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Abstract
Abdominal aortic aneurysm (AAA) presents abnormal metabolism and co-occurs

with cardiometabolic disorders, suggesting a shared genetic susceptibility. We

investigated this commonality leveraging recent GWAS studies of AAA and 32

cardiometabolic traits (CMTs). Significant genetic correlations are found between

AAA and 21 CMTs, among which are causal relationship with coronary artery disease,

hypertension, lipid traits, and blood pressure. For each trait pair, we identified shared

causal variants, genes, and pathways, which revealed cholesterol metabolism and

immune responses were the shared most prominently. Additionally, we uncovered the

tissue and cell type specificity in the shared signals, with strong enrichment across

traits in liver, arteries, adipose tissues, macrophages, adipocytes, and fibroblasts.

Finally, we leveraged drug-gene databases and identified several lipid-lowering drugs

and antioxidants with high potential to treat AAA with comorbidities. Our study

provides insight into the shared genetic mechanism for AAA and cardiometabolic

traits and potential targets for pharmacological intervention.
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Abbreviations:

CMT: cardiometabolic traits; CMD: cardiometabolic diseases; CVD: cardiovascular

diseases; AAA: abdominal aortic aneurysm; AA: aortic aneurysm; TAA: thoracic

aortic aneurysm; CAD: coronary artery disease; MI: myocardial infarction; HF: heart

failure; CM: cardiomyopathy; AF: atrial fibrillation; stroke_AS: any stroke;

stroke_AIS: any ischemic stroke; SAH: subarachnoid hemorrhage; ICH: intracerebral

hemorrhage; TIA: transient ischemic attack; HT: hypertension; VTE: venous

thromboembolism; PAD: peripheral artery disease; T2D: type 2 diabetes; CKD:

chronic kidney disease;
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MT: metabolic traits; FI: fasting insulin; FG: fasting glucose; 2hGlu: 2hr oral glucose

challenge; HbA1c: glycated hemoglobin; HDL-C: high-density lipoprotein

cholesterol; LDL-C: low-density lipoprotein cholesterol; TG: triglycerides; TC: total

cholesterol; nonHDLC: non-high-density-lipoprotein cholesterol; SBP: systolic blood

pressure; DBP: diastolic blood pressure; PP: pulse pressure; BMI: body mass index;

WHR: wait to hip ratio; WHRadjbmi: WHR adjusted for BMI;

ICT: immune cell traits; WBC: white blood cells; BASO: basophil count; BASO%:

basophil percentage of white blood cells; EO: eosinophil count; EO%: eosinophil

percentage of white blood cells; LYMPH: lymphocyte count; LYMPH%: lymphocyte

percentage of white blood cells; MONO: monocyte count; MONO%: monocyte

percentage of white blood cells; NEUT: neutrophil count; NEUT%: neutrophil

percentage of white blood cells.
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Introduction

Abdominal aortic aneurysm (AAA), defined as focal dilation of the abdominal aorta

by 50% or reaching ≥ 30 mm in diameter, is a complex vascular disease affecting 3-

9% population aged over 65 years 1, 2. It is asymptomatic in early disease stages, with

most AAA discovered by incidental imaging or screening protocols. Once reaching 55

mm, the risk of rupture increases to 10% 3. Among ruptured patients, a mortality rate

as high as 80% was observed 4, rendering AAA a leading cause of death.

Pathologically, AAA is characterized by remodeling and degradation of

extracellular matrix, apoptosis of smooth muscle cells, luminal thrombosis, and

chronic inflammation 1. Plaques consisting of lipids, blood cells and other plasma

substances accumulate around the lesion sites, with abundant infiltration of innate and

adaptive immune cells both in the thrombus and the arterial wall 2. Meanwhile,

metabolic homeostasis is perturbed, resulting in enhanced glycolysis in the aortic wall
5 and altered serum levels of amino acids and lipids 6, 7, 8. For example, circulating

total cholesterol, low-density lipoprotein cholesterol (LDL-C), triglycerides, and

sulfur amino acids are elevated, whereas high-density lipoprotein cholesterol (HDL-C)

and phosphatidylcholines are reduced. These changes resemble numerous other

cardiovascular diseases (CVDs), such as coronary artery disease (CAD), myocardial

infarction (MI), and peripheral arterial disease 9. Indeed, atherosclerosis occurs in 25-

55% AAA patients 10, and known risk factors of AAA including male sex, age,

smoking, hypercholesterolemia, hyperlipidemia, and hypertension 11, are widely

shared among CVDs.

AAA is highly heritable, with an estimated 70% heritability by family and twin

studies 12, 13. In fact, high heritability is generally observed in cardiometabolic

disorders 14, 15, rendering genetic studies a valuable tool to decipher the disease

mechanisms 16. Genome-wide association studies (GWAS), particularly those

performed in recent years with large sample sizes, have uncovered single nucleotide

variants (SNVs) associated with many complex diseases 17. A recent meta-GWAS of

AAA examined 39,221 cases and 1,086,107 controls, resulting in 141 susceptible loci
18, a several-fold increase in disease loci compared to earlier studies 19, 20. Similarly,

recent GWAS provided comprehensive mutation profiles for dozens of

cardiometabolic traits (CMTs), bringing the disease understanding to a new level.
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In this study, we leverage these large GWAS data to study how AAA relates to

other CMTs. We aim to construct a map of comprehensive relationship, as well as to

provide details such as shared SNVs, genes, and pathways in the cell type and tissue

context. Importantly, this comorbidity landscape offers valuable information for

prioritizing drugs that target shared genes.

Results

GWAS datasets

We obtained GWAS summary statistical data for 18 cardiometabolic diseases (CMDs)

including AAA, 15 metabolic traits, and 6 immune cell traits (Fig. 1A). These traits

distributed over a broad spectrum of cardiac and metabolic functions, including heart

functions, vascular circulation, glucose metabolism, lipid metabolism, and immunity.

