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Summary Paragraph 

Whole-genome sequencing (WGS) provides a comprehensive view of the genome, enabling detection 

of coding and non-coding genetic variation, and surveying complex regions which are difficult to 

genotype. Here, we report on whole-genome sequencing of 490,640 UK Biobank participants, 

building on previous genotyping1 and whole-exome sequencing (WES) efforts2,3. This advance 

deepens our understanding of how genetics influences disease biology and further enhances the 

value of this open resource for the study of human biology and health. Coupling this dataset with rich 

phenotypic data, we surveyed within- and cross-ancestry genomic associations with health-related 

phenotypes and identified novel genetic and clinical insights. While most genome-wide significant 

associations with disease traits were primarily observed in Europeans, we also identified strong or 

novel signals in individuals of African and Asian ancestries. Deeper capture of exonic variation in both 

coding and UTR sequences, strengthened and surfaced novel insights relative to WES analyses. This 

landmark dataset, representing the largest collection of WGS and available to the UK Biobank 

research community, will enable advances into our understanding of the human genome, and 

facilitate the discovery of new diagnostics, therapeutics with higher efficacy and improved safety 

profile, and enable precision medicine strategies with the potential to improve global health. 

 

 

  



Main Text 
 

The UK Biobank (UKB) is a population-based study that collected detailed information from half a 

million UK participants, including biological samples and comprehensive health-related and 

demographic measures1. Numerous subsequent data collection and generation efforts, including 

multimodal brain imaging4, proteomics5, metabolomics6 and others, have dramatically increased the 

depth of the dataset. Here, we present a step change in the UK Biobank resource, and for the life 

sciences, with the completion of whole genome sequencing in half a million participants. In the 

original release, all samples were genotyped1 and imputed to ~96 million single nucleotide 

polymorphisms (SNP). SNP genotyping and imputation allow the accurate characterization of 

relatively common variants, but it is inaccurate for rare-genetic variation and complex regions of the 

genome. UKB samples also underwent whole exome sequencing7 (WES), which allows for 

characterization of the 2-3% exonic portion of the genome but omits nearly all non-coding variation 

and is limited in the detection of structural variants. Rare non-coding variation is known to contribute 

to human diseases and complex traits, although this remains relatively understudied8–10. This large-

scale, deeply phenotyped WGS dataset brings enormous potential to expand our understanding of 

the role of rare non-coding variation in health and disease. 

In this report, we demonstrate the utility of WGS in the identification of ~1.5 billion variants 

(comprising of SNP, indel variants and structural variants) in the UK Biobank participants. We 

observed an 18.8-fold and over 40-fold increase in observed human variation compared to imputed 

array and WES, respectively.  These variants were associated with many disease features and traits, 

enabling improved characterization of disease mechanisms, such as variants influencing disease risk 

via non-coding mechanisms. These data can be used to address multiple drug discovery and 

development questions, including target selection, validation, assessment of safety concerns, 

identification of patient populations with specific underlying genetic drivers of disease, and 

repositioning opportunities 11,12. A valuable unique benefit is that these data will facilitate an 

improved understanding of the selective constraints acting on disruption outside the coding genome 

which will improve the ability to prioritize rare non-coding variants with a large effect on disease 

risk13. 

This unprecedented resource will greatly enable exploration of human genetic variation and its 

implication on disease etiology. Here we describe the resource and highlight some initial examples of 

unique insights and future avenues for exploration.  



Results  

Data processing 

Sequencing 

The whole genomes of 490,640 UKB participants were sequenced to an average coverage of 32.5x (> 

23.5x per individual, Supplementary Fig. S1) using Illumina NovaSeq 6000 sequencing machines, in 

addition, 1,175 samples were sequenced in duplicate for quality control (QC) purposes (see 

Supplementary Methods). 

Cohorts 

We defined five cohorts with distinct ancestry in the UK Biobank WGS dataset using a classifier 

trained with data from the Genome Aggregation Database16 (gnomAD) (Methods), which identified 

9,229 participants being of African ancestry (AFR), 2,869 of Ashkenazi ancestry (ASJ), 2,245 of East 

Asian ancestry (EAS), 458,855 of non-Finnish European ancestry (NFE) and 9,674 of South Asian (SAS) 

ancestry, and remaining 7,768 individuals of other ancestries or non-confidently assigned to one 

group. Most individuals (93.5%) were of non-Finnish European ancestry, with the remaining 31,785 

individuals representing other continental populations. While this resource is largely European, this 

effort marks the largest WGS effort to date in non-European individuals. The relative increment is 

largest in the South Asian ancestry group, where the UKB WGS SAS cohort is four times larger than 

any other WGS cohort of this ancestry available in the Genome Aggregation Database (gnomAD v3; 

2,419 SAS individuals), the 1000 Genomes Project (1KPG; 601) or the Human Genome Diversity 

Project (HGDP; 181). 

SNP and indels 

This study reports findings from three different SNP and indel datasets: 1) joint calling across all 

individuals using GraphTyper, 2) single sample calling with DRAGEN 3.7.8, and 3) multi-sample 

aggregated DRAGEN 3.7.8 dataset (Methods). This diversity of approaches reflects developments to 

these methods throughout the course of this project and gives the opportunity to explore the various 

workflows used by consortium members and other users of the UKB. We expect the different 

datasets to yield highly comparable results, however systematic comparison of the strengths and 

weaknesses of different methods is outside the scope of this manuscript. 

 

We called 1,037,556,156 SNPs and 101,188,713 indels using GraphTyper (Figure 1a). A large majority 

of variants, 1,025,188,151 (98.80%) SNPs and 97,190,353 (96.05%) indels were reliable (AAscore > 

0.5 and < 5 duplicate inconsistencies; Methods). All GraphTyper analyses are restricted to this set 

unless otherwise noted. The number of variants identified per individual using GraphTyper was, on 



average, 43 times larger than the number of variants identified through WES 17 (Table 1a, Methods). 

