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ABSTRACT
Background. In 2021, we used the National COVID Cohort Collaborative (N3C) as part of the
NIH RECOVER Initiative to develop a machine learning (ML) pipeline to identify patients with a
high probability of having post-acute sequelae of SARS-CoV-2 infection (PASC), or Long
COVID. However, the increased home testing, missing documentation, and reinfections that
characterize the latter years of the pandemic necessitate reengineering our original model to
account for these changes in the COVID-19 research landscape.

Methods. Our updated XGBoost model gathers data for each patient in overlapping 100-day
periods that progress through time, and issues a probability of Long COVID for each 100-day
period. If a patient has known acute COVID-19 during any 100-day window (including
reinfections), we censor the data from 7 days prior to the diagnosis/positive test date through 28
days after. These fixed time windows replace the prior model’s reliance on a documented
COVID-19 index date to anchor its data collection, and are able to account for reinfections.

Results. The updated model achieves an area under the receiver operating characteristic curve
of 0.90. Precision and recall can be adjusted according to a given use case, depending on
whether greater sensitivity or specificity is warranted.

Discussion. By eschewing the COVID-19 index date as an anchor point for analysis, we are
now able to assess the probability of Long COVID among patients who may have tested at
home, or with suspected (but untested) cases of COVID-19, or multiple SARS-CoV-2
reinfections. We view this exercise as a model for maintaining and updating any ML pipeline
used for clinical research and operations.

BACKGROUND
The electronic health record (EHR) is a rich source of data to study post-acute sequelae of
SARS-CoV-2 infection (PASC), or Long COVID, resulting in findings around common
symptoms,1 risk factors,2 subphenotypes,3,4 and longitudinal trajectories.5 However, there are
challenges in using the EHR to study this condition, including missing data, idiosyncratic coding
practices, and selection bias.6 These challenges should not prevent us from using EHRs as a
tool for Long COVID research, but does require thoughtfulness about methods and caveats to
ensure utility, rigor, and reproducibility.

Much has changed as we enter the fifth year of COVID-19. Widely available home testing
means that EHRs are missing many cases; the CDC’s mandate to collect and report national
COVID-19 case counts has ended;7 and a high number of Americans with at least one (and
often multiple) SARS-CoV-2 infections causes difficulty in identifying control populations within
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clinical data.8 For these reasons, we cannot rely on the same analytical methods that worked
earlier in the pandemic to research either COVID-19 or Long COVID, and instead must adapt to
the changing landscape.

In 2021, we used the National COVID Cohort Collaborative (N3C)9 as part of the NIH
RECOVER Initiative10 to develop a machine learning (ML) pipeline to identify patients with a
high probability of having Long COVID.11 The ML model’s purpose is to use information from
EHR data to predict missing Long COVID labels, thus serving as a computable phenotype for
Long COVID. The model was performant and generalizable,12 but heavily relies on the existence
and timing of an index date for a patient’s acute COVID-19 infection. Moreover, the model only
considers a patient’s first SARS-CoV-2 infection, as at the time we did not anticipate the
now-common occurrence of SARS-CoV-2 reinfections.13

Here we describe the significant reengineering of our existing machine learning (ML)-driven
Long COVID phenotype to be more inclusive and attuned to more recent years of the COVID-19
pandemic. By eschewing the COVID-19 index date as an anchor point for analysis, we are now
able to assess the probability of Long COVID among patients who may have tested at home, or
with suspected (but untested) cases of COVID-19, or multiple SARS-CoV-2 reinfections. We
view this exercise as a model for maintaining and updating any ML pipeline used for clinical
research and operations–as clinical knowledge and circumstances change over time, so too
must our methods, even when major reengineering is required.

METHODS
Training Data Selection
Accurate identification of Long COVID cases in EHRs continues to be challenging, which
spurred us to create our original Long COVID ML model11 in 2021 (hereafter referred to as LCM
1.0). In our original model, lacking a gold standard to use as a training set, we defined a “silver
standard” of patients who had visited a Long COVID specialty clinic at least once. Shortly after
the U09.9 ICD-10-CM code was made available for clinical use in October 2021, we updated
our silver standard to include patients who had at least one U09.9 code in their EHR. This
increased the size of our training set, but inconsistent and idiosyncratic use of that code in
practice6 likely introduced some amount of noise.