Most of the CMDs were studied in more than 10,000 case samples, whereas

metabolic traits and immune cells were measured in a minimum of 560,000

individuals. Although European ancestry was dominant, many studies included

various ancestral groups. Furthermore, the number of interrogated genotypes ranged

between 4.5-52 million, and the significant SNVs (P < 5 × 10-8) were ample

(Supplementary Table 1). Overall, these datasets present a state-of-the-art discovery

power for common SNVs-based genetic susceptibility to cardiometabolic disorders.

Around these datasets, we designed analysis modules to elucidate the shared genetic

architecture of AAA and CMTs, including shared SNVs, genes, pathways, tissues, and

cell types (Fig. 1B). Coherent signals from various analyses are found and presented

below.

Genetic correlation

Genome-wide correlations computed by LDSC 21 suggest positive correlations

between AAA and 20 CMTs (Fig. 2A). The highest correlated traits are aortic

aneurysms, followed by numerous diseases including MI, CAD, peripheral artery

disease, subarachnoid hemorrhage, and heart failure (rg >= 0.3, P < 1 × 10-10).

Compared to the disorders, the physiological traits display weaker correlations, with

lipids, adiposity, blood pressure, and glucose traits in the descending order. Only

HDL-C presented negative correlation with AAA (rg = -0.25, P = 7.61 × 10-32).

Immune cell counts and percentages did not correlate with AAA, thus were excluded
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from subsequent analyses.

We also computed genetic correlation by functional elements. Repressors,

enhancers and promoters tend to have stronger than the genome-wide correlations

(Supplementary Fig. 1), suggesting transcription regulation is genetically shared.

Causal Inference

Many cardiometabolic disorders share risk factors, rendering genetic correlation a

result of complex pleiotropic effects. Mendelian Randomization (MR) overcomes the

confounding factor issue and provides causal inference. We conducted bidirectional

MR using several models and found a mutual causality between AAA and CAD (Fig.

2B) . Furthermore, AAA was suggested causal to MI. Reversely, 10 traits were

inferred as causal to AAA, among which hypertension had the greatest causal effect

(OR = 2.01, P = 3.36 × 10-4), followed by lipid and adiposity traits (OR = 1.46-1.73,

P < 1.24 × 10-12), and CAD (OR = 1.23, P =2 .34 × 10-5). Diastolic blood pressure

displayed a weak causality (OR = 1.05, P = 1.13 × 10-11). Conversely, HDL-C (OR =

0.65, P = 2.28 × 10-21) and pulse pressure (OR = 0.97, P = 2.65 × 10-8) were causally

protective against AAA. Note that no apparent horizontal pleiotropy was detected as

the intercept of MR-Egger did not significantly deviate from zero (Supplementary

Table 2).

Cross-trait loci and causal variants

By cross-trait meta-analysis by MTAG (Multi-Trait Analysis of GWAS) 22 and

CPASSOC (Cross-Phenotype Association Analysis) 23, we identified 203 SNVs

collectively shared by the 21 trait pairs (Supplementary Table 3). Overall, AAA shares

the largest number of SNVs with CAD (N = 46), followed by lipid traits (about 20 -

40 SNVs) (Supplementary Fig. 2).

To derive causal SNVs, we applied FM-summary 24 for fine-mapping and derived a

99% credible set (Supplementary Table 4). We then colocalized these SNVs across

traits by Coloc 25 and derived a total of 177 causal variants shared by two traits

(Supplementary Table 5). We also applied HyPrColoc 26 and derived 47 causal

variants shared by multiple traits (Fig. 3A). Among the 47 shared causal variants, only

four were local lead SNVs (Fig. 3B), i.e., having the smallest GWAS P values,
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whereas the rest were located near the lead SNVs, suggesting the importance of fine-

mapping.

We observed clusters of shared SNVs, both causal and non-casual, on lipid-related

genes (Supplementary Table 5). For example, LPA was annotated to 9 shared SNVs,

of which 3 were causal to multiple trait, including rs10455872 27 in the intronic

region which was causal to 6 AAA trait pairs, and rs140570886 28 and rs3124784

which were shared among 4 and 3 trait pairs, respectively. Similarly, CDKN2B-AS1

was annotated to 8 shared SNVs, including rs10757274 29, therein 3 were causal and

collectively shared among 7 trait pairs,. We also rediscovered rs12740374 30 on

CELSR2 and rs11591147 31 on PCSK9. Lastly, several shared causal SNVs were

proximal to lipid-related genes, including CETP, BUD13, TRIB1, LPL, and APOE, all

of which encode lipid regulators and have been associated with CMDs 32, 33, 34, 35, 36.

Shared genes and pathways

We adopted four approaches, TWAS 37, SMR 38, MAGMA39, and GCTA 40 to infer

shared genes (Supplementary Fig. 3). Each program utilizes its own criteria of

genomic distance, gene pruning algorithm, and biological features. We define disease

genes as reported by all four methods and thus derived 405 genes (Supplementary

Table 6), of which 109 genes were linked to minimally three AAA trait pairs

(Supplementary Fig. 4). Notably, CELSR2, PSRC1, LRP1, and NOC3L were each

shared among 14 AAA trait pairs or more. Such broad distribution suggests their

essential roles in cardiac and metabolic functions. Interestingly, all four genes

participate in lipid metabolism; furthermore, all but NOC3L have been reported in

inflammation 41, 42.