Notably WES misses variants in exons that are transcribed but not translated, 69.2% and 89.9% of the 

5’ and 3’ untranslated region (UTR) variants are missing from WES, respectively. Even inside of coding 

exons currently curated by Encode18, we estimate that 13.7% of variants are missed by WES (Table 

1a, Table S1, Table S2). A subset of the missed variants is explained by the 25,853 fewer samples that 

are available in the WES release. Manual inspection of a subset of the missing variants in WES, where 

both WES and WGS were available, suggests these are absent due to both missing coverage in some 

regions as well as genotyping filters. Almost all variants identified with WES are found by WGS (Table 

1a). 

We compared the DRAGEN single sample WGS dataset to the previously published DRAGEN WES 

dataset19 to explore the number of variants identified across coding, splice and 5ʹ and 3ʹ untranslated 

region (UTR) annotation categories. As previously described15 a greater number of variants were 

captured in the WGS data across all annotation categories, with the majority (98.26%-99.67%) of 

variants identified in the WES dataset being captured in the WGS data (Table 1b). WES did not 

capture many of the UTR variants, particularly 3’UTR variants where only 24.78% of variants present 

across both datasets were found in the WES data, compared to 99.67% in the WGS data (Table 1b). 

Reassuringly, the pattern of variant-numbers was generally similar between GraphTyper and 

DRAGEN single sample datasets. 

Using the DRAGEN multi-sample dataset we called 1,289,650,789 SNPs and 204,960,409 indels on 

autosomes, sex chromosomes, mitochondria and alternate contigs of 490,541 individuals (Table S3, 

Table S4). After using DRAGEN Machine Learning Recalibration cutoff QUAL>=3 we assessed the 

sample-level variant calling accuracy using Genome in a Bottle samples and we achieve SNP 

sensitivity 99.77%, SNP precision 99.91%, indel sensitivity 99.70%, and indel precision 99.83% (Table 

S4), within Genome in a Bottle high-confidence regions. Variants are aggregated and genotyped 

using DRAGEN Iterative gVCF Genotyper with the same quality cutoff to maintain variant accuracy, 

which yielded 1,109,854,569 variant sites. We next evaluated the genotyping at these variant sites 

and found 1,010,107,317 (91%) have genotyping rate above 90%, comprising 1,108,231,808 SNPs 

and 148,001,752 indels (see Methods and Table S5). Using random downsampling of samples, we 

investigated the gain in number of variants in the UK Biobank DRAGEN aggregated variant dataset as 

sample size increases from 1000 to 490,541 (Figure 2). As expected, for common variants (e.g., >1% 

frequency) we observe only modest increase in number of variants with increasing sample size, but 

for the rarest variants (e.g., <=0.001% frequency), we observe substantial increases in number of 

variants with sample size, that don’t appear to reach a plateau even at the highest sample size, 



supporting the value of continuing very large-scale sequencing efforts to discover novel and high-

impact rare variants (Figure 2). 

Structural variants 

We identified structural variants (SVs) in each individual using the DRAGEN SV caller and combined 

these with variants from a long-read study20 and the assemblies of seven individuals21.  The resulting 

2,739,152 SVs were genotyped with GraphTyper21, of which 70.3% (1,926,132) (Figure 1b) were 

considered reliable; 262,720 duplications, 479,265 insertions and 1,184,147 deletions. SVs were 

defined as variants being at least 50bp and size distribution showed a well-documented skew toward 

short variants (Figure 1b). 

On average we identified 13,102 reliably called SVs per individual, 7,340 deletions and 5,762 

insertions or duplications (Figure 1a). These numbers are greater than the 7,439 SVs per individual 

found by gnomAD-SV22, another short-read study, but considerably smaller than the 22,636 high 

quality SVs found in a long-read sequencing study20 mostly due to an under-representation of 

insertions and SVs in repetitive regions. Despite the number of SVs being much smaller than the 

number of SNPs and indels, the number of base pairs impacted per haploid genome on average (3.6 

Mbp) is comparable to that of SNPs (2.9 Mbp) and indels (1.5 Mbp).  Most of the structural variants 

are very rare; 1,470,329 (76.3%) are carried by fewer than 10 individuals (<0.001% frequency).  We 

observed that rare variants are generally longer than common variants with a median length of 1,660 

bp for deletions carried by fewer than 10 individuals and 169 bp for deletions with frequency above 

1% (Figure 1b). 

Variant identification was performed analogously to the UKB 150k release15 but replacing Manta23 

with the DRAGEN SV caller which identifies a greater number of insertions. Due to the improved 

discovery step and a modified variant filtering procedure the number reliably called SVs is 

approximately 3-fold larger in the current set compared to the previous release15. Out of the 637,321 

SVs reliably called in our previous call set, 590,037 (92.6%) are also reliably called in the current call 

set. An additional 11,958 (1.8%) were part of the genotyping set but no longer considered reliable 

when genotyped while the remaining 35,327 (5.5%) were not part of the current set of variants.   

The number of variants called per individual varies by population, with the largest number of variants 

called in individuals in the AFR cohort, followed by the EAS, SAS, ASJ and finally NFE, where 

individuals had the fewest number of called variants when compared to the current reference 

genome which is mostly of European descent (Figure 1a). 



Phenotype associations 

We integrated deep phenotyping data24 available for the majority of UKB participants and performed 

genetic association analysis across selected disease outcomes captured with electronic health 

records and molecular and physical measurement phenotypes, many of which are well-established 

disease biomarkers. Association testing was performed in all observed genetic variants and using 

several genetic models, we included single variant tests, multi-ancestry meta-analysis, rare variant 

collapsing analysis, and structural variant analysis (Methods). 

