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Abstract 

Background and Aims 

Most clinical information is encoded as text, but extracting quantitative information from text is challenging. 

Large Language Models (LLMs) have emerged as powerful tools for natural language processing and can 

parse clinical text. However, many LLMs including ChatGPT reside in remote data centers, which 

disqualifies them from processing personal healthcare data. We present an open-source pipeline using 

the local LLM “Llama 2” for extracting quantitative information from clinical text and evaluate its use to 

detect clinical features of decompensated liver cirrhosis. 

Methods 

We tasked the LLM to identify five key clinical features of decompensated liver cirrhosis in a zero- and 

one-shot way without any model training. Our specific objective was to identify abdominal pain, shortness 

of breath, confusion, liver cirrhosis, and ascites from 500 patient medical histories from the MIMIC IV 

dataset. We compared LLMs with three different sizes and a variety of pre-specified prompt engineering 

approaches. Model predictions were compared against the ground truth provided by the consent of three 

blinded medical experts.  

Results 

Our open-source pipeline yielded in highly accurate extraction of quantitative features from medical free 

text. Clinical features which were explicitly mentioned in the source text, such as liver cirrhosis and ascites, 

were detected with a sensitivity of 100% and 95% and a specificity of 96% and 95%, respectively from the 

70 billion parameter model. Other clinical features, which are often paraphrased in a variety of ways, such 

as the presence of confusion, were detected only with a sensitivity of 76% and a specificity of 94%. 

Abdominal pain was detected with a sensitivity of 84% and a specificity of 97%. Shortness of breath was 

detected with a sensitivity of 87% and a specificity of 96%. The larger version of Llama 2 with 70b 
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parameters outperformed the smaller version with 7b parameters in all tasks. Prompt engineering 

improved zero-shot performance, particularly for smaller model sizes. 

Conclusion 

Our study successfully demonstrates the capability of using locally deployed LLMs to extract clinical 

information from free text. The hardware requirements are so low that not only on-premise, but also point-

of-care deployment of LLMs are possible.  

Keywords: Text Mining, Artificial Intelligence in Medicine, Large Language Models, LLM, Medical Text 

Analysis 
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Lay summary (25-30 words): 

We leveraged the large language model Llama 2 to extract five key features of decompensated liver 

cirrhosis from medical history texts, simplifying the analysis of complex text-based healthcare data.
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Introduction 

It is estimated that 80% of clinical data exists in an unstructured format.1 This “dark matter” of healthcare 

data is currently unusable for quantitative computational analysis. While deep learning methods have 

made structured data from Electronic Health Records (EHRs) usable for individual risk prediction,2 and 

can make diagnoses and extract biomarkers from radiology or histopathology images,3,4 natural language 

has not been widely used as a source to extract structured information. Making an unstructured data 

resource readable for downstream tasks has a variety of benefits, such as improvements in individual 

healthcare outcomes,5 the possibility to obtain scientific insight,6 and improvement in billing processes and 

quality control.7  

In Natural Language Processing (NLP) computational methods are applied to unstructured text. Medical 

applications of NLP have been explored for decades,8,9 but real-world applications are still very rare. 

However, real world data analysis becomes increasingly acknowledged and implemented in timely 

evidence generation which makes the need to extract real world data from text even more pressing.10 

Several hurdles have been discussed for NLP in healthcare, among them the lack of annotated datasets 

and user-centered design as well as hand-crafted over-engineered software pipelines which lack 

scalability.11,12 LLMs have changed this field: they are transformer neural networks which are trained on 

large bodies of unstructured text data with self-supervised learning (SSL).13–16 LLMs are foundation 

models which can be applied to a broad range of tasks without having been explicitly trained for these 

tasks. This “zero-shot” application changes the conventional wisdom in medical artificial intelligence by 

which a model for a certain task needs to be trained on a large dataset representing this specific task.17 