Pooling genes from any of the four methods, we discovered their functions were

enriched in lipoprotein organization, cholesterol transport, and acylglycerol

homeostasis (Supplementary Fig. 5A). Strikingly, cholesterol metabolism was the

most enriched pathway across all 21 trait pairs (Supplementary Fig. 5B). When

classifying by etiological mechanisms 18, the most prominent enrichments appeared in

cholesterol metabolism, PPAR pathway in lipid metabolism, TGF-β pathway in

inflammation, and ECM-receptor interaction in extracellular matrix dysregulation

(Fig. 3C).
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Summarizing the shared SNVs and genes, we construct the comorbidity network

for AAA, detailing the shared variants and genes for each trait pair (Fig. 4).

Tissue and cell-type specificity

The shared genes may function in certain tissues and cell types more specifically. We

examined it from gene expression in GTEx 43 and single-cell transcriptome, as well as

heritability in tissue-specific genes and cell type-specific enhancers in CATLAS 44.

Combing both approaches, we discovered that liver, artery, and adipose tissue

(Supplementary Fig. 6), and adipocytes, hepatocytes, fibroblasts, vascular smooth

muscle cells, macrophages, and myeloid cells (Supplementary Fig. 7) were

significantly enriched across many AAA trait pairs, suggesting them as hubs for

cardiac and metabolic functions (Fig. 5). Unique sharing is observed too. As examples,

muscle is only enriched by AAA and atrial fibrillation, pituitary and brain are only

enriched by AAA and BMI, and pancreas is only enriched by AAA and HDL-C.

While fibroblasts are broadly shared across traits, macrophages and hepatocytes are

more specific to AAA and lipid traits. Overall, these results align with the genes and

pathways, highlighting lipid metabolism and immunity over and again.

We additionally used SMR 38 and TWAS 37 to pinpoint gene-tissue effects for each

CMT. Collectively, 116 genes were inferred for their directions of effect in tissues

(Supplementary Fig. 8 A-B). Here we highlight four most broadly shared genes:

CELSR2, PSRC1, LRP1, and NOC3L. Both methods detected a negative relationship

between CELSR2 expression in the liver with AAA and five other CMTs

(Supplementary Fig. 8C). Negative relationships were found for NOC3L expression

in the skeletal muscle, and PSRC1 expression in the liver, whole blood, and

esophagus mucosa, with AAA and numerous other CMTs. Meanwhile, LRP1

expression in the tibial artery was suggested for a positive relationship with AAA but

a negative relationship with CAD.

Drug forAAAwith comorbid conditions

Collectively we identified 405 disease genes shared by AAA and various CMTs. As

cardiometabolic disorders often coexist, we used these genes to identify drugs for

treating AAA with comorbidities. As such, we utilized a pathway paring score

approach developed in our earlier study 45 to identify the best matching drugs and
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disease genes. Briefly, we computed the pathological pathways for each trait pair

based on their shared genes, and the pharmacological pathways for each candidate

drug based on their affected genes recorded in large drug-gene databases, e.g.,

DrugCentral 46, DGIdb 47, and PharmGKB 48. The candidate drugs were mainly

derived from screening cardiovascular compounds that targeted any of the 405 disease

genes. We also supplemented the list with those compounds used in clinical practice

or clinical trials for treating AAA. Collectively, 33 candidate drugs distributed in 6

functional classes were examined, namely antihypertension (11 drugs), lipid-lowering

(8 drugs), glucose-lowering (3 drugs), antiarrhythmics (1 drug), antithrombosis (4

drugs), and antioxidant (6 drugs) (Supplementary Fig. 9).

The best-matching drugs were defined with pairing scores >= 0.5 (Supplementary

Fig. 9). Close to half drugs were suggested for AAA and hypertension, which were

distributed in 4 functional categories. Therein amlopidine has the highest pairing

score , followed by several antioxidants. Lipid-lowering drugs obtained high pairing

scores for various trait pairs. Particularly, simvastatin and lovastatin both achieved

high scores for AAA comorbid with CMDs, such as hypertension, MI, subarachnoid

hemorrhage, transient ischemic attack, venous thromboembolism, or peripheral artery

disease. Interestingly, other lipid-lowering drugs are suggested for AAA with

metabolic traits. For example, fenofibrate and gemfibrozil achieved high scores for

AAA comorbid with LDL-C, nonHDL-C, triglycerides, or total cholesterol.

Notably, several herb-based antioxidants achieved high scores for various trait pairs

too, including resveratrol, a stilbenoid polyphenol naturally enriched in red grapes;

tanshinone I, a terpenoid exacted from the dry root of Salvia miltiorrhiza (Danshen);

and quercetin, a flavonol found in many plants. These herb products have shown

potentials in preventing and treating CVDs, including AAA 49, 50, 51, 52. Our analysis

supports their extended application in treating comorbid conditions in AAA.

Discussion

In this study, we discovered from GWAS summary statistics extensive genetic

associations between AAA and CMTs. Further analyses highlight the pleiotropic

variants and genes, the biological pathways and the types of cells and tissues that are

shared by the trait pairs. All these findings help to elucidate the common genetic

etiology between AAA and cardiometabolic disorders.
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We discovered that among all CMDs outside of the aortic aneurysm family (i.e.,

AAA, TAA, and AA), CAD displays a consistent strong relationship with AAA. For

example, it has the second highest genome-wide association (rg= 0.34) and is the only

trait with mutual causality with AAA (ORAAA->CAD = 1.10, ORCAD->AAA = 1.23). It

shares the largest number of SNVs (N = 46), causal SNVs (N = 30), and disease genes

(N = 50) with AAA. The most enriched tissues by these shared signals are artery and

liver, consistent with their common features of artery malfunctions and

atherosclerosis. Artery-related diseases including peripheral artery disease (rg = 0.33)

and subarachnoid hemorrhage (rg = 0.32), and cardiac-function related diseases such

as MI (rg = 0.38) and heart failure (rg = 0.30), also displayed top genome-wide

associations with AAA, although no causal relationship was found, suggesting other

risk factors may have confounded the associations.