Genome-wide association analysis of the UK Biobank phenome 

Genome-wide association analysis for individual SNPs and small indels was performed using the 

GraphTyper dataset in each ancestry cohort for 764 ICD-10 codes (N cases > 200) and 71 selected 

quantitative phenotypes (N > 1,000) (Table S6). For the NFE cohort, we estimated the gain in 

discovery and improvement of fine-mapping in association signals  against variants observed in the 

imputed array genetic dataset1. We observed that whilst the increase in discovery was modest for 

common variant associations (Fig. S2), the ability to fine-map association signals was improved. We 

identified 33,123 associations across 763 binary and 71 quantitative GWAS datasets (Methods). Of 

these, 3,991 (12.05%) are novel to the WGS data when compared to those identified using only array 

imputed variants. As expected, the majority of associated variants novel to WGS are rare variants, 

including 86% of associations with MAF < 0.0001, while only 2% of associations with MAF > 0.1 are 

novel to WGS (Fig. S2). Among the 29,357 associations identified using array imputed variants, 2,984 

had a different, more significant, lead variant in the WGS variants, resulting in improved fine-

mapping of the association signals observed (Table S7). For example, a common variant association 

uncovered by WGS that was previously missed by the imputed array data is near genes MRC1 and 

TMEM236 in chromosome 10, where we identified an association between rs371858405 (NFE MAF = 

0.24) and reduced hypothyroidism risk (OR = 0.94, p-value = 2.6e-11). In the imputed data, the region 

within the WGS lead-variant has sparse SNP coverage when compared to adjacent regions (Fig. S3a), 

likely a result of a patch to the hg19 reference genome (chr10_gl383543_fix) that occurred after the 

UK Biobank genotyping array was designed. A second example illustrating novel biological findings 

with rare genetic variation is the observation of a rare frameshift variant (MAF = 5.1 10-5) in FOXE3 

chr1:47417015:GC:G (rs1176723126) found to be significantly associated with the first occurrence 

phenotype “other cataract” (H26), p-value=6.2 10-9 (Fig. S3b). The link between FOXE3 and cataract, 

and other ocular diseases, was reported in previous familial studies and human and mouse disease 

models25, but the association was not observed in the UKB imputed array and meta-analysis that 

included UKB imputed array26. 



Multi-ancestry meta-GWAS 

To examine multi-ancestry genetics of tested health-related phenotypes, we performed trans-

ancestry meta-analysis of the GraphTyper GWAS data across five ancestries for 68 quantitative traits 

with ≥1,000 measurements in at least two ancestries and 228 ICD-10 disease outcomes with ≥200 

cases in at least two ancestries. We identified 28,674 genome-wide significant (p<5.0e-08) sentinel 

associations in the meta-analysis (Methods, Table S8), including 1,934 meta-only significant 

associations, 26,478 associations significant only in NFE, and 82 nonNFE-only associations (Table S9; 

Figure 3).   

For example, it is well-known that APOE e2 alleles (rs7412-T and rs429358-T) protect carriers against 

Alzheimer’s disease (AD)27, while e4 alleles (rs7412-C and rs429358-C) increase the AD risk. We found 

rs7412-T is significantly associated with lower Apolipoprotein B (apoB), Lipoprotein A, LDL, total 

cholesterol, and lower risk of lipoprotein metabolism disorder (ICD10: E78) across ancestries with 

concordant effects. This is consistent with published evidence of rs7412-T association with lipid 

biomarkers in Europeans, Africans, Asians, and Hispanics28–36; lower apoB has been linked to reduced 

AD risk, with causality to be confirmed32,37–43. As expected, rs429358-C, is associated with higher risk 

of dementia and cognitive disorders (F01-F09), intracranial hemorrhage and cerebrovascular disease 

(ICD10: I60-I69). However, rs429358-C is also associated with lower C-reactive protein (CRP) across 

ancestries and lower liver disease (ICD10: K70-K77) risk in meta-analysis from non-significant 

concordant signals in AFR and SAS. Further, it is associated with lower risk of obesity (ICD10: E66) and 

pulmonary disease (ICD10: J44) with meta-results dominated by NFE signals. Recent studies observed 

same effect of rs429358-C on CRP in Europeans, Japanese and Koreans, strongly suggesting higher 

circulating CRP increases the risk of age-related macular degeneration34,44–47Prior studies also 

reported rs429358-C’s association with lower NFLD (nonalcoholic fatty liver) and liver enzyme level in 

Europeans, Africans, Asians and Hispanics48–55; but novel associations with obesity and pulmonary 

disease are detected here, with smaller effect size than other reported diseases and requires further 

investigation. 

Of the meta-analysis significant associations, 126 were driven by non-NFE ancestries despite the 

much smaller sample size compared to NFE (Fig. S4a): 83 with strongest signals (sentinel variants 

with smallest p-value) in AFR, 37 in SAS, 5 in EAS and 1 in ASJ. Almost all the non-NFE driven 

significant sentinel variants (80 AFR, 37 SAS, 5 EAS and 1 ASJ) had MAF (minor allele frequency) 

< 0.5% in NFE; the median MAF enrichment compared with NFE is highest in AFR 

(MAFAFR/MAFNFE] = 828.49, followed by EAS and SAS with relative wide range of enrichment (Fig. S4b), 

suggesting these signals were driven by higher allelic enrichment shaped by population history. For 

example, the HBB-HBE1 locus’ association with Anemia (ICD10: D55-59) has the strongest signals in 



AFR and SAS, but no signals at all in NFE. The sentinel SNP rs334 (11-5227002-T-A, missense variant 

in HBB gene) is the most common cause of sickle cell disease (SCD), leading to abnormal hemoglobin 

(HbS) and sickle cell anemia. In this study, rs334-A is common in AFR (AF=6.3%) but rare (AF<0.08%) 

in NFE and SAS (Figure 4); similarly, from gnomAD (v4.0.0), rs334-A is common in Africans (AF=4.9%), 

rare in South Asian (AF=0.09%) and almost absent in Europeans (AF=0.003%). This is driven by rs334-

A’s protective effect against malaria56, despite its pathogenic effect causing SCD, and carriers’ 

survival advantage under selection pressure in areas with high malaria prevalence (based on 2022 

world malaria report, 95% malaria cases were in Africa, followed by 3-4% in South-East Asia; while 

the European region has been free of malaria since 2015). We observed rs334-A is also associated 

with higher Cystatin-C, blood urea and lower urinary creatine, sodium, potassium, which is expected 

as one severe complication of SCD is sickle cell nephropathy primarily attributed to hemolysis and 

vascular occlusion57. Another HBB nonsense variant rs11549407 (11-5226774-G-A) is the sentinel 

signal strongly associated (p-value<5.6e-62, beta=6.9) with beta Thalassaemia (ICD10: D56), despite 

its low frequency in NFE (AF=0.005%) and absence in other ancestries (Figure 4); from gnomAD, 

rs11549407-A has an AF of 0.02% in non-Finnish Europeans, 0.003% in Africans, completely absent in 

Asian and Ashkenazi Jewish. rs11549407-A introduces a premature stop codon, leading to a 

truncated beta-globin protein and reduced production of normal beta-globin chains, thus unstable 

hemoglobin molecules and Thalassemia. In contrast to rs334, this nonsense mutation with strong 

disease-causing effect has not been shown to confer protection against malaria or other pathogens. 

