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Abstract

The mosquito-borne disease (malaria) imposes significant challenges on human health, healthcare systems, and
economic growth/productivity in many countries. This study develops and analyzes a model to understand the
interplay between malaria dynamics, economic growth, and transient events. It uncovers varied effects of malaria
and economic parameters on model outcomes, highlighting the interdependence of the reproduction number (R0)
on both malaria and economic factors, and a reciprocal relationship where malaria diminishes economic produc-
tivity, while higher economic output is associated with reduced malaria prevalence. This emphasizes the intricate
interplay between malaria dynamics and socio-economic factors. The study offers insights into malaria control and
underscores the significance of optimizing external aid allocation, especially favoring an even distribution strategy,
with the most significant reduction observed in an equal monthly distribution strategy compared to longer distribu-
tion intervals. Furthermore, the study shows that controlling malaria in high mosquito biting areas with limited aid,
low technology, inadequate treatment, or low economic investment is challenging. The model exhibits a backward
bifurcation implying that sustainability of control and mitigation measures is essential even when R0 is slightly
less than one. Additionally, there is a parameter regime for which long transients are feasible. Long transients are
critical for predicting the behavior of dynamic systems and identifying factors influencing transitions; they reveal
reservoirs of infection, vital for disease control. Policy recommendations for effective malaria control from the
study include prioritizing sustained control measures, optimizing external aid allocation, and reducing mosquito
biting.

Keywords: Coupled malaria-economic growth model, long transients, per capita capital, reproduction number,
external aid allocation, Backward bifurcation

1. Introduction

Malaria is a common source of human illness and death in many countries across the planet, especially in the World
Health Organization (WHO) African Region, which harbored 95% of all the reported clinical cases of malaria and
96% of all the malaria-induced deaths in 2021 [1]. The health impact of malaria is particularly devastating among
children under the age of five in the WHO African Region, with≈ 80% of malaria-related deaths in 2021 occurring
within this age group and region [1]. Despite progress in reducing the global burden of malaria (i.e., malaria-
related morbidity and mortality) over the past decade, there has been an increase in cases and deaths, including
1 million additional cases from 2014 to 2015, 5 million cases from 2015 to 2016, and 13.4 million cases with
63,000 deaths between 2019 and 2021 [1, 2]. Interruptions in malaria control programs triggered by the COVID-19
pandemic were implicated for the increase in the global burden of malaria between 2019 and 2021. Since malaria
is transmitted between humans by Anopheles mosquitoes, vector control measures including the use of traditional
insecticide-treated nets (ITNs), piperonyl-butoxide (PBO) ITNs, indoor residual spraying, inhibiting the breeding
of mosquitoes in proximity to human residences, etc., have been useful in combating malaria [3–6].

Apart from the substantial public health burden imposed by malaria to individuals, communities, and countries, the
disease has significant economic consequences, including considerable direct healthcare costs, productivity losses,
and barriers to economic development incurred by individuals, households, and governments in many countries in
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which it is endemic [7, 8]. Expenses related to prevention, diagnosis, treatment, hospitalization, and medications
contribute to the substantial healthcare costs associated with malaria [9, 10]. Studies have shown that out-of-pocket
expenditures for malaria-related services can push individuals and households further into poverty, exacerbating
existing socioeconomic disparities [11–13]. Productivity losses resulting from malaria have a widespread impact,
as infected individuals experience debilitating symptoms that hinder their ability to work or attend school. In partic-
ular, missed workdays, reduced productivity, and lower educational attainment are common outcomes [8, 14–19].
Additionally, malaria can cause agricultural workers to face challenges in tending to their crops or livestock, leading
to decreased agricultural output and income [17–19]. The repercussions can be dire, leading to significant nutri-
tional and economic hardships, particularly in resource-challenged rural communities that depend on subsistence
agriculture and immediate natural resources for their livelihood. Malaria hampers economic development by de-
terring foreign investment, tourism, and trade [8, 20–22] since malaria-endemic regions are perceived as high-risk
areas, discouraging potential investors and visitors. The presence of the disease inhibits industrial growth and limits
opportunities for economic diversification, perpetuating a cycle of poverty and underdevelopment [20, 21, 23]. It
should be mentioned that malaria has a profound impact on infants and children, and a significant proportion of
malaria deaths occur in children under the age of 5. Expenditures on healthcare for malaria-afflicted children can
significantly impact household income, while malaria-related absenteeism from school may hinder children’s future
earning potential, contributing to a cycle of economic impact into adulthood [24]. Also malaria impacts adults, lead-
ing to economic losses and long-term health complications associated with chronic infections [7, 25, 26]. Studies
have emphasized the economic strain imposed by malaria, including productivity loss among working-age adults,
contributing to poverty in low-income areas [7, 27]. The disease correlates with significant reductions in annual
economic growth [7, 28], and recent trends show an increase in global expenditures on malaria [13, 29]. Addition-
ally, malaria ranks 19th in global disability-adjusted life years (DALYs) and 4th among infectious diseases in 2019
[30]. The economic impact of malaria extends beyond individuals, households, and countries, affecting regional
and global economies. Healthcare costs and productivity losses drain national resources, diverting funds that could
have been invested in critical sectors such as infrastructure and education. This collective burden hampers the abil-
ity of malaria-endemic countries to allocate resources effectively, impeding their overall economic progress. It is
estimated that malaria costs the economy of African countries $12 million annually [31]. Addressing the economic
impact of malaria requires comprehensive strategies that focus on reducing healthcare costs, improving productiv-
ity, and promoting economic diversification. By investing in malaria prevention, treatment, and control measures,
countries can alleviate the economic burden, improve livelihoods, and foster sustainable economic growth.

The global health and economic trends of malaria underscore the need for more research into the efficacy and
appropriate implementation of malaria control measures. One way to approach this is through mathematical model-
ing. Well-developed and calibrated mathematical models have played a critical role in understanding the dynamics
of infectious diseases and in informing infectious disease control measures. In particular, much of the mathemati-
cal modeling literature on malaria and vector-borne diseases in general builds on the Ross-Macdonald framework
for malaria of the 1900s [32, 33]. This basic but useful framework has been extended in various ways to account
for more epidemiological and immunological aspects of malaria (e.g., [33–36]), demographic and feeding patterns
of mosquitoes (e.g., [37–41]), environmental factors such as temperature (e.g., [42–46]), and various control and
mitigation measures including the use of insecticide-treated nets and indoor residual spraying (e.g., [47–52])

Although these and other modeling efforts have made significant contributions to the study and control of malaria,
an under-studied, yet crucial component to the success of malaria control programs is the dynamic feedback be-
tween the socio-economic landscape and malaria transmission. In particular, despite the overwhelming evidence
that malaria and poverty are interconnected, and that malaria and other infectious diseases impact economic growth
negatively [7, 8, 53], only a few mathematical frameworks attempt to explain this and the complex interplay be-
tween poverty and infectious diseases [54–56]. On the other hand, the study of transient dynamics in emerging,
re-emerging, and endemic diseases has played an important role in improving disease management in real-time
and understanding of patterns observed in epidemiological time-series [57]. These transients can emerge from en-
dogenous and exogenous factors. In particular, the role of transients in a coupled malaria-economic system is of
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importance given the synergistic feedback between these two systems operating on different time scales and given
the fact that although transient events occur within a relatively short timescale, they can have huge ripple global
health and economic effects on such coupled system. Hence, a new mechanistic understanding of various processes
leading to changes in malaria prevalence is key to identifying new interventions, understanding the intertwined re-
lationship between malaria, socio-economic conditions, and transient events, and informing new empirical studies.

In this study, an epidemiological model that accounts for the dynamics of malaria, socio-economic features, and
transient events is developed and analyzed. The framework is used to understand synergistic feedback between
malaria dynamics and economic growth, as well as to assess the impact of transient events, particularly long tran-
sients on malaria dynamics and economic growth. To our knowledge, this is the first mathematical model for the
transmission dynamics of malaria that accounts for all these factors in a single framework.