Included in this study are the metabolic traits of lipids, adiposity, blood pressures,

and glucose. By all levels of our inspection, lipid metabolism is most prominently

shared. First, lipid traits are the second strongest causal factor to AAA (OR = 1.46-

1.73), next to hypertension, which is a disease rather than a physiological trait.

Second, we observed clustering of the shared variants on lipid-related genes,

including LPA, CDKN2B-AS1 and others. Third, the most broadly shared genes

between AAA and CMTs, i.e., LRP1, PSRC1, CELSR2, and NOC3L, are all lipid

related. Fourth, cholesterol metabolism appeared as the most significantly enriched

biological pathway. Fifth, liver, adipose tissue, hepatocytes, and adipocytes are most

broadly and significantly enriched among the AAA-CMT trait pairs. These tissues and

cell types are important players in lipid metabolism and regulation. Lastly, lipid-

reducing drugs were suggested as strong candidates to treat many AAA with

comorbid diseases. These results reinforce the notion that predisposition to lipid

malfunction is a strong feature in CMTs 53. In comparison, glucose traits demonstrate

neither correlation nor causality to AAA. Among the blood pressure traits, only

diastolic blood pressure displays a mild correlation (rg = 0.16) and a weak causality

(ORDBPAAA= 1.05).

Several genes appeared repetitively in our analyses. LPA encodes lipoprotein(a),

which is pro-atherosclerotic, pro-inflammatory, pro-thrombotic, and anti-fibrinolytic.

Substantial evidence suggest that elevated lipoprotein(a) promotes CAD, MI,

atherosclerosis, and aortic valve stenosis 54, 55. CDK2B-AS1 encodes a long non-
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coding RNA that participates in inflammation as well as the metabolism of lipids and

carbohydrates, and has been linked to numerous CMDs and immune diseases 56, 57.

LRP1 encodes LDL receptor-related protein and plays diverse roles in lipoprotein

metabolism, endocytosis, cell growth, cell migration, inflammation, and apoptosis 42.

Furthermore, CELSR2 and PSRC1, together with SORT1, form a PRSC1-CELSR2-

SORT1 axis which has been implicated in various CVDs 41, 58. SORT1 encodes

sortilin 1 that functions in lipid metabolism and immune responses, such as V-LDL

secretion, LDL-C metabolism, PCSK9 secretion, inflammation, and formation of

foam cells 59. Finally, NOC3L is involved in adipocyte differentiation and glucose

metabolism, and its decreased expression is associated with islet dysfunction 60.

We note that various disease genes in lipid metabolism are involved in immune

responses too. Indeed, LPA is pro-inflammatory 61; CDK2B-AS1 is not only associated

with numerous CMDs but also with immune diseases, such as idiopathic pulmonary

fibrosis and inflammatory bowel disease 56, 57, 62. Interestingly, statins, other than

lowering lipids, are found to inhibit inflammation in AAA 63.

Indeed, there are abundant immune signals in our results. For example, IL-6 is an

important cytokine in CVDs including AAA 64. Enhanced IL-6 signaling will over-

activate the JAK-STAT pathway, a critical pathway that affects many aspects of the

mammalian immune system 65. rs6734238 was reported to associate with elevated

circulating IL-6 66, whereas our analysis inferred this SNV as causal to AAA, LDL-C,

total cholesterol, and triglycerides (Fig. 3B). We also identified two SNVs in the

intronic regions of IL6R, rs4129267 and rs12126142, to be shared by AAA with atrial

fibrillation and CAD, respectively. Furthermore, our pathway enrichment highlights

the TGF-β signaling, which was shared by AAA and 12 CMTs (Fig. 3C). TGF-β

regulates the differentiation and function of leukocytes and controls the type and

scope of immune response 67. Numerous studies have uncovered its importance in

vascular smooth muscle cells (SMCs) and macrophages in the aneurysm development
68, 69. SMCs can transdifferentiate to foam cells, a crucial step in atherosclerosis 70. In

our analysis, both vascular SMCs and macrophages were enriched by several AAA

trait pairs. Indeed, various single-cell RNA-sequencing studies suggested them as

essential cell types for AAA 71, 72. Our analysis reveals this close relationship also in

genetic predisposition.
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Overall, many of our results recapitulate the relationships of AAA with its risk

factors and known disease markers, indicating our results captured the main

components of AAA genetics. To confirm this, we analyzed the AAA single trait

GWAS loci. Many of the shared lipid-related genes are reproduced, and genes in

various pathological mechanisms are connected (Supplementary Fig. 10). The most

significantly enriched terms are lipid processes and cholesterol metabolism. The most

enriched tissues are liver and blood vessels, and the most enriched cell types are

fibroblasts, with a few others showing marginal enrichment, including endothelial

cells, stromal cells, mesenchymal stem cells, macrophages, neutrophils, and

monocytes. Therefore, the shared signals are the main signals in AAA genetics.

Finally, the shared disease genes are transformed to treatment proposals for treating

AAA with comorbid conditions. We believe this drug prioritization strategy can be

applied to studying other diseases with comorbidities.

There are several limitations of this study. First, the GWAS data type enables

analysis on common SNVs, but omits other variant types such as rare variants, the

short insertions and deletions (INDELs), and structural variants (SV). Indeed, our

previous whole-genome study identified a list of rare variants with strong

predictability to AAA 16. Second, CMTs cover a plethora of diseases and

physiological traits, and those included in our analysis are only representative. Third,

our inference of molecular and cellular mechanisms may be limited by the reference

knowledgebases and databases. For example, we only deciphered the directions of

effects for a quarter of the disease genes, due to the lack of variant-gene expression

models in GTEx. With future improvements in the data types and references, we will

gain further power to interpret results and infer genetic mechanisms of AAA and other

CMTs.