For our new model (LCM 2.0), we leveraged the increased amount of available longitudinal data
to now require two or more U09.9 codes or two or more Long COVID specialty clinic visits to
qualify for the training set. This more stringent criterion decreases the risk that a patient is
labeled with the Long COVID code due to error or rule-out. All patients included in the training
set are 18 years of age or older at the time of their earliest U09.9 diagnosis or clinic visit. The
training set contains 36,238 patients with a Long COVID label (per the aforementioned
definition), and 36,507 unlabeled patients randomly selected from the population described in
Running the Model, below. The validation set contains 1,890 patients with a Long COVID label
and 1,899 without.

https://paperpile.com/c/9OY8sa/UuXW
https://paperpile.com/c/9OY8sa/7lIz
https://paperpile.com/c/9OY8sa/sP46
https://paperpile.com/c/9OY8sa/X9Ib
https://paperpile.com/c/9OY8sa/p0f7
https://paperpile.com/c/9OY8sa/3oka
https://paperpile.com/c/9OY8sa/X9Ib
https://paperpile.com/c/9OY8sa/TZjR


Time Windows
LCM 1.0 used each patient’s first acute COVID-19 date as an anchor point, basing its
predictions on data sourced from a set number of days before and after that time. As LCM 2.0
does not require acute COVID-19 date(s), we developed a new anchoring method using set
time windows that apply to all patients–not just those with COVID-19 index dates. LCM 2.0
gathers data for each patient in overlapping 100-day periods that progress through time, and
issues a probability of Long COVID for each 100-day period. If a patient has known acute
COVID-19 during any 100-day window (including reinfections), we censor the data from 7 days
prior to the diagnosis/positive test date through 28 days after. This prevents the model from
confusing the symptoms of acute COVID-19 for Long COVID. A comparison between the
anchoring methods of LCM 1.0 and 2.0 is illustrated in Figure 1.

Figure 1. Model “anchor” methods. LCM 1.0 (top) used the patient’s first acute COVID-19 instance to
determine the time window in which it gathered evidence for its prediction. The 90 days surrounding the
acute infection (45 days before, 45 days after) were censored from data gathering. Reinfections were not
taken into account. In LCM 2.0, all patients are assigned probabilities for set windows, where only data
from those 100-day windows are considered. Each 100-day window overlaps the prior window by 70
days.The 35 days surrounding any acute infection (7 days before, 28 days after) are censored from data
gathering.

Feature Selection
N3C standardizes on the OMOP clinical data model, which uses SNOMED as a standard
vocabulary for diagnoses. However, using every unique SNOMED concept as a model feature



would (1) result in thousands of features and major computational inefficiency and (2) be so
granular as to potentially obscure important patterns. For this reason, we opted to “roll up” more
granular SNOMED concepts to parent concepts, cutting down the initial number of possible
diagnosis features from 50,349 (the number of unique codes across the population described in
Running the Model, below) to 9,623. As SNOMED is multi-hierarchical (i.e., a child concept can
have many parents) and the depth of its leaf nodes is highly variable, we needed to develop an
algorithm to select optimal parent concepts using consistent logic. This roll-up method is
described in Supplemental Methods.
To improve efficiency and avoid over-fitting, we prune this list of features further by assessing
the covariance of each selected parent concept with the label from the training set–”1” for Long
COVID, “0” for not Long COVID. We select the top 200 concepts with the highest covariance to
serve as the model’s diagnosis features. We purposely exclude three features that are
essentially COVID-19 and Long COVID labels (e.g., the SNOMED equivalents of the ICD-10
codes U07.1 [COVID-19], U09.9 [Post-COVID condition] and B94.8 [Sequelae of infectious
disease, used as a proxy for U09.9 prior to its release]).

Additional features include patient age, number of unique outpatient days, number of unique
inpatient days, and patient sex. Continuous variables are binned to reduce overfitting–age is
binned into 10-year bins, while the number of visits is binned into [0-2, 3-10, 11-inf).

