performs an in-depth examination of only those cells 

deemed by the first classifier to be possibly infected. The second classifier is based on the ResNet 

(He et al., 2016) architecture and is equipped with a convolutional block attention scheme (Woo 

et al., 2018). Similar to our segmentation network, the main classifier has a multi-task learning 

framework with two output branches: one branch that predicts the presence of malaria (infection 

branch) and the other branch that estimates its developmental stage (stage branch). In our 

verification study, only 17.8% of the RBCs passed the screening classifier and were delivered to 

the main classifier, whereas the conventional monolithic classifier examined all RBCs 

(Supplementary Figure S4). The classifier was trained to be robust to distracting elements, such 

as white blood cells (WBCs), which are categorized as malaria-negative. The current AI of 

miLabTM can detect malaria parasite-infected RBCs in the operator-assigned number (default: 

200,000) of RBCs and classify developmental stages based on their morphology: Plasmodium 

falciparum and Plasmodium vivax ring stage, P. falciparum late stage (i.e., gametocyte), P. vivax 

trophozoite stage, and P. vivax late stage (i.e., schizont and gametocyte). 

The algorithm of the device provides flexibility in the tradeoff between sensitivity and 

specificity. The output score of the infection branch was thresholded to determine whether the 

cells were positive or negative. Lowering the threshold yields higher sensitivity and raising the 

threshold provides higher specificity. Furthermore, patient-level recommendations are provided 

based on the number of suspected cells on a slide. In this clinical evaluation, we considered a 

slide with more than one positive RBC as malaria-positive.. 

Analysis of the blood film in the miLabTM   

Whole blood samples were collected for research purposes, and the study was approved by the 

Institutional Review Boards (P01-202003-31-007 and GCL-2020-1011-01) of the Korea National 

Institute for Bioethics Policy (Seoul, Korea) and GCLabs (Yongin, Korea). The hematocrit of the 

blood sample was measured using a hematocrit-measuring instrument to analyze the blood film 



(Boditech Med Inc., FPRR005). The blood film was analyzed based on the number of RBCs and 

color value of the prepared stained RBCs. Images of stained RBCs prepared using the 

specimens were captured in the device, and the field of views (FoVs), including stained RBCs, 

were acquired. The number of RBCs was analyzed using a verified image analysis tool. Color 

values (red, green, and blue (RGB)) were obtained from the pixels of the segmented RBCs 

using a verified, self-made image analysis tool. To examine the morphological features of 

Plasmodium, four types of typical stages and species (rings of early trophozoites, late 

trophozoites from P. vivax, and gametocytes from P. falciparum and P. vivax) were collected. To 

compare the staining quality of Plasmodium in miLabTM, a manual Giemsa slide was prepared 

with the same blood samples and observed under a microscope (CX33 with a 100x objective 

lens, Olympus). The same morphology of Plasmodium in the blood film prepared from miLabTM 

was observed using the same device and under a microscope (CX33 with a 50x objective lens, 

Olympus) to compare the image quality of miLabTM. 

 
System verification of miLabTM  

To evaluate the reproducibility of blood films smeared using miLabTM, a verified, self-made 

image analysis tool was used to determine the number of segmented RBCs in each FoV. The 

mean RBC counts from 50 FoVs of 20 replicate slides for seven specimens were used to 

examine the precision of the blood smear. To evaluate the reproducibility of blood film staining 

by miLabTM, a verified, a similar self-made image analysis tool was used to determine the mean 

RGB value of segmented RBCs from 200 FoVs. Two hundred FoVs per specimen were used to 

examine the color of the specimen by calculating the mean, standard deviation, and coefficient 

of variance. 

A receiver operating characteristic (ROC) curve was drawn using the binary classification 

result of 4,005 normal RBCs and 7,713 malaria positive cells. The classification performance at 

the cellular level for Plasmodium (ring and gametocytes) was represented using a confusion 



matrix (2 × 2), where the maximum accuracy was obtained. The detection rate of Plasmodium 

(ring and gametocyte) for the entire embedded deep-learning algorithm was verified using the 

Plasmodium ratio among the total number of RBCs per FoV obtained from the blood film in 

miLabTM. In total, 3,000 FoVs from 15 malaria-positive clinical specimens (200 FoVs each) from 

the blood film in miLabTM were labeled by an experienced microscopist. A total of 3,290 

Plasmodium (ring, gametocyte) were confirmed in 1,751 FoVs. The detection rate of Plasmodium, 

determined by the embedded deep-learning algorithm in miLabTM (test group), was compared and 

fitted to that observed by the human eye on the same images (control group).  