In particular, the LLM Generative Pretrained Transformer (GPT) and its user interface ChatGPT, have 

demonstrated remarkable proficiency in structuring text and extracting relevant information in a 

quantitative way.18 Their capabilities could revolutionize the way we comprehend and process vast 

quantities of healthcare data.19–21 For example, GPT-4 has been used to extract structured clinical 

information from free text reports in radiology,18 pathology and medicine.22  
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However, these LLMs run as cloud services and using them requires the transfer of privileged information 

to remote servers. This creates massive legal and ethical challenges, especially in the European Union 

(EU), where the export of personal health data is not possible.23,24 Ideally, LLMs should run on premise of 

healthcare institutions, potentially even at the point of care.25,26 However, this requires software pipelines 

using lightweight LLMs, which are currently not validated for medical tasks. Here, we aimed to build and 

validate a fully automated pipeline for end-to-end processing of clinical text data which uses locally 

deployable LLMs and can potentially be used at the point of care. We investigated the capabilities of our 

new pipeline on a task of high clinical importance, the identification of decompensated liver cirrhosis. 

Approximately 1% of the population in the EU has liver cirrhosis27 and decompensation is among the most 

common emergencies in these patients.28 Decompensation is often overlooked initially, but can be a 

turning point in the prognosis of cirrhotic patients, thus early identification and management are crucial to 

improve patient outcomes.29 Having an automated detection of liver decompensation from clinical free text 

could be the basis of early warning systems in clinical routine. Furthermore, this could facilitate 

retrospective analysis of clinical data for scientific, quality control or billing purposes.  
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Methods 

Ethics statement 

We solely utilized anonymized patient data from the MIMIC IV database. The MIMIC IV dataset is a 

comprehensive and publicly available collection of anonymized medical data from patients admitted to the 

emergency department or intensive care unit at Beth Israel Deaconess Medical Center in Boston 

Massachusetts, United States and enables text based research in healthcare and serves as a benchmark 

for medical AI studies.30 The MIMIC IV database contains a broad spectrum of patient data collected from 

2009 to 2019, thereby being representative of multiple clinical scenarios.31 All research procedures were 

conducted in accordance with the Declaration of Helsinki.  

Data preparation 

We applied for access to the MIMIC-IV database available from physionet.org and obtained access to the 

comprehensive health-related data of patients treated in an emergency department or intensive care 

setting.30 Central to our study was the early detection of decompensated liver cirrhosis in admission 

records, a critical task due to the condition's potential lethality and rapid progression to complications such 

as variceal bleeding, hepatic encephalopathy, or renal failure. Early and accurate identification is vital for 

initiating immediate treatment and guiding patient management. For this study, we selected the first 500 

patient histories (0,15% of all MIMIC IV clinical notes), focusing on identifying signs of decompensation in 

liver cirrhosis. We utilized Llama 2 to extract three symptoms - shortness of breath, abdominal pain, and 

confusion - from the text, and to identify two explicitly stated conditions: liver cirrhosis and ascites. This 

approach aimed to demonstrate the model's effectiveness in discerning both implicit and explicit medical 

information crucial for patient care. 

Model details and data processing 

The study's goal was to assess the capability of the LLM "Llama 2", in extracting the mentioned information 

from the textual medical data. We employed the zero-shot method to run the model. In our approach, all 
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three versions of Llama 2 were used, the 7 billion-, 13 billion-, and 70 billion parameter- sized model. Our 

aim was to retrieve information about the five predefined features from patients’ present medical 

histories.30 Initially, the model was prompted to give JSON formatted output, but the model's JSON output 

was inconsistent and defective. Therefore, we utilized the llama.cpp version,32 a framework originally 

designed for running Llama 2 models on lower-resource hardware and beyond that supporting grammar-

based output formatting. Thus, we enforced JavaScript Object Notation (JSON) format generation using 

llama.cpp's grammar-based sampling, which dictates text generation through specific grammatical rules 

to ensure valid JSON. We then converted these JSON outputs into CSV format using Python's pandas 

library. The whole pipeline is depicted in Figure 1. 

Prompt engineering 

We implemented a technique known as zero-shot chain-of-thought prompting, wherein the model is tasked 

with identifying relevant text passages without prior training specific to the task—this is the "zero-shot" 

aspect, which tests the model's ability to apply its pre-trained knowledge to new problems. To add 

explainability to the models’ answers, we forced the model to use a certain style when providing its answer. 