Methods

Study populations

We obtained summary statistics for the multi-ancestry meta-GWAS of AAA (39,221

cases and 1,086,107 controls) from 18. Summary statistics for other 32 CMTs were

derived from UK Biobank (https://www.ukbiobank.ac.uk/), FinnGen

(https://www.finngen.fi/en), and numerous large consortia 73, 74, 75. Summary statistics

for the counts and percentages of six immune cell traits were derived from the Blood

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted December 8, 2023. ; https://doi.org/10.1101/2023.12.05.23299523doi: medRxiv preprint 

https://doi.org/10.1101/2023.12.05.23299523


13

Cell Consortium (BCX) 76, including white blood cell (WBC), basophil (BASO),

eosinophil (EO), lymphocyte (LYMPH) ， monocyte (MONO), and neutrophil

(NEUT), obtained from 563,085 participants of European ancestry. Information of

these GWAS studies is provided in Supplementary Table 1.

Genome-wide genetic correlation

We computed genome-wide genetic correlation between traits using linkage

disequilibrium (LD) score regression (LDSC) 21. Briefly, it quantifies the separate

contributions of polygenic effects by examining the relationship between LD scores

and test statistics of SNVs from GWAS summary results, producing genetic

correlation based on the deviation of chi-square statistics from the null hypothesis.

LDSC also applies a self-estimated intercept during the analysis to account for shared

subjects between studies. The derived estimates range from –1 to 1, with –1 indicating

a perfect negative genetic correlation and 1 indicating a perfect positive genetic

correlation. We used pre-computed LD scores obtained from ~1.2 million common

SNVs in the well-imputed HapMap3 European ancestry panel. A Bonferroni-

corrected P value threshold of 0.0015 (0.05/32) was used to define statistical

significance.

Genetic correlation by functional categories

We used LDSC to estimate genetic correlations between traits in 24 functional

categories 77, e.g., transcribed regions, repressed regions, conserved regions, coding

regions, promotors, enhancers, superenhancers, introns, transcription factor binding

sites (TFBS), DNaseI digital genomic footprinting (DGF) regions, DNase I

hypersensitivity sites (DHSs), fetal DHS, untranslated regions (UTR), and histone

marks (H3K4me1, H3K4me3, H3K9ac, and H3K27ac) from the Roadmap

Epigenomics Project 77, 78. For each functional category, SNVs from the panel of

HapMap3 European ancestry were assigned and LD scores were calculated,

generating the “baseline model” (https://github.com/bulik/ldsc/wiki/Partitioned-

Heritability). We downloaded them as the ldscore reference file to compute

heritability enrichment and genetic correlation for the 24 functional categories.

Mendelian randomization (MR) analysis

We used five MR methods to infer causal relationships between AAA and CMTs:
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inverse variance weighting (IVW) 79, MR-Egger 80, weighted median 81, MR-APSS 82,

and CAUSE 83.

These methods utilize different assumptions about horizontal pleiotropy. Briefly,

IVW assumes mean zero if uncorrelated pleiotropy is present, and such pleiotropy

only adds noise to the regression of the meta-analyzed SNV effects with

multiplicative random effects 79. MR-Egger further allows for the presence of

directional (i.e., non-zero mean) uncorrelated pleiotropy and adds an intercept to the

IVW regression to exclude such confounding effect 80. Weighted median approach

provides a robust estimate of causal effects even when up to 50% of genetic variants

are invalid 81. The recently published MR-APSS accounts for pleiotropy and sample

structure, simultaneously 82. Specifically, for decomposing the observed SNV effects,

a foreground-background model is employed, in which the background model

accounts for confounding factors (including correlated pleiotropy and sample

structure) hidden in the GWAS summary statistics, and the foreground model

performs causal inference while accounting for uncorrelated pleiotropy. CAUSE is a

Bayesian MR method accounting for both correlated and uncorrelated pleiotropy 83.

Compared to the other MR methods, CAUSE further corrects correlated pleiotropy by

evaluating the joint distribution of effect sizes from instrumental SNVs, assuming that

the ‘true’ causal effect can influence all instrumental SNVs while correlated

pleiotropy only influences a subset of them. CAUSE improves the power of MR

analysis by including a larger number of LD-pruned SNVs with P  <= 1 x 10−3 and

provides a model comparison approach to distinguish causality from horizontal

pleiotropy.

For selecting instruments, we used the genome-wide significance threshold P = 5 x

10−8 for IVW, MR Egger, and Weighted-median, the default threshold P = 1 x 10−3 for

CAUSE, and the default threshold P = 5 x 10−5 for MR-APSS. We only selected

independent SNVs (LD clumping r2 < 0.001 within 1000 Kb using PLINK v1.9 84)

based on the European ancestry panel in the 1000 Genomes Project. In each LD block,

we chose the variant with the smallest association P value with the exposure. Further,

we used PhenoScanner (http://www.phenoscanner.medschl.cam.ac.uk/) and GWAS

Catalog (https://www.ebi.ac.uk/gwas/) to exclude SNVs associated with the outcome

and its risk factors. IVW was used as the primary method and the rest four methods

were used as sensitive analysis. A causal estimate was considered significant if it

passed the P value threshold in the primary analysis, i.e., IVW, and displayed
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consistent direction of effect in all five MR methods. We used Cochran's Q-test to

check for heterogeneity and MR-Egger intercept for horizontal pleiotropy. These MR

analyses were performed in the R packages TwoSampleMR85, MRAPSS 82 and

CAUSE 83.

Cross-trait meta-analysis

To identify pleiotropic loci shared between two traits, we performed cross-trait meta-

analysis of GWAS summary statistics using MTAG 22. MTAG applies generalized

inverse-variance-weighted meta-analysis for multiple traits; in addition, it

accommodates potential sample overlap between GWAS. Its key assumption is that

all SNVs share the same variance-covariance matrix of effect sizes among traits. As

initially described 22, MTAG is a consistent estimator whose effect estimates have a

lower genome-wide mean squared error than the corresponding single-trait GWAS

estimates. In addition, association statistics from MTAG also yield stronger statistical

power and little inflation of the FDR for each analyzed trait with high correlation 22.