Clinical evaluation  

Clinical samples (n = 555) analyzed using the two miLabTM devices were collected from April 

2022 to November 2022 and used in the clinical validation study approved by the Institutional 

Review Board (IRB00003905) of the National Health Sciences Research Committee (Ministry of 

Health, Malawi). After explaining the purpose of the study, procedure, possible benefits, risks, 

and rights of the participants, all participants were first requested to sign informed consent 

forms. The results obtained by miLabTM were compared to those of microscopic examination by 

an experienced local microscopist in Malawi and alongside with RDT (CareStart™ Malaria Pf 

(HRP2) Ag RDT, AccessBio, NJ). Blood samples (∼250 µL) were collected into blood capillary 

tubes by a finger prick through a sterile lancet and stored in an anticoagulant tube with 

ethylenediaminetetraacetic acid (EDTA). Five microliters of collected blood was loaded onto the 

miLabTM cartridge and five microliters of the collected blood was used to prepare a thick and a 

thin blood film each for microscopic examination. The blood film was stained with a mixture of 

eosin and methylene blue using Giemsa staining. Local microscopists examined the Giemsa-

stained slides using an Olympus CX33 microscope according to the standard microscopy 

methods of the World Health Organization (WHO & UNICEF/UNDP/World Bank/WHO Special 

Programme for Research and Training in Tropical Diseases, 2015). Parasitemia determined 



using miLabTM (test group) was compared and fitted linearly to that measured from the thick film 

of the manual Giemsa slide under microscopic examination by a local microscopist (control 

group). 

Statistical analysis 

GraphPad Prism (Ver.7, GraphPad Inc., San Diego, CA, USA) was used to perform all 

statistical analyses. To evaluate the linear correlation for the detection rate in the system 

verification and parasitemia in clinical evaluation, linear least squares analysis was performed at 

the 95% confidence interval of each variable, and the Pearson correlation coefficient (r) was 

calculated. Differences between the test and control groups were examined using Student’s 

unpaired t-test. A two-sided test, and the results were considered statistically significant at p < 

0.05. 



 

Figure 2 Characterization of the blood film in the miLabTM. (A) Photograph of the prepared blood films from the 

miLabTM using a patient specimens with low hematocrit and high hematocrit from Malawi. Low hematocrit samples to 

be read in Zone B instead of Zone A, where high hematocrit samples were typically read. The miLabTM device 

automatically detects an appropriate area to observe RBCs in a monolayer. (B) Correlation of average RBC counts per 

FoV depending on the hematocrit of the clinical specimens (n = 37) was shown with open dots (Zone A) and close dots 

(Zone B). (C) Schematic of blood staining using three distinct staining patches in the cartridge and pictures of stained 

blood cells with Plasmodium-infected RBCs (black arrow) from each steps of staining procedure. The scale bars = 10 

μm. (D) Comparison of microscopic cell image with the miLabTM blood film acquired from miLabTM, 50x olympus 

microscopy with miLabTM blood film, and 100x microscopy with conventional Giemsa slides. The scale bars = 5 μm.  

 

Results 



Characterization of the blood film in the miLabTM  

To address the unique characteristics of malaria patients with lower RBC counts, we 

implemented a two-speed smearing process on a spreader with a consistent angle, screening 

an adequate number (at least more than 200 RBCs per FoV) of RBCs in low hematocrit 

samples, ranging from 20% to 35%. This method provided two zones for detecting appropriate 

RBCs, depending on the hematocrit of the samples (Figure 2A). When we investigated the 

correlation between the average RBC counts per FoV and the hematocrit from the 37 clinical 

specimens, zones A and B revealed a linear correlation between RBC counts and hematocrit 

(Figure 2B, Supplementary Figure S5). The RBC counts of samples with low (< 30%) and 

middle/high hematocrit (> 30%) were selected from zones B and A, respectively. To increase 

the efficiency of RBC screening, RBCs from low-hematocrit samples can be screened in zone B 

(average 200–400 RBC counts per FoV) instead of zone A (average 100–300 RBC counts per 

FoV). 