This also implented a "chain-of-thought" process, which allowed sequential reasoning where the LLM 

output transparently outlines its thought process, to verify the existence of a particular feature within the 

text. To enhance outcomes via prompt engineering, one-shot prompting was also employed33, providing 

the model with an example report and corresponding JSON formatted output. Blinded medical raters 

established a consensus on precise definitions for the queried features during ground truth definition, 

which were subsequently provided to the model (definition prompting). Ultimately, single-shot and 

definition chain-of-thought prompting were combined. The standard Llama 2 prompt contains two 

modules, the “system” and the “user” part. The system prompt provides initial instructions or explanations 

to guide the interaction, while the user prompt includes the user's input or query, further shaping the 

response process. We experimented with different arrangements of system and user prompts in 

combination with definition, one-shot and chain-of-thought prompting. Our detailed prompt engineering 

approach is described in the Supplementary methods.  
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Ground Truth definition 

For validation, the 500 reports were meticulously and independently assessed by clinicians to establish a 

ground truth. In the event of disagreement, a consensus was always reached through discussion. A 

comprehensive overview regarding consensus about the ground truth rating, as well as challenges and 

methodologies concerning ground truth definition, can be found in the Appendix.  

Evaluation of model results 

Positive Predictive Value (Precision, PPV), Sensitivity (Recall), Specificity, Negative Predictive Value 

(NPV) and Accuracy were computed to assess the performance of the different model's outputs. To obtain 

reliable estimates, we employed bootstrapping, a statistical resampling technique, executing 1000 

iterations. This method involves repeatedly sampling from the dataset with replacement to create many 

"bootstrap" samples. These samples are then used to estimate the variability and confidence of our 

statistical estimates, enhancing their robustness and credibility. All source codes are available at 

https://github.com/I2C9W/fromtexttotables/releases/tag/v0.5.0. 
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Results 

Key Medical Features are unevenly represented in Medical Histories 

Our analysis of the Llama 2 model's data extraction capabilities from text reports focused on five key 

medical features: liver cirrhosis, ascites, abdominal pain, shortness of breath, and confusion. We found 

that the frequency of these features varied significantly across the reports. Abdominal pain and shortness 

of breath were frequently documented in the data. However, liver cirrhosis and ascites were less prevalent, 

mentioned in only about 5% of cases, as detailed in figure 2. 

While liver cirrhosis and ascites were explicitly mentioned when present (ascites was mentioned in 19 

reports and also present in 19 reports), making their detection more straightforward, the documentation of 

abdominal pain, shortness of breath, and confusion often required more nuanced interpretation, as these 

symptoms were described in multiple ways by physicians. These symptoms were not always explicitly 

stated but could be inferred or deduced from contextual information. For example, abdominal pain might 

be indicated through a variety of descriptors or understood from the absence of certain findings, e.g. “pain 

in the RUQ” stands for “pain of the right upper quadrant of the abdomen” thus indicating the presence of 

abdominal pain. 

Similarly, shortness of breath and confusion, while not always directly stated, could be inferred from 

contextual clues or specific medical terminology used in the reports. This implies that accurately identifying 

such implicit features demands a nuanced understanding of medical language and context, as well as 

some level of clinical expertise. For example, a statement like “10-point review of systems negative” 

implies the absence of symptoms like shortness of breath, abdominal pain, and confusion, requiring the 

model to interpret these indirect cues effectively.  

Llama 2 is able to extract relevant information from unstructured text 

In our assessment, the 70b model displayed remarkable proficiency. Sensitivity of detecting liver cirrhosis 

and ascites was 100% and 95%, respectively. For abdominal pain and shortness of breath, sensitivities 
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were lower with 84% and 87%, respectively. Confusion was the symptom which was most difficult to 

extract for the LLM with a sensitivity of only 76%. Specificity for liver cirrhosis was 96%, for ascites 95% 

and even higher for abdominal pain (97%), shortness of breath (96%) and confusion (94%). Confusion 

matrices are shown in figure 3.  