As the assumptions in MTAG, i.e., equal SNV heritability for each trait and the

same genetic covariance between traits, could be violated, we performed cross-

phenotype association analysis (CPASSOC) 23 across traits as a sensitivity analysis.

CPASSOC integrates GWAS summary statistics from multiple traits to detect shared

variants while controlling population structure and cryptic relatedness 23. It provides

two test statistics, SHom and SHet. SHom is based on the fixed-effect meta-analysis

and can be viewed as the maximum of weighted sum of trait-specific genetic effects.

It is less powerful under the presence of between-study heterogeneity, which is

common when meta-analyzing multiple traits. SHet is an extension to SHom with

improved power that allows for heterogeneous effects of a trait from different study

designs, environmental factors, or populations, as well as heterogeneous effects for

different phenotypes, which is more common in practice. SHet was thus adopted for

our analysis. We applied PLINK clumping to obtain the independent SNVs

(parameters: --clump-p1 5 x 10−8 --clump-p2 1 x 10−5 ---clump-r2 0.1 --clump-kb

1000). Significant pleiotropic SNVs were defined as variants with P values in both

GWAS studies and P value in the meta-analysis (i.e., PMTAG& PCPASSOC) < 5 x 10−8. We

used ANNOVAR for functional annotation of the variants identified by MTAG and

CPASSOC. The shared SNVs are visualised in a circular dendrogram using the R

package ggraph.
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Fine-mapping credible set analysis

We identified a 99% credible set of causal variants by FM-summary

(https://github.com/hailianghuang/FM-summary) 24, a Bayesian fine-mapping method.

For each shared SNV identified in the cross-trait meta-analysis, we extracted variants

within 500K bp around the index SNV as input for FM-summary. FM-summary set a

flat prior and produced a posterior inclusion probability (PIP) of a true association

between a phenotype and a variant using the steepest descent approximation. A 99%

credible set is equivalent to ranking the SNVs from largest to smallest PIPs and taking

the cumulative sum of PIPs until it is at least 99%.

Colocalization analysis

We used the R package coloc 25 to determine whether the association signals for AAA

and CMTs co-localize. For each of the 203 shared SNVs between traits, we extracted

the variants within 500 Kb of the index SNV and calculated the probability that the

two traits share one common causal variant (H4). Loci with a probability greater than

0.7 were considered to colocalize. We estimated the posterior probability (PP) of

multiple traits sharing the same SNV using a Bayesian divisive clustering algorithm

implemented by HyPrColoc 26 (v.1.0.0) in R v.4.2.3.

Gene-based association analysis

We used TWAS 37, SMR 38, MAGMA 39, and GCTA-fastBAT 40 to identify genes

shared by AAA trait pairs. Input files for all four gene-level analyses were the

complete GWAS summary statistics from MTAG in the meta-analysis. In each

method, the P value threshold was adjusted by Bonferroni correction.

TWAS identifies tissue-specific gene-trait associations by integrating GWAS with

cis-SNVs based gene expression model 37, 86. We conducted TWAS using the FUSION

software 37 based on 43 post-mortal tissue expression profiles in GTEx (version 6) 43.

Summary-data-based Mendelian Randomization (SMR) analysis integrates GWAS

and eQTL studies to identify genes whose expression levels are associated with a

complex trait due to pleiotropy or causality 38. A significant SMR association could be

explained by a causal effect (i.e., the causal variant influences disease risk via

changes in gene expression), pleiotropy (i.e., the causal variant has pleiotropic effects

on gene expression and disease risk), or linkage (i.e., different causal variants exist for
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gene expression and disease). SMR implements the HEIDI-outlier test to distinguish

pleiotropy from linkage. We implemented SMR using cis-eQTL summary data for

whole blood from eQTLGen 87, a meta-analysis of 31,684 blood samples, and from

GTEx V8 for 9 relevant tissues, including artery aorta, adipose subcutaneous, artery

coronary, artery tibial, heart atrial appendage, heart left ventricle, kidney cortex, liver,

and whole blood. Genes associated with AAA trait pairs were defined as PSMR passing

the Bonferroni-corrected thresholds and PHEIDI >0.05.

MAGMA39 (Multi-marker Analysis of GenoMic Annotation) is a fast and flexible

method that uses a multiple regression approach to properly incorporate LD between

markers and detect multi-marker effects. We ran MAGMA with default parameters,

with the European ancestry panel in the 1000 Genomes Project (Phase 3) as the LD

reference.

We applied a fourth approach, GCTA-fastBAT 40, a fast set-based association

analysis. In brief, it calculates the association P value for a set of SNVs from an

approximated distribution of the sum of χ2-statistics over all SNVs using GWAS

summary data and LD correlations from a reference sample set with individual-level

genotypes 40. We used the European ancestry panel in the 1000 Genomes Project

(Phase 3) as the LD reference.

Stratified LD score regression for tissue and cell type specificity

We used LD score regression applied to specifically expressed genes (LDSC-SEG) 88

for tissues or cell types to test for heritability enrichment. For tissues, pre-computed

LD scores from GTEx 89, which contained gene expression data for 53 tissues, were

provided by LDSC-SEG and used in our analysis. We also obtained the activity

profile of candidate cis-regulatory elements (cCREs) in 222 cell types from CATLAS
44. We mapped the genotypes of European ancestry in the 1000 Genomes Project to

the cell type-specific cCREs and calculated the cell type-specific ldscore. We applied

FDR correction for each dataset respectively to account for multiple testing, and

considered FDR corrected P < 0.05 as significant.