One other HBB splice site variant rs33915217 (11-5226925-C-G), which is also pathogenic for beta 

Thalassaemia (Figure 4), is associated with lower corpuscular haemoglobin concentration specifically 

in SAS (AF=0.4%) with no signals from other ancestries; from gnomAD, it also occurs more commonly 

in South Asian (AF=0.5%) and almost absent in Africans and Europeans. The higher frequency of this 

variant in SAS could be shaped by genetic drift, founder effect or potential selective advantage 

specific to South Asians, which is yet to be established given limited report on rs3391521758.  Under 

the same selection pressure of malaria, another G6PD missense variant rs1050828 (X-154536002-C-

T), which cause the G6PD deficiency and hemolytic anemia, but provides protection against severe 

malaria, reaching high frequency in AFR (14.7%) but is rare in NFE (0.005%). Therefore, despite the 

much larger NFE sample size, here we detected rs1050828-T as an AFR specific GWS signal, 

associated with higher reticulocyte count/percentage/volume and total bilirubin, attributing to 

compensatory release of more reticulocytes triggered by hemolysis. 

 



Loss-of-function (LoF) variants in WGS 
 

Naturally occurring human genetic variation known to result in disruption of protein-coding genes 

provide an in vivo model of human gene inactivation. Individuals with LoF (loss-of-function) variants, 

particularly those with homozygous genotypes, can therefore be considered a form of human 

“knock-outs” (KOs). Studying human KOs affords an opportunity to predict phenotypic consequences 

of pharmacological inhibition. Besides putative LoF (pLoF) variants that can be predicted based on 

variant annotation, ClinVar 24 also reported pathogenic/likely pathogenetic (P/LP) variants with 

clinical pathogenicity.  Among the 490K UKB WGS samples (GraphTyper dataset), we found 10,071 

autosomal genes with at least 100 heterozygous carriers of pLoF/P/LP variants and 1,202 autosomal 

genes with at least three homozygous carriers. Especially, among the 81 genes recommended by the 

ACMG59 (American College of Medical Genetics and Genomics) for clinical diagnostic reporting, we 

found 7,313 pLoF/P/LP variants carried by 51,107 individuals. Furthermore, there are 81 homozygous 

carriers of pLoF/P/LP found in 14 ACMG genes; of which 56 participants carry mutations in DNA 

repair pathway genes like MUTYH, PMS2, MSH6 (Table S10). Among them, a subset are clinically 

actionable genotypes with a confirmed functional impact in corresponding inheritance mode. Further 

validation, and confirmation with ACMG diagnostic criteria, is needed to determine which variants 

are clinically actionable. 

Specifically, for PCSK9, WGS revealed 961 heterozygous carriers of pLoF/P/LP variants and one 

homozygous carrier of a LoF (rs28362286, p.C679X), which is relatively common in Africans but rare 

in Europeans (gnomAD AF: 0.8% vs. 0.004%). As with PCSK9 inhibitors, C679X has been shown to 

lower LDL levels  60–64. A homozygote carrier of C679X, who has African ancestry, exhibits remarkably 

low plasma LDL level (1.49 mmol/L, Fig. S5). Comparing UKB WGS vs. WES datasets, among the same 

set of 450K participants, ~16000 autosomal genes harboring pLoF/P/LP variants in ≥1 carriers in both 

WGS and WES; but 1,977 more genes can be found in WGS with at least 100 carriers of pLoF/P/LP 

variants (Figure 5), this is expected given the WGS library design and deeper coverage.  

Rare variant collapsing analyses PheWAS of exons in WGS compared to WES  
All results for rare variant collapsing analyses use the single sample variant calls generated as part of 

the UKB DRAGEN-processed data releases. Gene-level collapsing analysis, in which aggregation of 

rare variants is tested for association with disease, has emerged as a powerful method for identifying 

gene-phenotype associations driven by high allelic heterogeneity19,65. To date, most collapsing 

analyses have used WES data66, requiring careful filtering for inadequately sequenced sites. We 

hypothesized that the greater coverage of WGS compared to WES, and improved sequence 

representation across certain technically challenging regions of the exome, could increase power to 



detect gene-phenotype associations in phenome-wide association studies (PheWAS). We therefore 

performed two separate collapsing analysis-based PheWAS on an identical sample of 460,552 

individuals using both WES- and WGS-based coding regions processed by DRAGEN (Methods).  

In total, we tested for the association between 18,930 genes and 751 phenotypes (687 binary “First 

Occurrence” phenotypes and 64 quantitative traits that met our inclusion criteria, see methods and 

Table S11) using 10 different non-synonymous collapsing analysis models plus a synonymous control 

model (Table S12) as previously described19 (Methods). We performed a multi-ancestry meta-

analysis to estimate the aggregate effect of qualifying variants (QVs) in genes derived from the WES 

or WGS data on the selected phenotypes across ancestries (Methods). In total, we identified 1,359 

significant (p≤1x10-8)19 gene-phenotype associations, of which 87.4% (1,188) were significant in both 

the WES-PheWAS and WGS-PheWAS (representing 184 binary and 1,004 quantitative association 

signals), 4.9% (66) were significant only in the WES-PheWAS (representing 15 binary and 51 

quantitative association signals), and 7.7% (105) were significant only in the WGS-PheWAS 

(representing 23 binary and 82 quantitative association signals) across the 10 non-synonymous 

models (Table S13).  