Depending on the types of staining patches that included various types of Romanowsky 

stains, such as Eosin, Methylene blue, and Azure B, the color of RBCs and the morphology of 

parasites were observed at each staining step (Figure 2C). The transparent patch was used for 

absorbing the excess dye left on the slide and optimizing the stained colors of the cells, whereas 

the dye-containing patches were used to deliver dyes to the cells (Choi et al., 2021; Bae et al., 

2023). To confirm that the morphological characteristics of Plasmodium were revealed in the 

blood film prepared in miLabTM, four types of typical stages and species (rings for early 

trophozoites, late trophozoites from P. vivax, and gametocytes from P. falciparum and P. vivax) 

were collected from patient samples (Figure 2D). The stained blood film provided a clear 

morphology of Plasmodium at each stage, similar to conventional microscopic examination using 

Giemsa staining for 100x microscopy images. In particular, when comparing the images of 

Plasmodium morphologies stained by the cartridge with manually focused images at the same 



resolution using a 50x microscope, the distinctions in morphology and species were discernible, 

even in the auto-focused images within the device. Both automatically stained cells and their 

autofocused digital images not only allow the embedded deep-learning algorithm to detect malaria 

on-site but also enable experts to distinguish between types and stages of malaria through the 

result screen in the device or viewer at remote locations. 

 

Figure 3 System verification of the miLabTM device. (A) Reproducibility of blood smear was represented with the 
box plot using RBC counts per FoV in seven clinical specimens (n = 20). Average RBC counts per FoV were 
demonstrated with low, middle, and high hematocrits. The RBC counts of the samples with the low (< 30%) and the 
middle/high hematocrits (> 30%) were selected from Zones B and A, respectively. (B) Reproducibility of blood staining 
was represented with the box plot using the red, green, and blue color value, which was obtained from the stained 
RBCs in FoVs of clinical specimens. The RGB color values of each RBC was conserved across FoVs (n = 4,000). (C) 
Cellular level classification performance for Plasmodium (ring, gametocytes) was represented with the ROC curve. The 
area under the curve (AUC) was 0.999 with 95% confidence interval in the range of 0.9986–0.9994. The confusion 
matrix was calculated at the optimal point where maximum accuracy was obtained. (D) Correlation of the detection rate 
of malaria positives (ring, gametocytes) between the deep learning algorithm (test group: miLabTM) and naked eyes 
(control group: Microscopy) with the Pearson’s correlation coefficient (r) of 0.96 (p < 0.0001, n=3,000). 

 

System verification of the miLabTM 



To ensure an accurate diagnosis, digital images that demonstrate reproducible automated 

preparation processes and effectively depict the morphology of Plasmodium are crucial. 

Therefore, when performing automated preparation processes in miLabTM, the blood film was 

verified by the consistency of RBC counts for smearing and the color difference for staining. The 

screening of RBCs performed on various hematocrit samples, including 20%–50%, resulted in a 

coefficient of variation (CV%) of less than 10%, even in 20 replicates of seven clinical 

specimens (Figure 3A). Because three-color values (red, green, and blue [RGB] levels) are the 

most common color spaces for segmenting parasites and RBCs from thin blood films (Fong 

Amaris et al., 2022), each color value was extracted from segmented RBCs to quantitatively 

analyze the appropriate blood smear and staining. Thus, hydrogel staining precisely controls the 

color of Plasmodium (ring, gametocyte) and performs blood film preparation efficiently and 

reproducibly. Figure 3B displays the color values of the stained images. The %CV of the three-

color values over 4,000 FoVs was less than 5% and was maintained across 200 FoVs for 20 

specimens (Supplementary Figure S6). 

The ROC curve in Figure 3C displays the cellular-level performance of Plasmodium binary 

classification. The area under the curve (AUC) was 0.999, indicating that the proposed classifier 

was highly accurate. The magnified graph displays the trade-off relationship between the true 

positive and false positive rates. We selected an optimal point on the curve that achieved the 

maximum accuracy and calculated the sensitivity, specificity, and accuracy at that point to be 

99.25%, 98.1%, and 98.86% (95% CI: 98.65–99.04%), respectively. Infected RBC detection 

performance was verified using blood films prepared from 15 malaria-positive clinical specimens. 

We randomly selected 200 FoVs for each blood film and compared the proportion of infected 

RBCs from miLabTM to microscopic results obtained visually. The classifier infection branch 

applied an empirically determined threshold value to the output. A cell is classified as malaria-

positive if its output value surpasses a specified threshold. An excellent correlation existed 



between the results from both methods, with a Pearson’s correlation coefficient (r) of 0.96 (p < 

0.0001; Figure 3D).  