2. The model

2.1. Model formulation
In this section, an integrated model framework for the transmission dynamics of malaria that couples disease epi-
demiology with, human and mosquito population dynamics, as well as economic growth is developed. In the
economic component of the framework, per capita economic yield or output (y = f(k) + yE , where f is a pro-
duction function and yE is external aid) is generated from labor (L) and per capita capital (k), which is defined as
a stock resource that is used to produce goods and services. External aid for malaria involves financial and tech-
nical support from international organizations, governments, or non-governmental entities to combat and prevent
malaria. This assistance includes funding, resources, and expertise to strengthen healthcare systems, implement
preventive measures, and improve access to diagnostics and treatment. Examples include the Global Fund to Fight
AIDS, Tuberculosis, and Malaria and the President’s Malaria Initiative, which provide aid for malaria control pro-
grams, bed net distribution, and drug procurement [58, 59]. As in [55], f is modeled through the Cobb-Douglas
production function [60]. That is f(k) = kα(AL/Nh)1−α, where Nh is the total human population, 0 < α < 1 is
the capital share or elasticity coefficient, and A is technological progress or labor efficiency. It should be noted that
per capita capital (yield) is given by k = K/Nh (y = Y/Nh), where K (Y ) is the aggregate capital (yield). Capital
accumulates over time through savings of the unconsumed portion of the yield (1 − c)y (where 0 ≤ c ≤ 1 is the
factor for the consumed portion of the yield) at rate r, or depreciates at rate σ (see schematics in Fig. 1). Thus, in
the tradition of [61, 62], the rate of change of capital is the difference between capital accumulation (r(1 − c)y)
and capital depreciation (σk), i.e., k̇ = r(1− c)y − σk (last equation of Model (2.1)).

In the malaria model, the total human population (Nh) is divided into susceptible (Sh), infectious (Ih), and re-
covered or partially immune (Rh) individuals. Similarly, the total mosquito population is divided into susceptible
(Sv) and infectious (Iv) individuals. The model assumes no vertical transmission of malaria, so all human and
mosquito births are into the susceptible classes at respective rates Λh and Λv. The transmission dynamics of
malaria involve the force of infection λvh = βvpvh

Iv
Nh

and λhv = βvphv

(
Ih+θRh
Nh

)
, where βv is the average

number of bites a mosquito places on a human per unit time (commonly referred to as the human biting rate of
mosquitoes), pvh is the probability that an infectious mosquito infects a susceptible human, and phv is the probabil-
ity that an infectious or partially immune human infects a susceptible mosquito. It is assumed that partially immune
humans infect susceptible mosquitoes at a reduced rate depicted by the modification factor, 0 ≤ θ ≤ 1. Therefore,
susceptible humans (mosquitoes) progress to the infectious human (mosquito) class at rate λvh (λhv) after being
infected. In other words new human and mosquito infections are given by λvhSh and λhvSv, respectively. Humans
(mosquitoes) from any of the human (mosquito) classes die naturally at per capita rate µh (µv). Infectious humans
either die from malaria at per capita rate δh, or recover with partial immunity at per capita rate γh. Given the
relatively short lifespan of mosquitoes and the lack of empirical data supporting the effects of malaria on mosquito
mortality, we assume that malaria does not directly cause mortality in mosquitoes. Also, since there is no empirical
evidence of mosquito immunity to malaria, we assume that the infectious period for mosquitoes culminates with
their death. Partially immune humans lose their immunity to become susceptible again at per capita rate ρh.
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The malaria model is coupled to the economic model through malaria-related medical costs (ξIhy/Nh, 0 ≤ ξ ≤ 1)
in the investment term, the human population growth rate n = Ṅh/Nh = (Λh − µhNh − δhIh)/Nh in the capital
depreciation term, and the production function (f(k, Sh, Ih, Rh, Nh)). In particular, assuming that the total hu-
man population (Nh) is proportional to the contribution of labor (L) to productivity and that clinically ill humans
are less productive than their healthy counterparts, the production function (f ) becomes f(k, Sh, Ih, Rh, Nh) =

kα
{
A[Sh+(1−ε)Ih+Rh]

Nh

}1−α
, where 0 ≤ ε ≤ 1 is a modification parameter or factor to account for reduced produc-

tivity due to clinical malaria infection (Eq. (2.3)). It should be noted that ε = 0 (ε = 1) corresponds to a scenario in
which clinically ill humans are fully (not) productive. Thus, the yield (y) is given by y = f(k, Sh, Ih, Rh, Nh)+yE .
Conversely, the economic model is coupled to the malaria model through the mosquito biting rate (βv) in the forces
of infection (λvh and λhv in Eq. (2.2)), the recovery rate from infection (γh), the mosquito recruitment term
(Λv), and the mosquito mortality rate (µv). Specifically, the biting rate of mosquitoes (βv) is modeled with the
function βv(y) =

βv0βy
y+βy

, where βv0 is the maximum or background biting rate of mosquitoes (attained when
y → 0) and βy is a positive constant. Additionally, the human recovery rate is modeled through the functional form
γ(y) = γ0+ γ1y

y+γy
, where γ0 is the background recovery rate (achieved when y → 0), γ1 is the additional economic-

dependent recovery rate, γy is a positive (half-saturation) constant, and γ0 + γ1 is the maximum recovery rate(
lim
y→∞

γ(y) = γ0 + γ1

)
. The mosquito recruitment rate (Λv) is modeled with the function Λv(y) =

Λv0Λvy
y+Λvy

, where

Λv0 is the maximum mosquito birth rate and Λvy is a constant. Furthermore, the mosquito natural mortality rate is
modeled through the function µv(y) = µv0 + µv1y

y+µvy
, where µv0 is the background mosquito mortality rate, µv1 is

an additional (economic-dependent) mortality rate, µvy is a half-saturation constant, and lim
y→∞

µv(y) = µv0 + µv1.

A schematic representation of the coupled economic-malaria model is presented in Fig. 1, while the corre-
sponding model system is given by Eqs. (2.1)-(2.3).
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Figure 1: Schematics of the coupled economic-malaria model. The human population (Nh) is split into susceptible
(Sh), infectious (Ih), and partially immune (Rh) individuals, while the mosquito population is split into susceptible
(Sv) and infectious (Iv) individuals. Through production, capital (k) is transformed into yield (y), where a fraction
of this yield (cy) is consumed, and the remaining portion ((1−c)y) is reinvested into capital. External aid is denoted
by yE . Dotted lines represent connections between the malaria and economic models. The malaria model is linked
to the economic model through gh ∈ {f, r, σ}, n = Ṅh/Nh, while the economic model is connected to the malaria
model through gy ∈ {λvh, λhv, γh,Λv, µv}. Dash-dotted (dashed) lines indicate interactions between humans and
mosquitoes leading to mosquito (human) infection. The rates and functional forms are described in the text.

Using the schematics in Fig. 1 in conjunction with the detailed descriptions of variables and parameters in the text,
we obtain the following coupled economic-malaria framework:

Ṡh = Λh + ρhRh − [λvh(y, Iv, Nh) + µh]Sh,

İh = λvh(y, Iv, Nh)Sh − [γh(y) + µh + δh]Ih,

Ṙh = γh(y)Ih − (µh + ρh)Rh, (2.1)
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Ṡv = Λv(y)− [λhv(y, Ih, Rh, Nh) + µv(y)]Sv,

İv = λhv(y, Ih, RhNh)Sv − µv(y)Iv,

k̇ = r0

(
1− c− ξ Ih

Nh

)
y(Sh, Ih, Rh, Nh)− (σ + n)k, c+ ξ < 1,

where n = Ṅh/Nh, Ṅh = Λ− µhN − δhIh,

λvh = βv(y)pvh
Iv
Nh

, λhv = βv(y)phv

(
Ih + θRh

Nh

)
, (2.2)

y = kα
{
A[Sh + (1− ε)Ih +Rh]

Nh

}1−α
+ yE . (2.3)

All model variables (Sh, Ih, Rh, Sv, Iv, and k) are non-negative, as they correspond to human populations,
mosquito populations, or physical quantities. Prescribing initial conditions of the form (Sh(0), Ih(0), Rh(0),
Sv(0), Iv(0), k(0)) = (Sh0, Ih0, Rh0, Sv0, Iv0, k0), where Sh0 > 0, Ih0 ≥ 0, Rh0 ≥ 0, Sv0 > 0, Iv0 ≥ 0, and
k0 > 0 is necessary to fully define the model. Under these conditions, it can be easily verified that that the model
(2.1) is well-posed from a mathematical, epidemiological and economic perspective. Furthermore, the region de-
noted by Ω = {(Sh, Ih, Rh, Sv, Iv, k) ∈ R6

+ : 0 ≤ Sh, Ih, Rh ≤ Λh/µh, 0 ≤ Sv, Iv ≤ S0
v , 0 ≤ k ≤ k0 }, where

S0
v and k0 are the respective non-trivial disease-free equilibrium values of Sv and k is invariant and attracting for

the system. Consequently, any solution trajectories originating within this region remain confined to it indefinitely.