There was generally high correlation between the -log10(p-values) derived from WES and WGS 

(Spearman’s rank correlation coefficient = 0.95, p < 2.2x10-16) (Fig. S6). Across both binary and 

quantitative traits, there were 29 genes with significant (p ≤ 1e-8) associations unique to the WGS 

results and 20 genes with significant (p ≤ 1e-8) associations unique to the WES results (Fig. S7). Three 

of the genes uniquely associated with either technology were in the MHC region: VWA7 (WES) and 

HLA-C and C2 (WGS). In terms of associations, there were 105 (23 binary, 82 quantitative) gene-

phenotype pairs significant in WGS but not WES, and 66 (15 binary, 51 quantitative) significant in 

WES but not WGS (Table S12). We observed that fewer than 3.3% of gene-phenotype pairs had an 

absolute difference in Phred scores (-10xlog10[p-values]) of greater than 5 units and less than 0.56% 

greater than 10 units (i.e., 1-order of magnitude) (Fig. S8). Across the 14,130,325 gene-phenotype 

associations (significant and non-significant) there were 54,818 (49,762 binary, 5,056 quantitative) 

gene-phenotype associations with greater than a 10 unit difference in Phred scores, that achieved a 

lower p-value in the WGS results, and 23,687 (19,607 binary, 4,080 quantitative) associations that 

achieved a lower p-value in the WES results (Fig. S9). 

We identified 95 significant genotype-phenotype associations with 15 genes recurrently mutated in 

clonal haematopoiesis and myeloid cancers as described previously67, potentially driven by somatic 

qualifying variants. Of these, 70 were detected by both technologies, 14 were unique to the WES 

results and 11 were unique to the WGS results. Associations unique to WGS included an association 



between protein truncating variants in TET2 and first occurrence phenotype: Source of report of D72 

(other disorders of white blood cells) (WGS p-value = 3.62·10-13, binary odds ratio (OR) = 8.08,  95% 

confidence interval (95% CI) = 5.02 to 12.40; WES p-value = 4.23·10-7, OR = 6.18,  95% CI = 3.26 to 

10.70). We also found an association between protein truncating and predicted damaging missense 

variants in SRSF2 and reticulocyte percentage (WGS p-value = 1.92·10-6, beta = 0.30, 95% CI = 0.17 to 

0.42; WES p-value = 3.7·10-18, beta = 0.60, 95% CI = 0.47 to 0.74) only significant in the WES results 

(Table S12). 

Overall, we found that the association results between the WES and WGS DRAGEN datasets are 

highly correlated. Nevertheless, we identified examples of genes that contain coding regions/sites 

where coverage is underrepresented in WES and improved in WGS, resulting in improved association 

statistics in the WGS versus WES results. One example is PKHD1 for which we identified associations 

between rare variant collapsing models and three quantitative phenotypes that were more 

significant in WGS than WES: gamma-glutamyl transferase (GGT) (WES p-value = 4.63x10-18, beta = 

0.19, 95% CI = 0.15 to 0.24; WGS p-value = 1.24x10-19, beta = 0.20, 95% CI = 0.16 to 0.24), creatinine 

(WES p-value= 3.85x10-10, beta = -0.04, 95% CI = -0.06 to -0.03; WGS p-value = 2.14x10-12, beta = -

0.05, 95% CI = -0.06 to -0.03) and cystatin C that only achieves significance (p<1x10-8) in the WGS 

data (WES p-value = 3.02x10-8, beta = -0.05, 95% CI = -0.07 to -0.03; WGS p-value= 3.04x10-9, beta = -

0.04, 95% CI = -0.06 to -0.03) (Table S12). Another example is LPA where protein-truncating variants 

are statistically unequivocally associated with lipoprotein A levels in both datasets; however, 

achieving lower p-values for WGS (WES p-value = 1.92x10-75, beta = -0.40, 95% CI = -0.44 to -0.36; 

WGS p-value = 6.97x10-86, beta = -0.40, 95% CI = -0.44 to -0.36) (Table S12). For both PKHD1 and LPA, 

we observed that the number of samples with ≥10X coverage drops in the WES compared to WGS 

DRAGEN dataset at specific coding region (CDS) sites/exons (Fig. S10). For example, for LPA only 

~39% of samples achieve ≥10X coverage across exons 10-15 (bp: 160,612,932 - 160,628,366). These 

select examples demonstrate settings where the value of WGS improves the ability to ascertain 

qualifying variants for collapsing analyses and provide a better representation of phenome-wide 

associations in genes that contain regions with drops in coverage in WES data. From our previous 

work with the UKB exomes, of the 18,762 studied protein-coding genes we identified 563 genes 

where only 95% of the protein-coding sequence had on average <10x coverage, 262 of these genes 

had only 50%, and 133 were as extreme as only 5%19. This suggests gaps in discovery potential that 

could be addressed using the coding regions from the UK Biobank whole-genomes. 

Rare variant collapsing analysis PheWAS of UTRs yields significant associations 
To understand the contributions of rare untranslated region (UTR) variants to human phenotypes, 

we used the UKB DRAGEN WGS data to compile ~13.4 million rare variants (minor allele frequency 



(MAF) < 0.1 %) from both 5’ and 3’ UTRs of protein-coding genes across participants of selected 

ancestries (EUR, ASJ, AFR, EAS and SAS). We then performed two kinds of multi-ancestry collapsing 

PheWASs: UTR-only and UTR combined with coding variants.  

For the UTR-only collapsing PheWASs, we tested the aggregate effect of UTR qualifying variants on 

687 binary and 64 quantitative phenotypes for 5’ UTR only, 3’ UTR only, and 5’ and 3’ UTRs 

combined. Each of these was run using 6 different collapsing analysis models to capture a range of 

MAF and CADD68 thresholds, and any UTR defined sites that also overlapped with a reported protein-

coding site were omitted (Methods).  

Using the currently defined collapsing models, we observed a total of 65 significant (P < 1x10-8) 

associations (1 binary and 64 quantitative trait associations) comprising 35 unique genes and 36 

unique phenotypes (Figure 6 and Table S13). Of these, 29 (45%) signals were not significant in our 

WGS-based coding collapsing analyses. One binary signal and 7 quantitative signals were 

independently significant in both 5’ and 3’ UTR models for those relationships. 