One-shot prompting yielded slightly better results with higher sensitivities (ascites: 95%, abdominal pain: 

92%, shortness of breath: 83%, confusion: 88% and liver cirrhosis 100%) and specificities (ascites: 99%, 

abdominal pain:92%, shortness of breath: 96%, confusion: 94% and liver cirrhosis 97%) (Figure 4 and 

Supplementary Table 2).  

The models with more parameters performed better, with the most substantial increase in accuracy from 

the Llama 2 7b to 13b model (Supplementary Table 1, Figure 5). For implicit features, the 70b model 

yielded the highest accuracy. The 7b model faced challenges in accurately identifying false classifications. 

All models presented a high negative predictive value. Precision and specificity tended to improve most 

from 7b to 13b parameter model size. Recall was best in the explicitly mentioned features 

(Supplementary Table 1 and Supplementary Table 2). 

Prompt engineering enhances accuracy, especially in smaller sized models 

In our initial test, we tested with the 7b model and used a combination of a system prompt with general 

instructions and a user prompt containing the report and questions (prompting strategy details in 

Supplementary Figure 2 and 3). Including a one-shot example in the prompt slightly enhanced the 

model's accuracy except for the feature abdominal pain (Supplementary Figure 2). The human 

instructions in the Llama prompt need to be indicated within specific tags ([INST],[/INST]). Notably, the 

one-shot example needed to be excluded from the instruction section, otherwise the performance 

deteriorated substantially, because the model answered the questions with the example given. Requesting 

an excerpt from the text followed by a binary answer (Chain-of-thought prompting) did not yield improved 

results, only for the feature liver cirrhosis. For explainability reasons, we nevertheless forced the model 
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with the grammar (github repository) to provide an excerpt first and then the binary outcome and found 

that this did not adversely affect performance. 

Providing definitions for all features only improved the extraction of the more implicitly mentioned features 

shortness of breath and abdominal pain, but deteriorated the extraction of explicitly mentioned features. 

Subsequent testing involved consolidating both the report and question components within the system 

prompt, instead of dividing them between system and user prompts. This change resulted in improved 

performance for the 7b model, whereas this trend was not consistently present for the 70b model (e.g. 

accuracy ascites (7b) 78% vs.82%, liver cirrhosis (7b) 69% vs. 76%, abdominal pain (7b) 57% vs. 63%, 

shortness of breath (7b) 64% vs. 68%, confusion 90% vs. 92%), indicating a more effective prompt 

structure when integrated into the system prompt (Supplementary Methods). Finally, the most effective 

prompt structure for zero-shot prompting, as concluded from our experiments, was to include all 

components within the system prompt. This encompassed providing a report, asking specific questions, 

giving definitions for implicit features, and enforcing a chain-of-thought response through grammatical 

structuring without a chain-of-thought questioning strategy. Nevertheless, the prompt experiments 

changed each feature differently. In principle, the least differences between the prompting techniques can 

be seen in the largest, 70b model. In summary, these data show that prompt engineering can help 

improving performance especially in the smallest model, whereas larger model sizes demonstrated 

greater robustness, with remarkably high performance of simple prompts, improving only marginally 

through prompt engineering. 
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Discussion 

In this study, we present an open-source software pipeline which can use local LLMs to extract quantitative 

data from clinical free text and evaluate it on the detection of symptoms indicating decompensated liver 

cirrhosis, an important medical emergency. We demonstrate that the lightweight LLM “Llama 2” yields an 

excellent performance on this task, even in a zero-shot way without any task-specific retraining. 

Specifically, the 70 billion parameter model was able to achieve 90% accuracy or more for both implicitly 

and explicitly mentioned features. Historically, rule-based or dictionary-based methods were used for 

information extraction34, but these approaches struggle with the variability of medical texts and the scarcity 

of labeled training data.35 However, such rule-based hand-crafted methods cannot extract implicitly stated 

information in a zero-shot way. Therefore, we show that LLMs can fill the gap in information extraction and 

will be of utmost importance for versatile healthcare data processing. 