2.2. The disease-free equilibrium and the basic reproduction number of the model
Using the specific functional forms for γ, β,Λv and µv described in the text, setting the right hand sides of Eqs.
(2.1) as well as all disease states (Ih, Rh, and Iv) to zero and solving for the non-disease states, we arrive at the
disease-free equilibrium E0 = (S0

h, I
0
h, R

0
h, S

0
v , I

0
v , k

0), where

S0
h =

Λh
µh
, S0

v =
Λv(y0)

µv(y0)
, I0

h = R0
h = I0

v = 0, y0 = (k0)αA1−α + yE ,

and k0 satisfies the equation k0σ − r0 (1− c)
[
(k0)αA1−α + yE

]
= 0, which can be rewritten as

σ

r0(1− c)
k0 − (k0)αA(1−α) − yE = 0. (2.4)

It is worth noting that the k0 equilibrium equation (Eq. (2.4)) can be solved in closed form if yE = 0. Specifically,

under the condition yE = 0, two closed form solutions arise: k0 = k0
1 = 0 or k0 = k0

2 = A
(
r0(1−c)

σ

) 1
1−α .

In general, the trivial disease-free equilibrium value of k (k0
1 = 0) is unrealistic and unstable, while the positive

non-trivial equilibrium value of k (k0
2) is locally asymptotically stable. For yE > 0, the derivative of the left-hand

side of (2.4) is σ/(r0(1 − c)) − αA(1−α)/(k0)(1−α), which is negative for 0 < k0 < A(σ/(αr0(1 − c)))(1−α)

and positive for k0 > A(σ/(αr0(1 − c)))(1−α). Consequently, Eq. (2.4) has a unique positive solution (k0) when
yE > 0. This leads to the following result:

Lemma 2.1. Assume that α ∈ (0, 1). If yE > 0, Eq. (2.4) has a unique positive solution. If yE = 0, then Eq. (2.4)

has two solutions: k0
1 = 0 and k0

2 = A
(
r0(1−c)

σ

)1/(1−α)
, and hence, the system has two disease-free equilibria.

The local stability of the non-trivial disease-free equilibrium (k0 = k0
2 > 0) can be established using the Next

Generation operator approach [63, 64]. This is a powerful tool for calculating the reproduction number (R0) of
epidemiological models. Applying this approach yields the following reproduction number for the model (2.1):

R2
0 =

pvhβv(y
0)

µv(y0)
· phvβv(y

0)

δh + γ(y0) + µh(y0)

(
1 +

θγh(y0)

ρh + µh(y0)

)
S0
v

S0
h

, (2.5)
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where S0
h = Λh0

µh
, S0

v = Λv0(y0)
µv(y0)

, k0 = k0
2 is the unique positive solution of the equilibrium equation (2.4),

and y0 = A1−αkα + yE (See Section S1 of the SI for details). It can be verified that all conditions of the next
generation operator approach are satisfied if the state variable, k, representing capital is treated as a disease-free
state, irrespective of whether yE = 0 or yE > 0, provided that k0 is the positive solution to equation (2.4) (See
Section S1 of the SI for details). This leads to the following result:

Theorem 2.2. Assume that α ∈ (0, 1). If yE > 0, all conditions of the next generation approach are sat-
isfied if the state variable, k, representing capital, is treated as a disease-free state. If yE = 0, all condi-
tions of the next generation matrix approach are satisfied when the linearization is about the locally asymptot-
ically stable disease-free equilibrium; that is, the DFE with k0 = k0

2 > 0. In either case, R2
0 = pvhβv(y0)

µv(y0)
·

phvβv(y0)
δh+γ(y0)+µh(y0)

(
1 + θγh(y0)

ρh+µh(y0)

)
S0
v

S0
h

, where S0
h = Λh0

µh
, S0

v = Λv0(y0)
µv(y0)

, k0 is the unique positive solution of the

equilibrium equation −k (σ)− r0 (c− 1)
(
A1−αkα + yE

)
= 0, and y0 = A1−αkα + yE .

Proof. See Section S1 of the SI.

Remark 2.3. The value of α is often set to α = 1/2 in the standard Cobb-Douglas Production function [60].
This choice is based on empirical observations and mathematical convenience, and it implies that output is equally
sensitive to changes in labor and capital inputs. Specifically, based on empirical fitting, α = 1/2 has been found
to provide a good empirical fit for many industries and economies, where output growth appears to be roughly
equally attributable to changes in labor and capital. For mathematical simplicity, the choice of α = 1/2 simplifies
the mathematical properties of the production function, making it easier to analyze and derive results. Regarding
other values of α, the choice of α may vary in different contexts, and alternative values are explored based on the
specific characteristics of industries or economies under consideration [65, 66].

2.3. Endemic equilibria

The existence of endemic equilibria for the model system (2.1) is studied for the special case in which is α = 1
2 .

Suppose an endemic equilibrium of the model (2.1) is denoted by (S∗h, I
∗
h, R

∗
h, S

∗
v , I
∗
v , k
∗), LetN∗h = S∗h+I∗h+R∗h,

N∗v = S∗v + I∗v , y∗ =

√
k∗A(S∗

h+(1−ε)I∗h+R∗
h)

N∗
h

+ yE , β∗v = βv(y
∗), Λ∗v = Λv(y

∗), µ∗v = µv(y
∗), γ∗h = γh(y∗),

λ∗hv = β∗vphv
I∗h+θR∗

h
N∗
h

, λ∗vh = β∗vpvh
I∗v
N∗
h

. Then, at equilibrium,

S∗h =
ΛhA1A2

µhA1A2 +A3λ∗vh
, I∗h =

ΛhA2λ
∗
vh

µhA1A2 +A3λ∗vh
, R∗h =

Λhγ
∗
hλ
∗
vh

µhA1A2 +A3λ∗vh
,

N∗h =
Λh(A1A2 +A4)λ∗vh
µhA1A2 +A3λ∗vh

, S∗v =
Λ∗v

µ∗v + λ∗hv
, I∗v =

Λ∗vλ
∗
hv

µ∗v(µ
∗
v + λ∗hv)

, N∗v =
Λ∗v
µ∗v
, (2.6)

where

A1 = γ∗h + µh + δh, A2 = µh + ρh, A3 = A1A2 − γ∗hρh = (δh + µh)(µh + ρh) + γ∗hµh, A4 = A2 + γ∗h. (2.7)

By substituting the equilibrium values of Ih, Rh, and Nh into the expression for λhv, and similarly substituting the
equilibrium values of Iv andNh into the expression for λvh, and then proceeding with the established methodology
for variable elimination, we arrive at the ensuing equation for λ∗vh:

(B2λ
∗2
vh +B1λ

∗
vh +B0)λ∗vh = 0, (2.8)

where

B2 = Λhµ
∗
vA4 [β∗vphv(A2 + θγ∗h) + µ∗vA4] , (2.9)

B1 = Λhµ
∗
vA1A2 [β∗vphv(A2 + θγ∗h) + 2µ∗vA4] (1−M), (2.10)
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B0 = Λh(µ∗vA1A2)2(1−R2
0), (2.11)

where

R2
0 =

(β∗v)2pvhphvΛ
∗
vµh(A2 + θγ∗h)

Λh(µ∗v)
2A1A2

, M =
(β∗v)2pvhphvΛ

∗
v(A2 + θγ∗h)A3

Λhµ∗vA1A2

[
β∗vphv(A2 + θγ∗h) + 2µ∗vA4

] . (2.12)

For any given y∗, the endemic equilibrium can be found by solving Eq. (2.8), which gives λ∗vh = 0 and λ∗vh =
−B1±

√
B2

1−4B2B0

2B2
. The case in which λ∗vh = 0 corresponds to the disease-free equilibrium. The possible number

of positive roots and hence endemic equilibria (0, 1, or 2) determined by the signs of M and R2
0 are summarized in

Table S2 of the SI. Comparing the expressions of R2
0 and M , the inequality M > R2

0 is true if and only if

[(δh + µh)(µh + ρh) + γ∗hµh)]µ∗v > β∗vphv(µh + ρh + θγ∗h) + 2µ∗v(µh + ρh + γ∗h).

Specifically, this inequality holds when the disease-induced mortality rate (δh) exceeds some threshold. This
observation aligns with findings from other investigations, as exemplified by studies in [49, 50], where a back-
ward bifurcation emerges with an increase in the disease-induced death rate beyond a certain threshold. It should
be underscored that while the inequality may be satisfied through variations in other parameters, the choice of
δh is particularly motivated by its role as a contributor to backward bifurcations [49, 50, 67]. Setting D∗ =
A(S∗h + (1− ε)I∗h +R∗h)/N∗h , r∗ = r0(1− c− ξ I∗h/N∗h), and n∗ = (Λh − µhN∗h − δhI∗h)/N∗h , we have

y∗ = yE + r∗D∗/(2(σ + n∗)) +
1

2

√
(r∗D∗/(σ + n∗))2 + 4r∗D∗yE/(σ + n∗). (2.13)

Therefore, any equilibrium value of y (y∗) satisfies Eq. (2.13). The set of y∗ values, and consequently all endemic
equilibria of the model (2.1), are governed by solutions to Eq.(2.13). Since Eq. (2.13) can not be solved explicitly to
obtain closed form solutions, the stability of endemic equilibria to the model (2.1) will be investigated numerically.