For the UTR combined with coding collapsing PheWASs, we tested the combined effect of rare UTR 

variants and exonic PTVs on the same phenotypes. Each was run using two different collapsing 

analysis models. We observed 26 and 149 significant (P < 1x10-8) associations for binary and 

quantitative phenotypes respectively (Table S13).  We compared these results to our WGS-based 

coding collapsing PheWAS results. Nine phenotypes that achieved significance in the UTR combined 

with coding PheWASs, were not significant in the coding-only collapsing PheWAS, suggesting that the 

coding variant association was boosted by incorporating UTRs (Table S13). For example, rare variants 

in combined CDS and UTR regions of NWD1 are significantly associated with kidney calculus (p-value 

= 9.24·10-9, OR = 1.68). The association did not achieve significance (p<1x10-8) in the coding-only 

collapsing PheWAS or the UTR only collapsing PheWASs, but only when these two regions were 

combined (Table S14). Our models indicate that the signal is likely to be mostly driven by rare 3’ UTR 

variants (Table S14) although the 1,220 qualifying variants were distributed throughout NWD1 CDS 

and UTR. A recent publication69 identified an association between the common synonymous variant 

rs773852 (MAF = 0.4) and kidney calculus.  Our study extends this into rare coding and non-coding 

variants and demonstrates the value of WGS in identifying non-coding phenotype associations. 

Phenotypic effects of structural variants 

Most of the statistically significant associations that were identified in the previous UKB 150K 

release15 from the WGS consortium have also been identified in the current release. The new UKB 

500K release, however, allows the identification of rarer structural variants and assesses their 

detectable impact on disease and other UK Biobank phenotypes. We present how the full release 



allows more detailed analysis than the preliminary release, anchoring on genes and variants that 

have a well-established association with phenotype. 

Genes are typically overlapped by several SVs. Previously15 we highlighted an association of non-HDL 

cholesterol with a 14,154 base pair deletion overlapping PCSK9, a proprotein convertase which is 

involved in the degradation of LDL receptors in the liver. In the current release 13 SVs overlapping 

coding exons in PCSK9 are found, carried by 163 individuals, bringing the total number of PCSK9 pLOF 

carriers to 1,124 The previously reported SV is the most common of the 13 variants and is carried by 

111 individuals. Carriers of this deletion have markedly (1.22 s.d.) lower levels.  Carriers of the other 

deletions in PCSK9 similarly had lower levels of non-HDL cholesterol (collectively averaging 0.51 s.d.). 

Another example is a 5,200bp deletion on chr12:56,451,164-56,456,364, deleting all four coding 

exons of MIP while largely keeping intact its 5’ UTR region and not affecting other genes. MIP 

encodes the Major intrinsic protein of the lens fiber. Rare deleterious missense and loss-of-function 

variants in this gene have been associated with autosomal dominant cataract70,71 disease; 15 carriers 

of this deletion are present in the UKB and all belong to the NFE population. We find a strong 

association with cataracts in our data (OR=25.3, p-value=6.3·10-7, MAF = 0.0015%).  

The ACMG72 recommends reporting actionable genotypes in a list of genes associated with diseases 

that are highly penetrant and for which a well-established intervention is available. We previously 

reported15 that 4.1% of individuals in the UKB carry an actionable SNP or indel genotype.  We find 

that an additional 0.60% of individuals carry an SV that is annotated to cause a loss of function in a 

gene annotated to be autosomal dominant LoF/P/LP. While further validation of these markers73 is 

needed, this represents a 14.8% increase in the number of individuals with an actionable genotype 

were all these variants found to be LoF/P/LP. 

ClinVar74 is an archive for interpretations of clinical significance of variants for reported conditions.  

The latest release of ClinVar has 2,256,088 records, of which only 4,062 are SVs; 458 SVs presented 

here matched 486 (12.0%) of the 4,062 SVs in ClinVar.  As expected, variants annotated as benign or 

likely benign are generally carried by more individuals in the general population setting than those 

that are annotated as pathogenic or likely pathogenic (Table S15). The scale of this population 

sample cohort coupled with access to rich medical history allows us to assess the likely clinical impact 

of many of these variants across a number of phenotypes and thus reassess the ClinVar classification.  

Most SVs annotated as pathogenic in ClinVar and found in our data are very rare (MAF< 0.01%,Table 

S15). One example of a ClinVar variant is a 52 base pair deletion on chr19:12,943,750-12,943,802 in 

the first exon of CALR gene resulting in a stop gain. The variant is a recurrent somatic mutation75–77 

and annotated in ClinVar as pathogenic for primary myelofibrosis and thrombocytoma carried by 47 



individuals in the NFE population and one individual in the AFR population.  We find that the variant 

associates with measures of platelet distribution; most strongly with platelet width, effect 2.02 s.d. 

(95% CI 1.72-2.34, p-value=3.1x10-38).  Interestingly this variant is also found in our SNP/indel call set, 

but is not found in the WES data, despite being exonic. 

Although most ClinVar variants are very rare within the UK Biobank some of the variants have higher 

frequency in the sub-cohorts, an example of this is a 2,502 bp deletion on chr2:151,645,755-

151,648,057 that deletes exon 55 of NEB.  This deletion has been associated with nemaline 

myopathy, is known to have arisen from a single founder mutation78 and is carried by 33 individuals 

in the cohort; 17 of which belong to the ASJ sub-cohort.  A second example is a 613bp deletion on 

chr11:5,225,255-5,225,868 that deletes the first of three exons of HBB.  The deletion is carried by 19 

individuals all belonging to the SAS cohort.  The deletion has been annotated in ClinVar to be 

clinically significant for beta Thalassemia and we find it to associate with a 1.96 s.d. (95% CI 1.49-

2.43, p-value=5.4·10-16) decrease in Haemoglobin concentration. 

 

  



Discussion 
The UKB WGS project offers a groundbreaking opportunity to explore human genetic variation and 

its application to disease research. The vast dataset generated in this study will advance our 

understanding of human genetics and significantly impact drug discovery and development, disease 

risk assessment and precision medicine applications on a global scale. Furthermore, this work will 

provide essential insights to help understand the contribution of rare non-coding variation to human 

biological variation and will facilitate the translation of human genetics into therapies over the next 

decade. This dataset will also enable advances in evolutionary biology such as understanding of de 

novo variation, evaluation of polygenic adaptation and improved inference from ancient DNA. 