Running the Model
The model was constructed using the XGBoost Python package. Once trained, we ran the
model on a subset of N3C patients (n = 5,875,065) that have at least one of the following at any
time between 1/1/2020 and 06/22/2023: (1) a U07.1 (COVID-19) diagnosis code, (2) a positive
SARS-CoV-2 test, (3) a U09.9 (PASC) diagnosis code, (4) a prescription for Paxlovid or
Remdesivir, or (5) an M35.81 (MIS-C) diagnosis code. While this is a cohort highly enriched with
COVID-19 cases, a COVID-19 index date is not required for the model, and is only used to
identify blackout dates if it exists. Each patient is given a model score that predicts PASC status
for each 100-day window in which they are >= 18 years of age.

Threshold Selection
Choosing an appropriate threshold is critical for effective utilization of algorithms, particularly
when the objective is to obtain a binary decision rather than a continuous confidence score. The
threshold serves as the mechanism through which false positive errors are weighed against
false negative errors.

Several approaches for selecting a threshold are available, and there is no single method that is
generalizable for all use cases.14 One common way to select a threshold is to maximize the
Youden Index, which maximizes the true positive rate minus the false positive rate–the percent
correct (PC). This analysis is done on the validation set. For LCM 2.0, the maximization of PC is
achieved at a threshold of 0.9, resulting in a false positive rate of 0.16 and a true positive rate of
0.83 (Figure 2).
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Figure 2. Threshold Selection. Three curves are plotted on this chart. The x-axis represents the
threshold value. The lines correspond to different quantities used to measure performance. The blue
curve (Pf) is the probability of false alarm. The orange curve (Pd) is the probability of detection, as
determined by the validation set. We set the threshold (0.9) to maximize the Youden Index (Pd - Pf),
shown in green.

Historical Controls and False Alarm Rates
Long COVID has many overlapping symptoms with other conditions such as myalgic
encephalomyelitis/chronic fatigue syndrome (ME/CFS),15 other post-viral syndromes (such as
sequelae triggered by influenza),16 dysautonomia,17,18 and various respiratory illnesses. In many
cases, the data available to the model is not detailed enough to distinguish between these
conditions and Long COVID. We also know that there are likely a number of undiagnosed
patients in the training set who have Long COVID, making it difficult to measure a true false
positive rate.

To better understand the false positive rate, we leveraged the same RECOVER analysis cohort
described in Running the Model, but swapped in the cohort’s EHR data from 2018-2019, prior to
the existence of COVID-19. 5,572,579 patients in the RECOVER analysis cohort had data
available for this purpose and met the minimum age criterion during the earlier time period. We
compared the distribution of model scores for 2018-2019 to those of 2020-2023 (shown in
Figure 3), theorizing that the magnitude of patients with high scores in 2019 could serve as a
rough estimate of the false positive rate in the COVID period. This is a richer source of evidence
of false positivity than the default option of declaring all patients with high scores but no Long
COVID label as false positives. In reality, unlabelled patients may be false negatives with
undiagnosed Long COVID–a known challenge in assessing performance of diagnostic machine
learning models.19
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Figure 3. Histogram of control study. Here we show the distribution of model scores for the same
population using (1) 2019 data, before COVID-19 (blue) and (2) 2020-2023 data (orange). High model
scores in blue represent those patients who look like Long COVID patients, but are in fact false positives,
as COVID-19 did not yet exist. We notice a significant shift toward higher model scores in the COVID-19
period, but still a substantial amount of false alarms at various thresholds. Note that counts on the y-axis
are on a log scale.

RESULTS
Distribution of Model Scores
The distribution of model scores across the full RECOVER cohort (n=5,875,065) is shown in
Figure 4.



Figure 4. Distribution of model scores.When the model is run over the full RECOVER cohort (n =
5,875,065), predicted probabilities of Long COVID are distributed as shown. Using our threshold of 0.9,
1,051,045 patients are labeled as probable Long COVID. Note that counts on the y-axis are on a log
scale.

This distribution of model scores gives us a Long COVID prevalence of 17.9% in this
COVID-enriched population, using the 0.9 threshold. However, using the historical control
experiment detailed in Methods, we can estimate the proportion of these cases that may be
false positives, and thus change our prevalence estimate. Using the 0.9 threshold with the
historical controls, we calculate a false positive rate of 7.5%–the difference between 0, which
should be the Long COVID prevalence in the pre-COVID era, and 7.5%, the proportion of
historical control patients with a model score >= 0.9. Subtracting from 17.9% results in an
estimated prevalence of 10.4%.