 

 

Figure 4 Clinical validation of miLabTM in Malawi. (A) Design for a clinical study. A total of 555 clinical specimens 
were enrolled and subjected to microscopy and analysis by miLabTM for comparison with the reference tests (both 
local microscopy examination and RDT). Yellow cells indicate samples discordant with the reference test. (B) 
Agreement of analysis by miLabTM with the reference tests (microscopy and RDT). Based on the concordance of 
microscopy and RDT, overall percent agreement (OPA), positive percent agreement (PPA), and negative percent 
agreement (NPA) were 92.21%, 95.15%, and 91.43% respectively. (C) Correlation of the parasitemia level between 
microscopy and the miLabTM on a logarithmic scale. The Pearson’s correlation coefficient (r) is 0.8259 (95% CI: 
0.7518 to 0.8794). 
 

Evaluation of Clinical Performance in Malawi 

The clinical performance of miLabTM was evaluated using 555 patients who were selected from 

patients with fever and visited the clinical study site, Mzuzu Health Center in Malawi. The 

predominant species was P. falciparum (Gaston and Ramroop, 2020; U.S. President’s Malaria 

Initiative Malawi Malaria Operational Plan FY, 2020). Clinical information of the patients is 

summarized in Supplementary Tables S1 and S2. Figure 4A depicts the study design for the 

clinical validation of miLabTM based on the approved study protocol. The miLabTM results were 



compared in concordance with those of manual microscopy (local and expert microscopists) 

and RDT as reference tests. On analysis of 488 clinical specimens by miLabTM after excluding 

67 samples with discrepancies between reference tests, an overall percent agreement (OPA) of 

92.21% (95% confidence interval (CI); 89.48%–94.43%), positive percent agreement (PPA) of 

95.15% (95% CI; 89.03%–98.41%), and negative percent agreement (NPA) of 91.43% (95% CI; 

88.17%–94.03%) was observed (Figure 4B). 

Figure 4C displays the correlation of parasitemia between manual microscopic 

examination by a local microscopist and miLabTM. The mean parasitemia of positive samples is 

approximately 26,000 (parasites per µL) from the miLabTM and approximately 22,000 (parasites 

per µL) from the local microscopist. Because miLabTM quantifies parasitemia assuming 5,000,000 

RBCs per microliter of the blood, parasitemia in patients with abnormal RBCs or out-of-range 

WBCs differs from quantification based on 8,000 WBCs per microliter of blood through the 

conventional microscopy examination. Nevertheless, the Pearson’s correlation coefficient (0.8259, 

95% CI: 0.7518–0.8794) of parasitemia determined by miLabTM exhibited excellent consistency 

with the quantification results obtained from Giemsa slides by the microscopist. Based on the 

results of the parasitemia level, 200 clinical samples (100 positive, 100 negative) were randomly 

selected and the limit of detection (LOD) for the point at which a positive result is more than 95% 

probable by using probit regression is approximately 31 parasites per μL. 

Discussions 

 On-site sample-to-answer malaria diagnosis in miLabTM enables blood film preparation 

for embedded deep learning-based malaria detection using digital microscopy images. In 

miLabTM, hydrogel-stained patches are applied to blood film generation in a highly reproducible 

manner. In this on-site diagnostic platform with an A4 paper-sized footprint, ethanol-based 

fixation is applied to avoid the use of methanol and staining patches to reduce liquid waste 

without maintaining reagents for user safety and convenience. Thus, a sophisticated, well-



equipped central laboratory is not required for on-site diagnosis. The miLabTM device functions 

as a stand-alone unit that can be used in resource-limited environments. System validation 

revealed excellent reproducibility for blood film preparation (Figure 3, Supplementary Figure 

S5). The accuracy of deep-learning-based analysis at the cellular level was comparable to that 

of other research groups (Liang et al., 2016; Shen et al., 2017; Gopakumar et al., 2018; 

Rajaraman et al., 2019; Zhao et al., 2020; Li et al., 2021). The consistent performance and 

higher accuracy of miLabTM eliminated the dependency on technicians for manual microscopy-

based malaria diagnosis by providing both blood film preparation and automated analysis 

compared with other products (Yoon et al., 2019; Das et al., 2022). 