Moreover, lessons learned during this endeavor, by successfully addressing scientific, technical, and 

organizational challenges by leveraging public-private partnerships, provide a blueprint and 

benchmark for future population-scale studies.  

UKB WGS was crucial to identify an 18.8-fold increase of variants over the imputed array and over 

40-fold increase to WES, providing an expanded panoramic view of genomic landscape. This is 

consistent with multiple studies that highlight the power of WGS versus WES for identifying coding 

variants5, especially considering the decreased cost of WGS over time6.  In accordance with previous 

efforts15,16 this information can be used to identify regions that have a lower tolerance to variation. 

From Figure 4, WGS clearly allowed us to identify more genes harboring pLoF/P/LP variants in more 

carriers, which offers more opportunities of evaluating gene targets in LoF heterozygous carriers or 

even human “KO”. WGS also allowed us to find a large number of clinically relevant and disease-

associated structural variants.  The incremental benefit of variant identification from WGS has 

implications on the design and budgeting of future population size studies, especially in identifying 

variants largely over-represented in specific non-NFE groups.  

From cross-ancestry meta-analysis, we confirmed known associations and identified novel ones with 

new indications and/or in non-European ancestries. Even though non-NFE ancestries had smaller 

sample sizes, 82 meta-GWS associations were found significant only in non-NFE ancestries (Table S9), 

likely driven by selection pressure from regional-specific environment factors. For example, HBB and 

G6PD’s missense causal variants for SCD and anaemia were >1500x more common in AFR vs. NFE, 

due to their protection against severe malaria and the fact that 95% of malaria cases occur in 

African80 . In contrast, a Thalassemia-causing HBB LoF mutation (rs11549407-A) and splice site variant 

(rs33915217-G) were most prevalent in NFE and SAS. These variants are rare in AFR and have no 

reported protective effects against malaria or other infectious diseases endemic to Africa. While a 

HBB nonsense variant was detected in WES (AF=0.003%) but more enriched in WGS (AF=0.005%), the 



splice site variant was exclusively detected in WGS (not in WES nor in imputed array genotypes), 

again highlighting WGS’ unique value. 

There is consensus among the pharmaceutical industry that human genomic evidence increases the 

FDA approval rate at least 2-fold81–84. But current human genomic reference/biobank data do not 

reflect the diversity of human populations i.e., are still dominated by European ancestries85 thus 

limiting the detection of variation specific to non-European regions and leading to a fundamental 

bias in the understanding of the genetic basis of disease in diverse populations. In recent years, there 

has been increasing awareness of the inequities in the representation of global populations from 

non-European descent in clinical trials and basic clinical research. Attempts to address these 

inequities will reduce health disparities that affect individuals of non-European or admixed 

ancestries. There is a strong need for more diverse and deeper human multiomic data, which will 

generate novel insights as a complement to other pre-clinical models for drug discovery and 

development86. 

To understand the impact of rare variants captured by WGS on human disease we present a series of 

examples using collapsing analysis including non-coding variants and coding variants that are not well 

covered by standard WES. Our observation that WGS can boost significance for certain genetic 

associations compared to WES in a collapsing analysis PheWAS context is consistent with other 

studies that show better coverage (and therefore better sensitivity to call variants) in WGS compared 

to WES for particular genes79. Genes that have improved coverage in WGS include LPA, which has 

been suggested as a gene that could be screened for cardiovascular risk prediction87, demonstrating 

potential clinical utility of WGS. While we restricted collapsing analyses to samples who had both 

WES and WGS available to allow a closer comparison of the technologies, nevertheless some 

technical differences remain (e.g., differences in read length and average coverage depth of coding 

regions) that could contribute to the difference in signals. Defining qualifying variants in non-protein-

coding regions remains challenging. In silico predictions of variant functional effect are less accurate 

in non-protein-coding regions than protein coding regions. Additionally, biological effects of variation 

in non-protein-coding regions are likely to be on average more modest than those in protein-coding 

regions. Therefore, in this study augmenting collapsing analysis signals in coding regions with UTRs 

dilutes the signals for many phenotypes. Nevertheless, our observation of significant associations in 

UTRs, and a few phenotypes for which adding UTR boosts coding signals, demonstrates the great 

potential of using this dataset to explore disease-relevant rare variant associations in neglected non-

coding regions. Next steps could include further refining the non-coding qualifying variant definitions 

with additional filters, expanding to other phenotypes, and other classes of non-coding regions. In 

the UK Biobank, additional data modalities provide a valuable opportunity to discriminate 



functionally important variants and therefore refine qualifying variant criteria. For example, a recent 

study using Olink plasma proteomics data in the UK Biobank boosts signals by combining protein 

quantitative trait loci with protein-truncating variants in collapsing analyses88. 

The study presented here is the largest WGS-based genetic study performed to date. We have 

provided examples where we show that combining WGS data with the rich phenotypic data in the UK 

Biobank gives new insights into the complex relationship between human variation and sequence 

variation. We believe that further analysis of the data will be invaluable. This resource can not only 

facilitate improved imputation performance for rare variants in individuals across five different 

ancestries 14,15, but may also be useful for describing variation in complex regions, such as HLA, KIR, 

and red blood cell antigen systems, and serve as a gold standard for future population scale studies. 

We are confident that leveraging the combined expertise of scientists worldwide will lead to new 

insights that will meaningfully impact our understanding of human disease biology and thereby 

advance the search for safe and effective medicines. 