3. Numerical results

In this section, the model (2.1) is simulated to gain insights into the interplay between malaria dynamics and
economic growth, assess the impact of some critical model parameters (including parameters through which some
control measures can be evaluated) on key response functions such as the basic reproduction number, the infectious
human population, and the per capita capital, as well as evaluating the possibility of long transient events, with a
specific focus on long transients, on both malaria dynamics and economic growth. Unless explicitly specified, the
simulations are carried out using the baseline parameter values outlined in Table S1 in Section S2 of the SI.

3.1. Long term dynamics of the model system

3.1.1. Threshold dynamics and backward bifurcation
The model system (2.1) is simulated using the baseline parameter values tabulated in Table S1 to illustrate the fact
that the basic reproduction number (R0) is indeed a threshold value. Results of the simulations presented in Fig.
2 depict a locally asymptotically stable disease-free equilibrium (DFE) when βv0 = 0.2345 and R0 = 0.9977
(dotted curves in Fig. 2 (a)-(c)) and a stable endemic equilibrium (EE) when βv0 = 0.24 and R0 = 1.0211 (solid
curves in Fig. 2 (a)-(c)). This confirms the fact that R0 is a threshold value. Thus, the disease free equilibrium is
asymptotically stable if R0 < 1, while the disease approaches a positive endemic equilibrium when R0 > 1.
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Figure 2: Simulations of the model (2.1) to confirm the fact that the basic reproduction number (R0) is a threshold value
((a)-(c)) and the existence of a backward bifurcation when R0 < 1 ((d)-(f)). When βv0 = 0.2345, the corresponding value
of the basic reproduction number is R0 = 0.9977 < 1 and the disease-free equilibrium (DFE) of the model is locally
asymptotically stable (dotted curves in (a)-(c)). When βv0 = 0.24, the corresponding value of the basic reproduction number
is R0 = 1.0211 > 1 and the endemic equilibrium (EE) of the model is locally asymptotically stable (solid curves in (a)-(c)).
The initial condition used for the simulations is (Sh(0), Ih(0), Rh(0), Sv(0), Iv(0), k(0)) = (1499, 1, 0, 10000, 0, 1). For (d)-
(f), when R0 < 1, there is a parameter regime within which trajectories originating within the basin of attraction of the DFE,
e.g., (Sh(0), Ih(0), Rh(0), Sv(0), Iv(0), k(0)) = (1490, 1, 0, 10000, 0, 1), converge to the DFE (dotted curves in (d)-(f)),
while trajectories originating within the basin of attraction of the stable EE, e.g., (Sh(0), Ih(0), Rh(0), Sv(0), Iv(0), k(0)) =
(490, 1, 0, 5000, 2000, 1), converge to the stable EE (solid curves in (d)-(f)). That is, a stable DFE and a stable EE co-exist
for a parameter regime in which R0 < 1.

The values of the mosquito biting rate and human disease-induced death rates are 0.22 and 4.5068× 10−4,
respectively, and the corresponding value of the reproduction number is 0.9278. The values of the other

parameters are presented in Table S1.

Additionally, the model (2.1) is simulated using the baseline parameter values in Table S1, with a background
mosquito biting rate βv0 = 0.22 and human disease-induced death rate δh = 4.5068×10−4 > 4.9813×10−5 = µh
(the human natural death rate) to demonstrate the possibility of a backward (sub-critical) bifurcation. The results
of the simulations depicted in Fig. 2 suggest the potential for the model (2.1) to exhibit a backward bifurcation,
wherein a stable disease-free equilibrium (dotted curves in Fig. 2 (d)-(f)) coexists with a stable endemic equilibrium
(solid curves in Fig. 2 (d)-(f)) within the same parameter regime for which the reproduction number is less than
one. The occurrence of this phenomenon in the model (2.1) hinges on a substantial disparity between the disease-
induced mortality rate and the natural mortality rate. While formal proof is not provided here, the Center manifold
theory offers a rigorous approach for establishing the existence of a backward bifurcation [68]. It should be noted
that the existence of a backward bifurcation signifies that, although the requirement that the reproduction number
be less than one to contain a disease is necessary, it is not sufficient for achieving disease elimination (defined as a
significant reduction in malaria cases to minimal or near-zero levels). In models with backward bifurcations, mere
reduction of the reproduction number slightly below one, as is the case in models without backward bifurcations,
does not guarantee disease elimination. Instead, in models with backward bifurcations, successful disease elimina-
tion necessitates intensive and sustained control and mitigation efforts until the reproduction number falls below a
critical threshold value. That is, disease elimination occurs within the region where the disease-free equilibrium be-
comes globally asymptotically stable. In this backward bifurcation (i.e., bistability) scenario, the economic output
associated with the endemic equilibrium is notably low, whereas the output linked to the disease-free equilibrium
is relatively high. This demonstrates the negative impact of the disease on economic output, as well as the positive
impact of a strong economy on disease control and mitigation.
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3.1.2. The impact of some key parameters on the long term dynamics of the model
The model (2.1) is simulated using the baseline parameter values presented in Table S1 to assess the impact of
technological progress or labor efficiency (A) on the long term dynamics of the infectious human population (Ih),
the infectious mosquito population (Iv), and the per capita yield (y). Results of the simulations show that increas-
ing labor efficiency from its baseline value of 1 to 10 will lead to a significant reduction in the basic reproduction
number from R0 ≈ 4.04 to R0 ≈ 0.97 < 1 and a significant increase in the equilibrium value of per capita yield
(comparing the blue and green curves in Fig. 3 (a), (f), and (k)). However, reducing labor efficiency from its base-
line value by 50% will lead to an ≈ 6% increase in the endemic equilibrium value of infectious human population
(comparing the blue and red curves in Fig. 3 (a)), an ≈ 13% increase in the endemic equilibrium value of the
infectious mosquito population (comparing the blue and red curves in Fig. 3 (f)), and an ≈ 22% decrease in the
equilibrium value of the per capita yield (comparing the blue and red curves in Fig. 3 (k)). For this scenario, there
is a 22% increase in the basic reproduction number and the disease is endemic since (R0 > 1). Furthermore, in-
creasing labor efficiency from its baseline value by 50% will lead to an ≈ 5% decrease in the endemic equilibrium
value of infectious human population (comparing the blue and gold curves in Fig. 3 (a)), an ≈ 11% decrease in
the endemic equilibrium value of the infectious mosquito population (comparing the blue and gold curves in Fig. 3
(f)), and an ≈ 21% increase in the equilibrium value of the per capita yield (comparing the blue and red curves in
Fig. 3 (k)). For this scenario, there is a 8% reduction in the basic reproduction number.

Also, the model (2.1) is simulated to assess the impact of external aid (yE) on the long term dynamics of the
system. The results obtained and illustrated in Fig. 3 (b), (g), and (l) show that for the baseline parameter values
in Table S1, the reproduction number is R0 ≈ 4.04 and the corresponding dynamics are illustrated by the blue
curves in Fig. 3. Reducing external aid from its baseline value of 1.0 by 50% leads to an ≈ 23% increase in
the reproduction number, an 11% increase in the endemic equilibrium value of the infectious human population,
an ≈ 22% increase in the endemic equilibrium value of the infectious mosquito population, and an ≈ 36% re-
duction in the equilibrium value of per capita yield (comparing the blue and green curves in Fig. 3 (b), (g), and
(l)). However, increasing external aid by 50% will trigger an ≈ 15% decrease in the reproduction number, an 8%
decrease in the endemic equilibrium value of the infectious human population, an ≈ 16% decrease in the endemic
equilibrium value of the infectious mosquito population, and an ≈ 33% increase in the equilibrium value of per
capita yield (comparing the blue and gold curves in Fig. 3 (b), (g), and (l)). A significant increase in external aid
can result in disease containment. Specifically, increasing external aid from its baseline value to 1 to 10 will lead
to a reproduction number of R0 ≈ 0.89, i.e. an ≈ 78% reduction in the baseline value of the reproduction number
(comparing the blue and green curves in Fig. 3 (b), (g), and (l)).