 The clinical performance evaluation of miLabTM using 488 clinical specimens revealed an 

overall percentage agreement (OPA) of 92.21% before user reviews. Of the 488 samples 

analyzed, 38 (7.79%) were discordant with the reference tests as false-negatives or false-

positives. The miLabTM device displays “review needed” or “suspected” morphology of the 

parasites on its display to users who wish to review the results either on the device or web-

based software. In this clinical validation study, users were required to review the raw data and 

confirm the diagnostic results for 131 of the 488 patient specimens (including 98 true positives 

and 33 false positives). To achieve optimal results expected from the device, users can set a 

cellular-level threshold according to the situation, such as the presence of an expert. Although 

we attained high cellular-level accuracy, a special strategy is required to provide patient-level 

recommendations. Because the number of normal RBCs is greater than the number of infected 

RBCs, setting a cellular level threshold for high specificity can reduce reviewing effort. However, 

to detect Plasmodium in patients with low parasitemia, users should be able to determine 

patient-level positivity when any cell with a suspected morphology is confirmed on a single slide. 

Therefore, all suspected cells, even a single cell need to be shown on the Results page.  These 

strategies are included in patient-level recommendations. 



 

Figure 5 Performance of detecting stages and species in the miLabTM. The confusion matrix represented stage 
and species classification using embedded deep learning algorithm with additional patient-level estimation. (P.f 
gameto ; gametocyte, P.v trop.; trophozoite, P.v late; schizonts or gametocyte). 

 
The first generation of malaria diagnosis using miLabTM was based on the characteristic 

morphology of P. falciparum. However, the results obtained by a local microscopist confirmed 

that four patients were infected with P. vivax and P. malariae in addition to P. falciparum. On 

reviewing the digital images of miLabTM, experts observed various distinct morphologies of 

Plasmodium species. The current stage classification performance was examined using 11,718 

single-cell images acquired from blood films prepared using miLabTM, where the stages were 

determined independently by expert microscopists. Figure 5B displays the confusion matrix from 

the verification study for multistage malaria parasite classification. The total accuracy for the 

classification of infected RBCs was 98.83% (95% CI: 98.62%–99.01%), and that for the 

classification of Plasmodium species and stages was 97.82% (95% CI; 97.53%–98.06%). The 

miLabTM algorithm revealed excellent performance in malaria detection, with the identification of 

multiple stages of the parasite’s life cycle in this analytical validation study. If the algorithm is 

optimized at patient-level estimation, the performance of miLabTM can be improved, allowing the 

classification or detection of other Plasmodium species. A deep learning algorithm trained with 

other types of infected blood cells would improve the performance of malaria diagnosis by 

reducing the interference caused by WBCs, platelets, and other types of parasites (e.g., 

Trypanosoma cruzi). 



The miLabTM device can provide on-site, sample-to-answer diagnostics for malaria and enables 

decentralized patient care in resource-limited settings, especially low- and middle-income 

countries. In future studies, the miLabTM cartridge can be applied to the morphological detection 

of WBCs because similar methods derived from Romanowsky-type staining are used for staining 

for both WBCs and malaria (Supplementary Figure S7A)(Choi et al., 2021). Moreover, by 

modifying the composition of the hydrogels in the cartridge, miLabTM can prepare various types 

of sample slides. These slides included cytology slides with Papanicolaou staining 

(Supplementary Figure S7B) and tissue sections stained with hematoxylin and eosin (H&E) for 

histopathology (Supplementary Figure S7C) (Chin et al., 2022; Kim et al., 2023). The miLabTM 

device can be used to diagnose other infections and the detection of intestinal parasites 

(Supplementary Figure S7D) that require microscopic examination without staining (wet 

preparations). The use of miLabTM can be extended to the diagnosis of multiple diseases using 

the external training of deep-learning algorithms on various types of digital images. 

 

Conclusions 

On-site sample-to-answer malaria diagnosis using miLabTM enables blood film preparation 

for embedded deep learning-based malaria detection using digital microscopy images. The 

miLabTM algorithm achieved 98.86% detection accuracy of infected RBCs. The clinical validation 

of miLabTM demonstrated an OPA of 92.21% in Malawi. This on-site malaria diagnostic platform 

can assist experts in evaluating the suspected morphology of Plasmodium in laboratories and 

remote locations and realize remote diagnosis of malaria, especially in resource-limited settings.   
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