 

 

  



Data availability  
 
WGS data can be accessed via the UK Biobank research analysis platform (RAP): 
https://ukbiobank.dnanexus.com/landing. The Research Analysis Platform is open to researchers 
who are listed as collaborators on UKB-approved access applications. Allele frequency browser is 
available at https://afb.ukbiobank.ac.uk/. Rare variant collapsing analysis association statistics are 
available through the AstraZeneca Centre for Genomics Research (CGR) PheWAS Portal 
(http://azphewas.com/). SV association data is available at https://www.decode.com/summarydata/. 
Human reference genome GRCh38, 
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/reference/GRCh38_reference_genome/. GIAB 
WGS samples https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/data/ ENSEMBL 
https://m.ensembl.org/info/data/mysql.html . 
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Tables 

a) 
Annotation WGS  WES Intersection Union Unique 

to WES  
Present 
WES (%) 

Missing 
WES (%) 

Present 
WGS (%) 

Missing 
WGS (%) 

Coding  12,563,849 10,997,033 10,813,189 12,747,693 183,844 86.267 13.733 98.558 1.442 
Splice 922,111 799,114 784,865 936,360 14,249 85.343 14.657 98.478 1.522 
5' UTR 3,127,742 973,615 944,458 3,156,899 29,157 30.841 69.159 99.076 0.924 
3' UTR 13,941,989 1,406,375 1,366,180 13,982,184 40,195 10.058 89.942 99.713 0.287 
Proximal 490,613,217 12,482,022 11,988,515 491,106,724 493,507 2.542 97.458 99.900 0.100 
Intergenic 601,209,600 182,763 165,217 601,227,146 17,546 0.030 99.970 99.997 0.003 
Sum 1,122,378,508 26,840,922 26,062,424 1,123,157,006 778,498 2.390 97.610 99.931 0.069 

b) 

Annotation WGS WES Intersection Union 
Unique to 

WES 
Present 
WES (%) 

Unique to 
WGS 

Present 
WGS (%) 

Coding 12,226,571 11,596,546 11,522,471 12,300,646 74,075 94.28% 704,100 99.40% 
Splice 1,180,346 1,107,034 1,086,157 1,201,223 20,877 92.16% 94,189 98.26% 
5'UTR 4,867,014 1,892,335 1,859,132 4,900,217 33,203 38.62% 3,007,882 99.32% 
3'UTR 16,211,884 4,030,034 3,976,725 16,265,193 53,309 24.78% 12,235,159 99.67% 

Table 1. Numbers of different types of variants identified in at least one individual stratified by annotation across a) 
GraphTyper dataset, using Ensembl version 101 annotations comparing WES and WGS data releases and b) DRAGEN single 
sample dataset annotated using SnpEff v4.3 against Ensembl Build 38.92. For DRAGEN, high quality variant counts are 
limited to the 460,552 samples for whom we had both WES and WGS available, and percentages are based on the number 
of variants compared to the union across WES and WGS variants per annotation type. Table S3 provides the DRAGEN 
aggregated dataset variant counts across the extended list of variant classes and for all WGS participants. 

 

 

 



 

 

 

 

 

 

 

 

Figures 

 

 

 

Graphic summary. Framework of the WGS UKB study. This figure captures the flow of this manuscript. We start with the 
collection of patient samples by UK Biobank and followed by the strategy taken to perform WGS. We continue with quality 
control performed on GraphTyper and DRAGEN datasets, followed by variant calling of SNPs, in/dels, and structural variants 
(SV). Thereafter we defined the phenotypes (binary and quantitative) associated with SV, SNPs and at the gene level (rare 
variant analysis) and conclude with the definition of five ancestry groups and collective association effect as a cross-ancestry 
meta-analysis. 

 
 



 

 
Figure 1 a) Panels showing the density/counts of the per-individual number of variants split up by the five populations 
considered in this study. Figures show number of SNPs, indels, singleton SNPs and indels, combined number of SV insertions 
and duplications and SV deletions.  b) The length of SV deletions discovered in this study, split by the frequency of the 
variant. Red area shows the size of variants in 25th-75th quartile.  Middle line shows the median length and top horizontal 
line the 95th percentile. c) The number of variants discovered split by variant class, duplication, insertion and deletion.  d) 
The size of insertions and deletions discovered shown in range from 50bp up to 1,000, 10,000 and 100,000 bp.  

 



 
Figure 2 Number of variants in UK Biobank DRAGEN aggregated variant dataset in different allele frequency ranges as the 
number of samples increase from 1000 to 490,541 (based on random downsampling).  Variant alleles are collected from all 
autosomes, sex chromosomes, mitochondria, and ALT contigs.  



 

 

 
Figure 3 UpSet plot of GWS (genome-wide significant) associations across ancestries. Ancestry labels are sorted by #of GWS 
associations in each set: meta-analysis, NFE (non-Finnish European), SAS (South Asian), AFR (African), ASJ (Ashkenazi 
Jewish), EAS (East Asian).   



  



 

 
Figure 4 Regional plot for HBB-HBE1 locus associated with a) Hemolytic anemias (D55-59) in NFE, AFR, SAS and b) 
Thalassaemia (D56) in NFE, AFR, SAS. NFE: non-Finnish European; AFR: African; SAS: South Asian; EAS: East Asian; ASJ: 
Ashkenazi Jewish. 

 



 

Fig. 5: Observed number of genes in carriers of heterozygous pLoF/P/LP variants in WGS and WES. 
The number of autosomal genes (Y-axis) with at least 1, 25, 50 and 100 carriers of heterozygous pLoF 
variants among the number of individuals (X-axis) to the total number of 452,728 participants with 
both WES and WGS data. pLoF: putative loss-of-function variants. P/LP: ClinVar pathogenic/likely 
pathogenic variants (see Supplementary Methods for more details of pLoF and P/LP definitions). 
  



 

 

 

Fig. 6: UTR-based collapsing analysis. Miami plot of UTR-based associations for binary (top) and 
quantitative (bottom) phenotypes across all six collapsing models. 5’, 3’ and 5’ and 3’ combined 
associations were represented in different colors. The significant associations with P-value < 1 x 10-30 
were labelled. To understand whether combining UTR and CDS variants helps boost the signals 
identified by CDS variants only, we performed collapsing analysis using CDS and 5’ and 3’ UTR 
variants together. For CDS and UTR combined regions, we considered rare PTVs (MAF < 0.1%) from 
CDS and all variants with MAF < 0.1% from UTR regions. We categorized UTR variants into –two 
qualifying variant models based on their MAF (i.e., 0.002% and 0.1%- (Method). 

 
 

 