GTEx Tissue Specific Expression Analysis (TSEA)

We conducted tissue-specific expression analysis (TSEA) 90 on the shared genes

against the RNA-Seq data in GTEx, which contained gene expression profiles of

1,839 samples from 45 different tissues derived from 189 post-mortem subjects. We
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merged the shared genes for each trait pair from the four gene-based analysis to

derive a collection of shared genes. Hypergeometric tests are used to determine if

tissue-specific genes are enriched in the input genes. We used Benjamini–Hochberg

correction to account for multiple testing (FDR < 0.05).

Cell-type-specific enrichment analysis (CSEA)

We performed cell-type specific enrichment (CSEA) on the shared genes using

WebCSEA 91. WebCSEA provides a gene set query against tissue-cell-type (TCs)

expression signatures of 11 single-cell gene expression datasets 92, 93, 94, 95, 96, 97, 98.

Specifically, Dai et al 91 collected more than 5.5 million cells from 111 tissues and

1,355 TCs, filtered out the low expression genes, and used an in-house t-statistic-

based method “deTS” to train the tissue-cell-type signature genes. Genes with the top

5% t-statistic scores in focal cell type are defined as the cell-type-specific genes. We

conducted Fisher's exact test to assess whether the shared genes for each trait pair is

overrepresented with the cell type-specific genes.

Over-representation enrichment analysis

We used the “clusterProfiler” package 99 to perform GO (Gene Ontology) and KEGG

(Kyoto Encyclopedia of Genes and Genomes) pathway enrichment analysis on the

genes. Benjamini–Hochberg procedure was used to account for multiple testing

(FDR < 0.05).

Drug target analysis

We defined the genes identified by all four gene-based analyses as the disease genes

for each AAA trait pair and thus obtained 405 genes collectively. For deriving the

drugs that match best with the genes, we leveraged the biological pathway analysis.

First, we applied clusterProfiler to the shared genes to compute the pathological

pathways enriched for each AAA trait pair. Next, we carried multiple steps to derive

candidate drugs for scrutinization: (1) queried three large drug-gene databases,

DrugCentral 46, DGIdb 47, and PharmGKB 48, for drugs that target any of the 405

candidate genes. This initial screening led to about 1,200 compounds, most of which

were initially designed for treating cancer; (2) limited the compounds to those already

in use by standard clinical practices for treating cardiovascular diseases, which

drastically shrank the list to 21 drugs; and (3) supplemented the list with 12 drugs
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used in clinics or proposed by clinical trials for treating AAA, such as amlodipoine,

pitavastatin, and vitamin E. Collectively, 33 candidate drugs were derived. Then, for

each drug, we queried the three drug-gene databases again for all their affected genes

and computed their enriched pharmacological pathways in clusterProfiler. Finally, we

calculated the pairing scores between the pathological pathways of the cross-trait and

the pharmacological pathways of the drug 45.

Code availability

LDSC: https://github.com/bulik/ldsc;

PLINK:https://www.cog-genomics.org/plink/1.9;

LAVA: https://github.com/josefin-werme/lava;

TwoSampleMR:https://mrcieu.github.io/TwoSampleMR/;

CAUSE: https://jean997.github.io/cause;

MR-APSS: https://github.com/YangLabHKUST/MR-APSS;
MR-BMA: https://github.com/verena-zuber/demo_AMD ;
MTAG: https://github.com/JonJala/mtag;

CPASSOC: http://hal.case.edu/~xxz10/zhu-web/;

Coloc: https://github.com/chr1swallace/coloc;

HyPrColoc: https://github.com/cnfoley/hyprcoloc;

FM-summary: https://github.com/hailianghuang/FM-summary;

FUSION: http://gusevlab.org/projects/fusion/;

MAGMA: https://ctg.cncr.nl/software/magma;

SMR: https://cnsgenomics.com/software/smr/#Overview;

GCTA-fastBAT: https://yanglab.westlake.edu.cn/software/gcta/#fastBAT;

TSEA: http://doughertylab.wustl.edu/tsea/;

FUMA: https://fuma.ctglab.nl/;

WebCSEA: https://bioinfo.uth.edu/webcsea/
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Figure Legends

Fig. 1 | Interrogation of genetic components between abdominal aortic aneurysm

(AAA) and the traits related to cardiometabolism (CMTs). A Traits and diseases in

this study include 18 cardiometabolic diseases, 15 metabolic traits, and 6 immune cell

traits. This graph was created via https://www.biorender.com/. B Analysis modules

included computing genome-wide and local genetic correlations, inferring causality

between AAA and the traits by bidirectional Mendelian randomization, identifying

shared causal loci, genes, and pathways, discovering tissues and cell being impacted

the most by the shared signals, and prioritizing drugs for treating AAA comorbidities.

CMD: cardiometabolic diseases, MT: metabolic traits.

Fig. 2 | Genetic correlation and causal inference between AAA and CMTs. A The

heatmap represents the genetic correlation rg calculated in LDSC, with the color scale

indicates the strength of the correlation, and the rg value displayed next to the

heatmap. The * marks the statistical significance. *: P < 0.0016 (Bonferroni-corrected

P value threshold); **: P < 5 × 10-8 (genome-wide P value threshold). B Causal

inference by two-sample Mendelian Randomization with five methods. The color bars

show causal pairs with the odds ratios +/- 95% confidence intervals and P values are

depicted above the bars. CMD: cardiometabolic diseases, MT: metabolic traits. IMC:

immune cell traits.

Fig. 3 | The overall landscape of the pleiotropic associations across AAA and

CMTs. A 47 causal variants are shared by multiple traits, as identified by HyPrColoc.

B LocusZoom plots of four causal variants for AAA and multiple other CMTs. These

variants are also the lead SNPs in in the interrogated regions. C KEGG pathway

enrichment of the shared genes between AAA and CMTs, with representation

organized by biological mechanisms. Only the top 15 enrichened pathways passing P

< 0.05 in each cross-trait pair were included.