Furthermore, the model (2.1) is simulated using the baseline parameter values presented in Table S1 to assess
the impact of the portion of yield consumed (c) on the long term dynamics of the system. The results obtained
and depicted in Fig. 3 (c), (h), and (m) show that for the baseline value of c, the model relaxes at an endemic
equilibrium (blue curves in Fig. 3 (c), (h), and (m)). Increasing the baseline portion of the yield consumed by 75%
will result in an ≈ 22% increase in the basic reproduction number, an ≈ 10% (≈ 22%) increase in the equilibrium
infectious human (mosquito) population, and a 35% reduction in the per capita yield (comparing the blue and red
curves in Fig. 3 (c), (h), and (m)). However, a 75% reduction in the baseline portion of the yield consumed will lead
to an ≈ 14% reduction in the basic reproduction number an ≈ 7% (≈ 14%) reduction in the equilibrium infectious
human (mosquito) population, and an ≈ 29% increase in the per capita yield (comparing the blue and gold curves
in Fig. 3 (c), (h), and (m)). Additional reductions in the proportion of the yield consumed will result in further
reductions in the reproduction number, as well as the endemic infectious human and mosquito populations. How-
ever, it should be noted that this will not lead to disease containment, even when none of the yield is consumed. In
particular, if none of the yield is consumed (i.e., if c = 0.0), an ≈ 18% reduction in the basic reproduction number,
an ≈ 9% (≈ 19%) increase in the equilibrium infectious human (mosquito) population, and an ≈ 39% reduction
in the per capita yield (comparing the blue and green curves in Fig. 3 (c), (h), and (m)).

Additional simulations of the model (2.1) are carried out using the baseline parameter values presented in Table
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S1 to assess the impact of the background investment rate in capital (r0) on the long term dynamics of the system.
The results obtained and depicted in Fig. 3 (d), (i), and (n) show that halving the baseline background investment
rate in capital will trigger an ≈ 22% increase in the basic reproduction number, an ≈ 6% (≈ 13%) increase in the
equilibrium infectious human (mosquito) population, and a 22% reduction in the per capita yield (comparing the
blue and red curves in Fig. 3 (d), (i), and (n)), while significant increases in the baseline background investment
rate in capital will generate significant reductions in the infectious human and mosquito equilibria and significant
increases in the per capita yield. Specifically, increasing the baseline background investment rate in capital ten-fold
will lead to a reproduction number that is less than unity and the system will converge to the disease-free equilib-
rium (comparing the blue and green curves in Fig. 3 (d), (i), and (n)). In summary, notable increases in the baseline
background investment rate in capital result in significant reductions in the infectious human and mosquito equilib-
ria. In practical terms, this implies that higher investments in economic capital, including improved infrastructure,
drainage systems, sanitation, healthcare facilities, or economic development projects, contribute to reduced dis-
ease transmission levels. For example, improved economic conditions may enable individuals and communities to
implement effective mosquito control and mitigation measures, invest in healthcare infrastructure, and implement
public health interventions, leading to reduced disease prevalence and transmission.

Fig. 3 (e), (j), and (o) depicts simulations of the model (2.1) using the baseline parameter values given in Table S1
to assess the impact of the human background recovery rate in from infection (γ0) on the long term dynamics of the
system. They indicate that reducing the baseline value of the human background recovery rate in from infection by
half will lead to an≈ 5% increase in the basic reproduction number, an≈ 6% (≈ 4%) increase in infectious human
(mosquito) endemic equilibrium, an (≈ 3%) reduction in per capita yield (comparing the blue and red curves in
Fig. 3 (e), (j), and (o)). On the other hand, increasing the human background recovery rate in from infection will
result in decreases in basic reproduction number and the equilibrium infectious human and mosquito populations.
For example, increasing the baseline value of γ0 to 0.0714 (i.e., setting the average duration of infection to 14 days)
will result in an ≈ 37% reduction in the basic reproduction number, an ≈ 59% (≈ 38%) reduction in the infectious
human (mosquito) endemic equilibrium, and an ≈ 18% increase in per capita yield (comparing the blue and red
curves in Fig. 3 (e), (j), and (o)).

More simulations were carried out to assess the impacts of the malaria-related medical costs parameter (ξ) and
the adjustment factor for decreased productivity associated with clinical malaria (ε) on the long term dynamics of
the model (2.1). The results obtained and presented in Fig. S1 of the SI show that more expenditure on malaria
will lead to reduced per capita yield and increased malaria prevalence, while reduced spending on malaria will lead
to increased per capita yield and reduced malaria prevalence. In particular, a 50% increase in the baseline value
of ξ will generate an ≈ 7.1% reduction in per capita yield and an ≈ 1.9% (≈ 4.1%) increase in the infectious
human (mosquito) equilibrium (comparing the blue and red curves in Fig. S1 (a)-(c)), while reducing the base-
line spending on malaria by half will lead to an ≈ 6.5% increase in per capita yield and an ≈ 1.7% (≈ 3.6%)
reduction in the infectious human (mosquito) equilibrium (comparing the blue and gold curves in Fig. S1 (a)-(c)).
More increases in per capita yield (≈ 12.5%) and more reductions in malaria prevalence (≈ 3.6% for humans and
≈ 6.6% for mosquitoes) are achieved if no portion of the yield is spent on malaria-related illness (comparing the
blue and green curves in Fig. S1 (a)-(c)). Similarly, a higher decrease in economic productivity caused by malaria
will lead to a decrease in per capita yield and an increase in malaria prevalence, whereas a lower decrease in eco-
nomic productivity due to malaria will result in an increase in per capita yield and a decrease in malaria prevalence.
Specifically, if no clinically sick human contributes to productivity (i.e., if ε = 1), an ≈ 9.9% reduction in per
capita yield and an ≈ 2.7% (≈ 5.6%) increase in the infectious human (mosquito) equilibrium is recorded (com-
paring the blue and red curves in Fig. S1 (d)-(f)), while if everybody including clinically sick humans contribute
to productivity (i.e., if ε = 0) an ≈ 8.9% increase in per capita yield and an ≈ 2.3% (≈ 4.7%) reduction in the
infectious human (mosquito) equilibrium is recorded (comparing the blue and green curves in Fig. S1 (d)-(f)).
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Figure 3: Simulations of the model (2.1) depicting the long term dynamics of the (a)-(e): infectious human population (Ih),
(f)-(j): infectious mosquito population (Iv), and (k)-(o): per capita yield (y) for different values of technological progress or
labor efficiencies (A: (a), (f), and (k)), external aid (yE : (b), (g), and (l)), proportion of yield consumed (c: (c), (h), and (m)),
background investment rate (r0: (d), (i), and (n)), and background recovery rate (γ0: (e), (j), and (o)). The initial condition
used for the simulations is (Sh(0), Ih(0), Rh(0), Sv(0), Iv(0), k(0)) = (999, 1, 0, 10000, 0, 1), while the values of the other
parameters are presented in Table S1.

3.2. Assessing the impact of key parameters on the basic reproduction number

In this section, heat maps are generated to assess the influence of critical parameters of the model (2.1) on disease
control, quantified by the basic reproduction number (R0) using the baseline parameter values from Table S1 (un-
less otherwise specified). The outcomes are illustrated in Fig. 4.

Figure 4 (a) depicts a heat map of the basic reproduction number (R0) as a function of the fraction of the yield
that is consumed (c) and external aid (yE). The heat map indicates that achieving a reproduction number that is
below one (which is required to control the disease) is intricately linked to both the level of external aid and the
proportion of the yield consumed. Specifically, if both consumption and external aid are maintained at their base-
line values, it becomes unfeasible to reduce the reproduction number below one. In contrast, if none of the yield
is consumed, achieving a reproduction number that is below one necessitates less external assistance compared to
when a portion of the yield is consumed. In particular, upholding the consumed portion of the yield at its baseline
value requires an extra 15% augmentation in the external aid value, linked to zero consumed yield, to attain a re-
production number reduction below one. Moreover, elevating the baseline fraction of the yield consumed by 50%
demands an additional 24% increase in the external aid value, associated with zero consumed yield, to achieve
a reduction in the reproduction number below one. In summary, a higher consumption of yield complicates the
task of reducing the reproduction number below one. When consumption is exceptionally high and external aid
is minimal, achieving R0 < 1 becomes unattainable. These findings underscore the intricate interplay between
external aid, yield consumption, and their collective impact on the reproduction number (a crucial determinant in
infectious disease dynamics), providing valuable insights into the dynamics of disease transmission and prevention.