The performance of LLMs is massively increasing month to month36 and we expect that future LLMs will 

further improve the performance. Many proof-of-concept studies for LLMs in medicine only show a 

semiquantitative analysis — in contrast, we employ a rigorous, quantitative, pre-specified analysis 

comparing the models’ outputs to a ground truth obtained by three blinded observers. We posit that such 

a systematic analysis should be the gold standard in assessing the benefits and shortcomings of LLMs in 

medicine.  

Not surprisingly, we find that clinical features that are explicitly mentioned in clinical texts are recalled 

more effectively by our model than those that are implied, indicating a limited grasp of contextual 

subtleties. The model particularly struggled with extracting 'confusion' due to inconsistent documentation 

and definition, which even required medical experts to consent about a definition (see Supplementary 

Tables 3 and 4 in the Appendix for raters’ agreement and feature consensus definition). Despite this, the 

Llama 2 70b model excels in identifying implicitly mentioned features, showing a superior understanding 

of context linked to its larger parameter size. Our prompt experiments’ findings indicate that models with 

larger parameter size demonstrate enhanced robustness, and their performance remains largely 



 

15 

unaffected by variations in prompt engineering, suggesting promising prospects for the development of 

even better and larger models in the future. Llama has been previously successful in tasks like DRG 

prediction and ICD code extraction from clinical notes.37,38 Our analysis reaffirms Llama 2’s strong 

information extraction capabilities and secure processing of sensitive patient data. Nevertheless, Llama 

as a decoder-only model has proven to struggle more with unseen information types than encoder-

decoder models,39 although decoder-only models with more extensive pre-training overcome this 

limitation. Continuous improvements to Llama and other large language models (LLMs), as seen with 

ChatGPT, could further boost their performance in complex tasks.40 Several related studies have shown 

that the LLM GPT-4 excels at structured information extraction from medical text and is often superior to 

Llama 2. However, GPT-4 runs in the cloud and its architecture is unknown to the public,41 making it 

currently not suitable for processing personal healthcare data.  

LLMs have some fundamental limitations which users must be aware of. In our analysis, we encountered 

some of these: For instance, our analysis revealed that when Llama 2 was asked to determine a patient's 

gender from medical history, it based its decision on the prevalence of certain symptoms in one gender 

over another, rather than using clear identifiers like personal pronouns, which prove the gender instead of 

suggesting it by probabilities (Supplementary Figure 1, Appendix). Addressing biases in LLMs is 

essential to ensure the accuracy and impartiality of the information they deliver. Continuous investigation 

and the development of advanced methods to assess these models' functioning are vital. This will enable 

us to rely on these models for information that reflects the actual content, rather than assumptions made 

by the model. Furthermore, we analyzed Llama’s proficiency in evaluating english-language patient 

histories; its ability to handle data in other languages needs to be further elucidated, since 90% of Llama-

2’s training data was English language data.26 

Our analysis has the potential to form a basis for clinical decision support systems (CDSS), aiding in 

identifying symptoms of conditions like decompensated liver cirrhosis and applicable in various medical 

fields. Further refinement and evaluation, potentially through fine-tuning, retrieval augmented generation 

approaches42 and larger language models are necessary to obtain the necessary security in handling 
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medical data. Nevertheless, our research reveals substantial chances for broader medical settings: 

Enhanced information extraction from free text enables more effective quantitative analysis in research. 

Moreover, it can streamline quality control in hospital procedures and simplify billing encoding, thereby 

reducing labor-intensive information extraction tasks. 
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Figures 

 

Figure 1 - Experimental design and Feature Extraction Pipeline. A We implemented an automated process to 

extract 500 free-text clinical notes from the MIMIC IV database, focusing specifically on the patients' present 

medical histories. These selected anamnesis reports were then systematically converted and stored in a CSV file 

for further processing. B Utilizing this CSV file, our custom-designed software algorithm selected one report at a 

time and combined it with a predetermined prompt and grammatical structures. This combination was then input 

into the advanced large language model, Llama 2. The primary function of Llama 2 in our study was to 

meticulously identify and extract specific, predefined clinical features (namely, Shortness of Breath, Abdominal 

Pain, Confusion, Ascites, and Liver Cirrhosis) from the clinical reports. The extracted data was subsequently 

formatted into a JSON file. To ensure a high degree of precision and structured output, we applied a grammar-

based sampling technique. C To establish a benchmark, we engaged three medical experts who independently 

analyzed the same clinical reports. They extracted identical items as the Llama 2 model, thereby creating a reliable 

'ground truth' dataset. D This ground truth dataset served as a reference point for a quantitative comparison and 

analysis of the model's performance, assessing the accuracy and reliability of the information extracted by Llama 2. 