Model Performance
Our goal is not only to determine whether a patient is likely to have Long COVID, but also to
determine whether a patient is likely to have Long COVID in a specific time window.We define
the “correct” window for a labeled patient as the latest window that contains a patient’s first
U09.9 code or Long COVID clinic visit. We randomly select “correct” windows for unlabeled
patients. We consider the model to be correct when a labeled patient has a score above our 0.9
threshold in this window, or an unlabeled patient has a score below the threshold. Figure 5
shows the receiver operating characteristic (ROC) curve for the model calculated on both a
person basis and a window basis.



As noted in Threshold Selection above, our 0.9 threshold was selected to purposefully maximize
true positives and minimize false positives. For this reason, we sacrifice recall to maximize
precision. Alternative thresholds result in different balances between precision and recall, and
could be adjusted as desired for a specific use case.

Performance Metrics at 0.9 Threshold:

Person-based F score: 0.623 Precision: 0.838 Recall: 0.495

Window-based F score: 0.559 Precision: 0.969 Recall: 0.393

Figure 5. Model performance. Model performance can be measured in two ways, visualized on the
receiver operating characteristic (ROC) curve. The first is person-based (orange curve), where we use a
patient’s maximum model score over all time to classify them (i.e., “has this patient had Long COVID
ever?”). The second is window-based (blue curve), where we use the model score for a specific
patient-window to classify that window (i.e., “did this patient have Long COVID in this time window?”).

Important Features
Table 1 lists the top 20 features of the model as determined by each feature’s Shapley
(importance) value. The full list of features with Shapley values is available in Supplemental
Results.

Table 1. The model’s top 20 features with their Shapley Importance. All of the top 20 features are
more likely to increase a given patient’s model score than decrease it when present, other than patient
age, which has a nonlinear relationship to the label, and Essential Hypertension, which is more likely to
decrease the score.



Feature Shapley Importance
Number of outpatient visits in window 0.5599
Dyspnea 0.5555
Finding related to attentiveness 0.2917
Patient age in window 0.2032
Fatigue 0.1929
Chronic fatigue syndrome 0.1779
Chronic cough 0.1545
Palpitations 0.0872
Pneumonia caused by SARS-CoV-2 0.0765
Female sex 0.0762
Sensory disorder of smell and/or taste 0.0652
Chest pain 0.0577
Cough 0.0562
Postviral fatigue syndrome 0.0548
Tachycardia 0.0533
Anxiety disorder 0.0532
Nervous system disorders 0.0442
Dizziness and giddiness 0.0436
Chronic pain 0.0422
Essential hypertension 0.0395

DISCUSSION
Our updated Long COVID ML computable phenotype reengineers prior work to adapt to the
changing landscape of COVID-19. LCM 2.0 performs similarly to its predecessor while (1)
removing dependency on date of acute COVID-19 infection as a feature and (2) censoring data
from known reinfections.

Model Explainability
A key test for the generalizability of any ML model is its explainability, or whether the features it
relies on the most pass the “common sense” test. Models that rely on unusual features to make
decisions may be latching onto idiosyncratic patterns in the training data that would not
necessarily translate to external datasets. Our top model features (as shown in Table 1 and
expanded on in Supplemental Table 1) include pulmonary, cardiac, and neurologic symptoms
that are well-supported by Long COVID literature. Non-symptom-related, continuous variables
such as healthcare utilization rates are binned to avoid overfitting and overreliance on patterns
unique to the N3C population. As was true of the prior version,12 we believe this new model
version will be translatable to other sites and consortia with OMOP implementations to promote
reuse and reproducibility.

Inclusivity and the Risk of False Positives
As home COVID-19 testing is (and will continue to be) extremely commonplace, we felt it critical
to reengineer our Long COVID model to work without specific EHR documentation of acute
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COVID-19. This change also allows us to account for (1) unlabeled COVID patients in
early-to-mid 2020, when tests were scarce and the U07.1 diagnosis code had not yet been
released, and (2) patients who have had COVID but did not seek care for it. In general, this
inclusivity is desirable–leaving these populations out of data-driven COVID-19 and Long COVID
research may result in selection bias toward patients who are sicker in general, have more
access to specialty care, or had more severe COVID-19.