Figure 4 (b) presents a heat map illustrating the relationship between the basic reproduction number (R0), techno-
logical progress (A), and external aid (yE). This plot reveals that when reducing the basic reproduction number
below one is impossible if both technological progress and external aid are maintained at their baseline values.
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However, if technological progress is held at its baseline value, a 8.8-fold increase in the baseline value of external
is required to reduce the basic reproduction number below one, whereas if external aid is held at its baseline value,
a 9-fold increase in technological progress is required to reduce the basic reproduction number below one. On the
other hand, a four-fold increase in baseline value of external aid requires a five-fold increase in baseline value of
technological progress to reduce the reproduction number below one. Hence, if external aid is high, less external
aid is needed to bring the basic reproduction number below one. Conversely, with higher external aid, less techno-
logical progress is required to achieve this goal. In summary, higher technological progress reduces the need for
external aid in controlling the disease; similarly, increased aid lessens the required technological progress.

Additionally, a heat map of the basic reproduction number as a function of technology and the fraction of the
yield that is consumed (Figure 4 (c)) is used assess the combined impact of these parameters on disease control.
The results obtained show that reducing the reproduction number below one is unachievable if both parameters are
held at their baseline values stipulated in Table S1. However, if no portion of the yield is consumed, a threshold
level of technology (which is approximately 5.5 times the baseline value of technological progress) is identified,
allowing the reproduction number to fall below one. If the portion of the yield consumed is maintained at its base-
line value, a nine-fold increase in the baseline value of technological progress is required to achieve a reduction
in the reproduction number below one. Alternatively, if the baseline value of the consumed yield is reduced by
50%, a seven-fold increase in the baseline value of technological progress is needed to attain the same outcome.
To summarize, reducing the reproduction number below one is challenging at baseline values, but achievable with
specific adjustments in technology and yield consumption.

Figure 4 (d) shows a heat map of the basic reproduction number as a function of external aid and the human
background recovery rate from infection. The graphical representation illustrates that achieving disease contain-
ment is unattainable when both external aid and the background recovery rate are kept at their baseline values, as
outlined in Table S1. But containing the disease might be feasible if the background recovery rate is maintained at
its baseline value but external aid is increased. In summary, disease containment is unattainable when maintaining
both external aid and the background recovery rate at baseline values, but there is a potential for containment by
increasing external aid while keeping the background recovery rate constant.

Figures 4 (e)-(h) illustrate heat maps representing the basic reproduction number (R0) of model (2.1). These
plots demonstrate its relationship with the background biting rate of mosquitoes (βv0) and external aid (Fig. 4 (e)),
technological progress (Fig. 4 (f)), the fraction of the yield consumed (Fig. 4 (g)), and the background recovery
rate (Fig. 4 (h)). The findings highlight the challenges associated with malaria control in regions characterized
by high mosquito biting rates, particularly in the presence of limited external aid, low technological advancement,
inadequate treatment, or high consumption of the yield. Specifically, if the background biting rate of mosquitoes is
held at its baseline value in Table S1, high external aid or technology is required to reduce the reproduction number
below one, while it becomes impractical to reduce the reproduction number below one and thus contain the disease
effectively, even when none of the yield is consumed or for a very high background recovery rate.

It should be noted that reducing the mosquito biting rate, along with increasing external aid, technology, or the
background recovery rate, has a positive impact on lowering the reproduction number. In the absence of external
aid, achieving a basic reproduction number below one requires a reduction of approximately 85% in the baseline
background biting rate of mosquitoes, with smaller reductions needed in the presence of external aid (Fig. 4 (e)).
Specifically, with baseline external aid, a 75% reduction is necessary, and a fourfold increase in external aid requires
only a 47% reduction in the baseline mosquito biting rate for the same outcome (Fig. 4 (e)). Additionally, increas-
ing external aid fourfold leads to a basic reproduction number below one, even with the baseline mosquito biting
rate (Fig. 4 (e)). Similar trends are observed for technological progress (Fig. 4 (f)). Furthermore, simultaneously
reducing both the mosquito biting rate and the fraction of the yield consumed accelerates disease control. Specifi-
cally, maintaining the consumed portion of the yield at its baseline value demands an 85% reduction in the baseline
mosquito biting rate to achieve a basic reproduction number below one. If the consumed portion is increased by
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75%, an 88% reduction in the mosquito biting rate is required (Fig. 4 (f)). If none of the yield is consumed, an
81% reduction in the mosquito biting rate is necessary (Fig. 4 (f)). Figure 4 (g) demonstrates that holding the
background recovery rate of humans at its baseline value requires a 76% reduction in the mosquito biting rate for
a basic reproduction number below one. Increasing the baseline human recovery rate to ≈ 0.0714 (i.e., recovery
in two weeks) necessitates a 59% reduction in the mosquito biting rate to achieve the same outcome. In conclu-
sion, controlling malaria in areas with high mosquito biting rates is challenging, especially when facing limited
external aid, low technology, inadequate treatment, or high yield consumption. Reducing mosquito biting plays
a crucial role in disease control, especially when coupled with external aid and advanced technology. It should
be mentioned that, reducing mosquito biting can be achieved through vector control measures like Long-lasting
insecticide-treated nets, while increased recovery rates can result from enhanced diagnosis and treatment.
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Figure 4: Heatmaps of the basic reproduction number (R0) of the model (2.1) as a function of (a) the fraction of the yield
consumed (c) and external aid (yE), (b) technological progress or labor efficiency (A) and external aid (yE), (c) technological
progress and the fraction of the yield consumed, (d) external aid and background recovery rate (γ0), (e) background mosquito
biting rate (βv0) and external aid, (f) background mosquito biting rate and technological progress, (g) background mosquito
biting rate and the fraction of the yield consumed, and (h) background mosquito biting rate and the background recovery rate.
With the exception of these varied parameters, the other parameters are held at their baseline values given in Table S1.

3.3. External aid distribution strategy

The model (2.1) is simulated to assess the impact of various external aid distribution strategies on the infectious
human and mosquito populations, as well as on per capita yield. The strategies involve the distribution of a fixed
amount of external aid over three-year periods. Strategy 1: Full allocation exclusively in the first year, with no
external aid in the subsequent two years (Fig. 5 (a)-(c)). Strategy 2: Equitable annual distributions over the first
two years with no allocation in the third year (Fig. 5 (d)-(f)). Strategy 3: Equal annual allocations across the three
years (Fig. 5 (g)-(i)). Each of the strategies is repeated for three years over a 15-year period. These strategies are
assessed in conjunction with a scenario where no external aid is allocated (magenta curves in Fig. 5).

Strategy 1 compared with the no external aid scenario results in a 35% (42%) reduction in the total infectious
human (mosquito) population and a 470% increase in the total per capita yield over the 15-year period (comparing
the areas under the magenta and red curves in Fig. 5 (a)-(c)). Similarly, for Strategy 2, a 40% (48%) reduction in
the total infectious human (mosquito) population and a 462% increase in the total per capita yield is recorded over
the three-year period (comparing the areas under magenta and green curves in Fig. 5 (d)-(f)). For Strategy 3, a 46%
(50%) reduction in the total infectious human (mosquito) population and a 445% increase in the total per capita
yield is observed over the three-year period (comparing the areas under magenta and blue curves in Fig. 5 (g)-(i)).
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Comparing the results of the various strategies, implementing Strategy 2 instead of Strategy 1 results in an ad-
ditional 5% (6%) reduction in the total infectious human (mosquito) population and a 8% reduction in the total per
capita yield over the 15-year period (comparing the areas under red and green curves in Fig. 5 (a)-(c) and Fig. 5
(d)-(f)). Implementing Strategy 3 instead of 1 results in an additional 11% (8%) reduction in the total infectious
human (mosquito) population and an additional 25% decrease in the total per capita yield over the three-year period
(comparing the areas under red and green curves in Fig. 5 (a)-(c) and Fig. 5 (g)-(i)), while implementing Strategy
3 instead of 2 results in an additional 6% (2%) reduction in the infectious human (mosquito) population and a 17%
decrease in the total per capita yield over the three-year period (comparing the areas under gold and green curves
in Fig. 5 (d)-(f) and Fig. 5 (g)-(i)). In summary, although each of the three strategies results in a decreased total
number of cases and an increased per capita yield, Strategy 3 involving equitable annual allocation of external aid
leads to the lowest total number of disease cases and the lowest total per capita yield over the 15-year period.
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Figure 5: Simulations of the model (2.1) to assess various external aid (yE) allocation strategies. (a)-(c): All external aid
is distributed in the first year (with no external aid in Years 2 to 3). (d)-(f): All external aid is distributed evenly on an
annual basis over the first two years (with no external aid in Year 3). (d)-(f): All external aid is distributed evenly on an
annual basis over three years. The initial condition used for the simulations is (Sh(0), Ih(0), Rh(0), Sv(0), Iv(0), k(0)) =
(999, 1, 0, 10000, 0, 1), while the values of the other parameters are outlined in Table S1.