Icon source: Midjourney 43 
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A      B 

 

 

Figure 2 - Feature Distribution in 500 MIMIC present medical histories. A The bar chart visualizes data from 

500 present medical history reports extracted from the MIMIC-IV database. It displays the counts for five extracted 

features, with 'true' counts in red and 'false' in blue. B The sunburst plot indicates the amount of reports, in which 

the features’ term is explicitly mentioned as a share of false and true counts. Liver cirrhosis and ascites are the 

most frequently explicitly mentioned features, with every mention aligning with a 'true' classification in the ground 

truth evaluation. Abdominal pain and shortness of breath were most frequently mentioned over all reports.  
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A Prompt module structure for final zero-shot prompting 

 

B 

 

Figure 3 - Confusion matrices for extracted features with zero-shot prompting. The confusion matrices 

visualize the performance of the Llama 2 models with 7 billion, 13 billion and 70 billion parameters in retrieving the 

presence or absence of the five features ascites, abdominal pain, shortness of breath, confusion and liver cirrhosis 

in all n=500 medical histories from MIMIC IV. All matrices are divided into four quadrants with the two labels “true” 

or “false” in each axis. The x-axis depicts the predicted labels, the y-axis depicts the true labels. The confusion 

matrices are normalized to show proportions, where each cell represents the fraction of predictions within the actual 

class. Values along the diagonal indicate correct predictions (true positives and true negatives), while off-diagonal 

values represent misclassifications (false positives and false negatives). The sum of each row's fractions equals 1, 

indicating the proportion of predictions for each actual class. The 'n' values represent the absolute number of 

observations in each category. In the bottom left matrix, the extraction of ascites with the 70b model is shown. The 

top left quadrant (true positives) shows a high score of 0.95, indicating a high rate of correct predictions for actual 

cases of Ascites. The top right quadrant (false negatives) has a score of 0.05, suggesting few cases were incorrectly 
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predicted as not having Ascites. The bottom left quadrant (false positives) has a score of 0.1, indicating few cases 

were incorrectly identified as Ascites. Finally, the bottom right quadrant (true negatives) shows a high score of 0.9, 

which means a high rate of correct predictions for non-cases.  
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Figure 4 - Confusion matrices for extracted features with one-shot prompting. The confusion matrices visualize 

the performance of the Llama 2 models with 70 billion parameters in retrieving the presence or absence of the five 

features ascites, abdominal pain, shortness of breath, confusion and liver cirrhosis in all n=500 medical histories 

from MIMIC IV. All matrices are divided into four quadrants with the two labels “true” or “false” in each axis. The x-

axis depicts the predicted labels, the y-axis depicts the true labels. The confusion matrices are normalized to show 

proportions, where each cell represents the fraction of predictions within the actual class. Values along the diagonal 

indicate correct predictions (true positives and true negatives), while off-diagonal values represent misclassifications 

(false positives and false negatives). The numbers indicate absolute counts, the figure in brackets indicate fractions. 

The sum of each row's fractions equals 1, indicating the proportion of predictions for each actual class. A shows the 

best one-shot prompt architecture and results. Whereas adding definitions, which improved performance with zero-

shot prompting, deteriorated the results for one-shot prompting (B). 
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Figure 5 - Accuracy for prediction of present features with different parameter size models. This graph 

compares the accuracy of different models (7b, 13b, and 70b) in extracting the five features Ascites, Abdominal pain, 

Shortness of breath, Confusion, Liver cirrhosis. A depicts the accuracy of the final zero-shot prompting, B with plain 

zero shot prompting without additional definition or example, C the accuracy of the best one-shot prompting example. 

Error bars represent the variability or confidence intervals, calculated with 1000-fold bootstrapping.  

 