Fig. 4 | Circular dendrograms presenting shared loci for AAA and CMTs. The
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inner circle presents independent variants shared between AAA-trait pairs, with 177

shared causal variants marked in asterisks (posterior probability of H4 [PP.H4] > 0.7).

The outer circle presents the genes inferred by Annovar for the shared variants. Genes

are highlighted by colors to indicate overlap with the four gene identification methods:

GCTA, MAGMA, TWAS and SMR, with gray for not identified by any method, black

color for identified by at least one method, and red color for identified by all four

methods.

Fig. 5 | Tissue and cell-type specificity inferred from the shared signals between

AAA and CMTs. A Enriched tissue types by the heritability or expression of the

tissue-specific genes derived from GTEx. B Enriched cell types by the heritability of

the cell type-specific enhancers derived from CATLAS, or expression of the cell type-

specific genes in 11 single-cell transcriptome datasets.
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Supplemental Figures - List

Supplementary Figure 1. Partitioned genetic correlation between AAA and

CMTs. 24 types of genomic functional elements were interrogated, as labeled on the

left. The genome-wide correlation was depicted in parenthesis under each trait/disease

pair. The bar plot shows functional categories with different correlations than the

genome-wide correlation, as defined by a difference rg ≥ |0.1| to the genome-wide

correlation value. Colors represent different functional categories.

Supplementary Figure 2. Number of shared SNVs between AAA and CMTs via
MTAG and CPASSOC.

Supplementary Figure 3. Number of genes for each trait pair identified by four

methods: GCTA, MAGMA, TWAS and SMR. Each method is represented by one

color. The numbers of identified genes are marked on each tile.

Supplementary Figure 4. Genes identified by all four gene-based analysis

methods and shared by minimally three AAA trait pairs. The four gene analysis

methods are: GCTA, MAGMA, TWAS, and SMR. Genes are labeled on the bottom,

and the trait pairs are labeled on the right. Blue color indicates presence of the gene.

Supplementary Figure 5. A GO term (biological process) enrichment for AAA

and CMTs. B KEGG pathway enrichment for AAA and CMTs. Genes were

derived from the union of four gene analysis methods: GCTA, MAGMA, TWAS and

SMR. The top 10 enriched pathways passing Padj < 0.05 in each trait pair were

included.

Supplementary Figure 6. Tissue type enrichment of the shared signals between

AAA and CMTs. A Enriched by heritability of the tissue-specific genes derived from

GTEx. B Enriched by the tissue-specific expression in GTEx. Brown represents

significant enrichment after Bonferroni correction. Blue represents enrichment result

not passing the Bonferroni correction.

Supplementary Figure 7. Cell type enrichment of the shared signals between

AAA and CMTs. A Enriched by heritability of the cell type-specific enhancers

derived from CATLAS. B Enrichment by cell type-specific expression by referencing

to 11 single-cell transcriptome datasets. Brown represents significant enrichment after
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Bonferroni correction. Blue represents enrichment result not passing the Bonferroni

correction.

Supplementary Figure 8. Direction of effect by the genes on the CMTs in the

tissue context. A SMR-derived directions of effect, inferred by the top causal eQTLs.

Traits are marked in the upper half, and the genes are marked in the lower half. Lines

within the circles connects genes and the traits. The line color indicates positive

(purple) or negative (green) correlation, and the width indicates strength of

association derived from Z-scores. Nine tissues impacted the most by the shared

signals between AAA and CMTs were examined. B Fusion-derived directions of

effect, utilizing the model of cis-SNVs on gene expression. 49 tissues from GTEx

were interrogated. C Overlapped results with cross trait – tissue - gene by the two

methods are presented.

Supplementary Figure 9. Pairing scores for evaluating matching between disease

pathology and drug pharmacology. Matching scores greater than 0.5 and the top

ranked in each cross-trait are labeled.

Supplementary Figure 10. Interpretation of AAA-associated variants identified

by GWAS. A Distribution of GWAS P values. B Genic locations of the significant

SNVs (GWAS P < 5 × 10-8). C AAA-related genes identified by four gene analysis

methods. D AAA-related genes identified by minimally three of the four gene

analysis methods. E Tissue enrichment based on SNV heritability in tissue-specific

genes defined in GTEx, computed by S-LDSC. F Tissue enrichment based on tissue-

specific genes defined in GTEx, computed by Tissue Specific Expression Analysis

(TSEA). Orange represents significantly enriched tissues passing the Bonferroni

corrected P value threshold. G Cell type enrichment based on SNV heritability in cell

type-specific enhancers from CATLAS, using S-LDSC. H Cell type enrichment based

on cell type-specific genes defined in various single-cell transcriptome studies,

computed by Cell Specific Expression Analysis (CSEA). I GO and KEGG enrichment

analyses based on the genes identified by any of the four gene analysis methods. J

Interactions among the genes (blue dots) from the 8 enriched pathways (orange dots)

in KEGG enrichment analysis. The colors of the lines represent different functional

categories. K Pairing scores for the matching between pathological pathways of AAA

and CMTs. (L) Pairing scores for the matching between AAA pathological pathways

and drug pharmacological pathways.M Pairing scores for the matching between heart
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failure and drug pharmacological pathways.
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Supplemental Tables - List

Supplementary Table 1. Summary of GWAS data.

Supplementary Table 2. Horizontal pleiotropy analyses between AAA and CMTs.

Supplementary Table 3. Cross-trait meta-analysis between AAA and CMTs.

Supplementary Table 4. List of credible set SNVs in each locus from fine-mapping.

Supplementary Table 5. Colocalization analysis of sentinel SNPs between AAA and

CMTs.

Supplementary Table 6. The list of genes identified by four gene-based analyses for

AAA trait pairs.
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