Additional simulations were carried out to assess the impact of diverse external aid allocation strategies, considering
different time frames and durations, on the total infectious human population over a 15-year period, with each
strategy repeated every three years. Given the overlap between previous larger distribution time points and some of
the smaller distribution time points in subsequent strategies, we avoid repeating them, except for the full equitable
distribution points in this discussion. The distribution scenarios included: 1) Yearly distributions–all external aid
distributed during the first year with no external aid during the second and third years (blue dots in Fig. 6), two
equal installments during the first two years and no external aid during the third year (blue squares in Fig. 6), and
three equal installments (blue diamonds in Fig. 6). 2) Bi-annual distributions–bi-annually but only during the first
six months (magenta dots in Fig. 6), bi-annually but only during the first 18 months or 1.5 years (magenta squares
in Fig. 6), and six equal installments (blue diamonds in Fig. 6). 3) Quarterly distributions–quarterly but only
during the first quarter (green dots in Fig. 6), quarterly but only during the first 3 quarters (green pentagrams in Fig.
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6), quarterly but only during the first 5 quarters (green hexagrams in Fig. 6), quarterly but only during the first 7
quarters (green squares), quarterly but only during the first 9 quarters (green triangles in Fig. 6), quarterly but only
during the first 11 quarters (green diamonds in Fig. 6), and twelve equal quarterly installments (blue diamonds in
Fig. 6). 4) Monthly distributions–all external aid distributed only during the first month (orange dot in Fig. 6 (d)),
first two months, first three months, etc., and upto 36 equal monthly installments (blue diamond in Fig. 6 (d)).
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Figure 6: Simulations of the model (2.1) to assess various external aid (yE) strategies. The initial condition used for the
simulations is (Sh(0),Ih(0),Rh(0),Sv(0),Iv(0),k(0)) = ( 999,1,0,10000,0, 1), while the values of the other parameters are
outlined in Table S1.

The findings reveal that an effective strategy for optimized disease control entails distributing available aid evenly.
In particular, allocating all external aid within the initial six months results in a 7% higher total infectious human
population compared to distributing all external aid solely in the first year (comparing the magenta dot in Fig. 6 (b)
with the blue dot in Fig. 6 (a)). Similarly, allocating all external aid within the first quarter leads to a 14% higher
total infectious human population compared to distributing all external aid solely in the first year (comparing the
green dot in Fig. 6 (c) with the blue dot in Fig. 6 (a)). Additionally, allocating all external aid within the first
month results in a 20% higher total infectious human population compared to distributing all external aid solely
in the first year (comparing the orange dots in Fig. 6 (d) with the blue dot in Fig. 6 (a)). Nonetheless, if all
external aid is distributed in equal annual installments for two years only, an 8% reduction in the total infectious
human population compared to allocating all external aid solely during the first year will be recorded (comparing
the blue dot and square in Fig. 6 (a)), while if all external aid is distributed in four six-month installments only,
a 16% reduction in the total infectious human population compared to allocating all external aid solely during the
initial six months will be recorded (comparing the magenta dot and blue square in Fig. 6 (b)). Similarly, if all
external aid is distributed in eight quarterly installments, a 23% reduction in the total infectious human population
compared to allocating all external aid during the first quarter will be recorded (comparing the green dot and blue
square in Fig. 6 (c)). Furthermore, distributing all external aid in 24 monthly installments will result in a 29%
reduction in the total infectious human population compared to distributing all external aid solely during the first
month (comparing the orange dot and blue square in Fig. 6 (d)). Similar reductions are observed as the distribution
frequency increases. Precisely, distributing all aid in equal annual installments leads to an 11% reduction in the total
number of infectious humans compared to distributing all aid during the first year only (comparing the blue dot and
diamond in Fig. 6 (a)). Distributing all aid equally every six months results in a 17% reduction in the total number
of infectious humans compared to distributing all aid during the first six months only (comparing the magenta dot
and blue diamond in Fig. 6 (b)). Distributing all aid in equal quarterly installments leads to a 22% reduction in
the total number of infectious humans compared to distributing all aid during the first quarter only (comparing
the green dot and blue diamond in Fig. 6 (c)), while distributing all aid in equal monthly installments results in a
26% reduction in the total number of infectious humans compared to distributing all aid during the first month only
(comparing the orange dot and blue diamond in Fig. 6 (d)). In summary, allocating all external aid within six, three,
or one month leads to a higher total number of infectious cases compared to distributing external aid within one
year, while equitable distribution of external aid leads to the lowest total number of infectious humans. The most
substantial reduction in total infectious cases is observed with the equal monthly distribution strategy compared to
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equal annual, bi-annual, and quarterly distribution strategies.

3.4. Long transient dynamics for the coupled system

In mathematics and ecology, “long transients” refer to extended periods during which a dynamic system, such as
a mathematical model or an ecological population, takes a substantial amount of time to reach a stable or equilib-
rium state. These transients occur due to complex interactions, feedback loops, or time delays within the system,
preventing it from quickly reaching a steady state. Long transients are often observed in ecological models where
populations respond to changing environmental conditions or perturbations, and in mathematical systems exhibit-
ing complex non-linear behavior before eventually converging to an attractor or a stable solution. Understanding
long transients is essential for predicting the behavior of dynamic systems over time and for studying the factors
that influence their transitions to stability or new dynamic regimes. In epidemiology, long transients can be rele-
vant when studying the dynamics of infectious diseases within populations. They can help researchers understand
how disease prevalence varies over extended periods before stabilizing or evolving into new patterns. This un-
derstanding is essential for effective disease control and intervention planning. In particular, in infectious disease
modeling, long transients can signal the existence of reservoirs of infection. These are subpopulations or environ-
mental factors that maintain the disease even during periods when it seems to be under control. Identifying and
addressing such reservoirs is vital for preventing disease resurgence. Figure. 7 demonstrates the occurrence of this
phenomenon in our model system when the initial conditions are near a saddle point. The system converges to the
disease-free equilibrium (dotted curves in Fig. 7) and to the endemic equilibrium (solid curves in Fig. 7), with only
a slight change in the initial susceptible human population. These results are attainable for the same parameter
regime for which a backward bifurcation occurs. That is, for a high value of the disease-induced mortality rate
(δh) and a low value of the background mosquito biting rate (βv0). These long transient dynamics, characterized
by the system staying near the saddle point for a prolonged time before transitioning to the endemic equilibrium
is sensitive to the initial condition. That is, the region for the model (2.1) exhibits long transient dynamics is very
small, suggesting that this phenomenon is rare for the malaria model. It should be emphasized that interpreting
the system’s prolonged stay at the saddle point as a stable equilibrium can be misleading, potentially masking the
impending transition to a high-level infection state.
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Figure 7: Simulations of the model (2.1) illustrating the long transients phenomena. The system converges to a
disease-free equilibrium (DFE) denoted by dotted curves for the initial conditions: (Sh(0), Ih(0), Rh(0), Sv(0), Iv(0))
= (1072.96, 36.08, 64.45, 6202.61, 213.17, 3.27) and to an endemic equilibrium (EE) denoted by solid curves for the ini-
tial conditions: (Sh(0),Ih(0),Rh(0),Sv(0),Iv(0)) = (1072.94, 36.08, 64.45, 6202.61, 213.17, 3.27). For this simulation,
βv0 = 0.22, δh = 4.5068 × 10−4, and the other parameters are maintained at their baseline values stipulated in Table
S1. The reproduction number for this parameter regime is 0.936. It should be noted that the system stays near the saddle point
for a prolonged time ((a)-(c)) before transitioning to the endemic equilibrium ((d)-(f)).
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4. Discussion, limitations, and conclusion

Malaria imposes significant annual costs encompassing both direct prevention and care expenses and indirect costs
such as lost productivity. Economic considerations involve prioritizing malaria control, choosing tailored preven-
tion and treatment strategies, evaluating options, and optimizing resource allocation to ensure efficiency, highlight-
ing the crucial role of economics in decision-making. In economic growth studies, the impact of improved labor
quality on income and economic productivity has been explored extensively, with a focus on education rather than
health. Understanding the relationship between health investments and increased labor productivity, particularly
in agricultural-based developing countries is crucial. Evidence is needed to demonstrate how reducing sickness-
related work absences can enhance overall efficiency and productivity. Conversely, understanding how the econ-
omy improves health outcomes is essential. Using malaria as a prototype disease, a framework integrating malaria
dynamics, socio-economic factors, and transient events is formulated and analyzed. Unlike conventional malaria
models, this framework integrates the malaria model with an economic growth model. The linkage occurs through
malaria-related medical costs affecting the investment term, human population growth rate influencing the capital
depreciation term, and reduced productivity due to malaria in the production function. Conversely, the economic
model is connected to the malaria model through the mosquito biting rate in the forces of infection, human recov-
ery rate from infection, mosquito recruitment term, and the mosquito mortality rate. This framework is used to
analyze the synergistic feedback between malaria dynamics and economic growth, while also assessing the impact
of different external aid allocation strategies and transient events on both malaria dynamics and economic growth.