However, with increased sensitivity comes a higher risk of false positives. Our 0.9 threshold was
selected to minimize these false positives, though at the expense of high recall. Regardless, as
shown in our historical control experiment (Figure 3), there is clearly a population of patients
who match the Long COVID symptom profile but do not have Long COVID. Long COVID
symptoms are numerous and affect multiple body systems, leading to unavoidable overlap with
many other diseases. For this reason, downstream researchers using these model results may
wish to consider imposing additional inclusion criteria as desired (e.g., to require documentation
of a positive SARS-CoV-2 test in addition to a model score above the threshold), particularly for
research use cases requiring higher specificity. Applying additional criteria downstream of the
model, as opposed to prior to running the model, enables maximal flexibility.

Limitations
With the lack of a consensus clinical definition of Long COVID,20 assessment of the true
accuracy of algorithms like ours is challenging. Moreover, the lack of a consistent estimate for
Long COVID’s prevalence21 makes it difficult to determine an appropriate model threshold using
real-world evidence. Assessing performance using the U09.9 label as ground truth is the most
readily available option, but the inconsistency of the code’s use by providers and its late
availability4 mean that many patients with Long COVID lack the label. As with any ML
phenotype, model output should be used thoughtfully, and additional selection criteria should be
imposed for use cases where specificity is paramount.

Many Long COVID symptoms (e.g., post-exertional malaise, brain fog) are not well-represented
in the EHR, either because they do not have a discrete ICD-10-CM code or are more commonly
referenced in free-text clinical notes than structured data. These features thus do not have the
opportunity to contribute to the model–however, that should not be interpreted to mean that
these symptoms are unreported or not experienced by this patient population.

CONCLUSION
As ML is increasingly used as a computable phenotyping tool, it is incumbent upon its users to
ensure that models are not only created, but maintained and updated over time. As an example
of this principle, the landscape of COVID-19 and Long COVID has changed significantly over
the course of the pandemic, and so too must our model. We reengineered our ML Long COVID
phenotype to respond to these changes, solving some challenges from the prior model (not
accounting for reinfection, requiring an acute COVID-19 index date) and encountering new ones
(increased risk of false positives). We believe this new model to be generalizable for use as a
foundation of data-driven Long COVID research.
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SUPPLEMENTAL METHODS
SNOMED Roll Up
The OMOP concept_ancestor table provides a tabular version of the SNOMED graph and
allows us to identify all parent concepts for each SNOMED term, as well as the minimum
number of “hops” it takes to get from a child concept to each parent. Joining concept_ancestor
to condition_occurrence enables us to determine how many instances of each concept appear
in N3C data. Our parent concept selection algorithm uses this information to select optimal
roll-ups.
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For each feature, we walk up the SNOMED graph (i.e., from child to parent, to grandparent, to
great-grandparent) to find all ancestor concepts that have >=25,000 occurrences in the N3C
data. Once this set of ancestor concepts are identified for a given child, we select the closest
ancestor with >=25,000 as the optimal parent.

Figure S1. Finding optimal parent concepts. In this example, the two lowermost nodes (Short of breath
dressing/undressing and Paroxysmal nocturnal dyspnea) are each rolled up to their optimal parent. The
immediate parent of Short of breath dressing/undressing, Dyspnea on exertion, passes the 25,000
instance threshold, making it the optimal parent. For purposes of the model, the few patients with
instances of Short of breath dressing/undressing will be relabeled with concept Dyspnea on exertion. The
immediate parent of Paroxysmal nocturnal dyspnea, Paroxysmal dyspnea, actually has fewer instances
than its child, so we continue walking up the graph. The next parent is Dyspnea, with 2.4 million
instances–a much less granular concept, but more optimal as a model feature in this case.

Note that the threshold of 25,000 instances was selected for this use case, in a dataset the size
of the N3C data (2,061,673,837 rows in condition_occurrence). This threshold can and should
be tailored to the size of the dataset and the condition specificity desired for the given problem.

SUPPLEMENTAL RESULTS
Table S1. All model’s features with their Shapley Importance. All features are correlated with the
Long COVID label, but a negative value in the Direction column signifies that that feature is more likely to
decrease a given patient's model score than increase it.

[See attached Excel file]