Analysis of the integrated framework shows that the reproduction number is a function of both epidemiological
and economic parameters implying that the framework can be used to assess the impact of socio-economic factors
and disease parameters on disease control. Similar to many traditional malaria models, when the reproduction num-
ber is below unity, there exists a parameter range where disease containment is possible and another range where
a backward bifurcation occurs. As in [46, 49, 50, 52], the backward bifurcation occurs when the human disease-
induced mortality rate is significantly higher than the human natural mortality rate. This backward bifurcation
phenomenon implies that achieving disease elimination requires intensified and sustained control measures until
the reproduction number drops below a critical threshold and hence a push to lower transmission levels. In partic-
ular, a backward bifurcation and hence bistability in disease dynamics has profound implications for intervention
outcomes and the emergence or re-emergence of diseases. Minor parameter changes can trigger significant fluc-
tuations in incidence. Elimination states may be robust, but relaxing control efforts can trigger sudden transitions,
and disease-free regions may experience abrupt shifts based on local conditions determining transmission intensity.
In this backward bifurcation (bistability) scenario, the economic output linked to the disease-free equilibrium is
comparatively high, while the economic output associated with the stable endemic equilibrium is significantly low.
This underscores the detrimental effect of the disease on economic output.

Further analysis of the framework reveals that in the case where the elasticity coefficient is 0.5, the framework
exhibits a single interior endemic equilibrium when the reproduction number exceeds one in the presence of ex-
ternal aid. However, in the absence of external aid, multiple interior endemic equilibria are possible, which is
consistent with simulation results in [54, 55, 69, 70]. For this case in which the reproduction number is bigger
than one, invasion establishes high prevalence, while lower transmission intensities trap imported cases into low
prevalence equilibria. The existence of endemic equilibria when R0 > 1, a disease-free equilibria when R0 < 1,
and the possibility of a backward bifurcation are confirmed through numerical simulations. These simulations show
that various disease and economic parameters (including labor efficiency, external aid, fraction of the yield con-
sumed, background investment rate, and background recovery rate from malaria) impact both disease and economic
outcomes, although their effects vary in magnitude and scope. Additionally, the simulations show a reciprocal re-
lationship between malaria and per capita yield. On one hand, the presence of malaria significantly diminishes per
capita yield, suggesting that individuals in regions with a high malaria burden are more likely to experience lower
economic productivity. Conversely, the level of per capita yield plays a crucial role in reducing the prevalence of
malaria. Higher economic productivity often leads to improved living conditions and greater access to resources,
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which can contribute to lower malaria prevalence rates in affected areas. This highlights the intricate interplay be-
tween disease dynamics and socio-economic factors in endemic regions. This is consistent with findings from [71]
depicting a bidirectional relationship between malaria burden and economic development, with economic progress
contributing to a decrease in malaria burden. This connection is notably reflected in the strong correlation between
malaria burden and indicators such as GDP per capita and total health expenditure per capita. These findings align
with those in [55], underscoring the importance of universal healthcare access for fostering economic growth.

Heatmaps are used to assess the combined impact of parameters on the reproduction number. The results show
that controlling malaria in high mosquito biting areas is challenging with limited aid, low technology, inadequate
treatment, or high yield consumption, emphasizing the intricate interplay between these parameters and disease
dynamics. However, reducing mosquito biting, increasing aid, technology, or the recovery rate impacts lower-
ing the reproduction number positively. Hence, reducing mosquito biting coupled with increased external aid or
technology, is crucial for disease control even in high mosquito biting areas. Reducing mosquito biting can be
achieved through measures like insecticide-treated nets, while enhanced diagnosis and treatment increase recov-
ery rates. Furthermore, the study shows that increased technological progress reduces external aid reliance, and
that increased external aid reduces the required technological progress for disease control. Hence, the study identi-
fies important parameters that can be calibrated using available or newly collected data for proper model validation.

Moreover, simulations of the model (2.1) were carried out to evaluate the effects of different external aid im-
plementation strategies. These strategies include consistent annual allocation of the same amount over a three-year
period, equal distribution over the first two years with no external aid in the third year, and allocating the entire
amount only in the first year. The findings reveal that the strategy of allocating external aid equally each year
over the three year period results in the lowest total number of disease cases. Additional strategies, including finer
stratification into biannual, quarterly, and monthly allocations, highlight the potential for an optimal approach.
Specifically, distributing all external aid equally emerges as a strategy associated with the lowest total number of
infectious humans. Moreover, distributing all external aid within six, three, or one month results in a higher total
number of infectious humans compared to distributing aid within one year. The most significant reduction in the
total number of infectious cases occurs with the equal monthly distribution strategy compared to the equal annual,
bi-annual, and quarterly distribution strategies.

Simulations of the framework demonstrate the possibility of long transients [57, 72–74]. This phenomenon de-
scribes extended periods during which a system takes significant time to reach stability due to complex interactions,
feedback loops, or time delays. Understanding long transients is crucial for predicting dynamic system behavior
and studying factors influencing transitions. In epidemiology, long transients are relevant for understanding disease
dynamics, indicating potential infection reservoirs that require identification and addressing to prevent resurgence.

It should be noted that certain simplifying assumptions have been incorporated into the model framework, po-
tentially influencing outcomes and constraining its applicability. However, the relaxation of these assumptions
would introduce increased complexity, rendering the model framework more mathematically intractable. For ex-
ample, the disease model assumes homogeneity within the population, considering individuals as uniform entities
with equal susceptibility and recovery rates. In reality, populations can be heterogeneous, and individual varia-
tions in immunity, exposure, and recovery can impact disease dynamics. The model does not account for exposed
humans and mosquitoes, which could lead to a delay in the observed dynamics. Also, the model neglects spatial
aspects, treating the entire population as a single homogeneous unit. Malaria transmission, however, is influenced
by geographical factors, such as mosquito breeding sites and climate, which are crucial for a comprehensive under-
standing. The framework ignores factors such as mosquito behavior, breeding habitats, and insecticide resistance,
which are critical for understanding malaria transmission dynamics. The Solow growth model with a Cobb-Douglas
function, insightful as it is in explaining economic growth, encounters limitations. It assumes homogeneous capital
and labor, neglecting variations in skills and education. The model also assumes constant returns to scale, a fixed
savings rate, and places limited emphasis on technological progress, disregarding the crucial role of technology in
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sustaining growth. Additionally, it lacks consideration for human capital, assumes full employment, homogeneity
of output, and lacks distributional analysis, overlooking income inequality’s real-world implications. While exter-
nal aid is constant in this study, it should be noted that it can vary as a function of a country’s disease burden. A
possible extension of the project includes accounting for skilled and unskilled labor and using the more general
constant elasticity of substitution function. Another possible extension includes using an optimal control approach
to identify an external aid strategy that will minimize disease prevalence, while maximizing the economic output.
Other possible extensions accounting for specific malaria control and mitigation measures and using both malaria
data economic data to calibrate the parameters of the model, especially the assumed economic parameters.

In conclusion, the study underscores the intricate interplay between malaria dynamics and economic factors, show-
casing bidirectional links between malaria burden and economic development. Hence, the study emphasizes the
pivotal role of economics in decision-making for effective disease control. The integrated framework, coupling
an epidemiological model of malaria with an economic growth model, provides insights into disease control and
highlights the importance of optimizing external aid allocation, particularly favoring strategies with even distribu-
tion at short time intervals. The occurrence of bistability, characterized by a backward bifurcation, underscores the
challenges of achieving disease elimination, highlights the robustness of elimination states, with the possibility of
minor parameter changes triggering significant fluctuations, and the requirement for sustained control measures.
The study reveals the potential for long transients, emphasizing the need to address infectious disease reservoirs,
as well as the need for extended control measures and continuous monitoring to prevent disease resurgence. Fur-
thermore, the study highlights the nuanced effects of disease and economic parameters on various model outcomes,
emphasizing the reciprocal relationship between malaria and per capita yield. In summary, policy recommenda-
tions include prioritizing sustained control measures, optimizing aid allocation, and understanding the nuanced
inter-dependencies between disease and economic parameters for effective malaria control and prevention.
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