Wastewater-Based Analysis of Antihistamines to Estimate Pollinosis Disease Burden at Population-Scale

Stephan Baumgartner1,2, Michelle Salvisberg1, Bernard Clot3, Benoît Crouzy3, Peter Schmid-Grendelmeier4,5, Heinz Singer1, Christoph Ort1

1Swiss Federal Institute of Aquatic Science and Technology, Eawag, Dübendorf, Switzerland
2Institute of Civil, Environmental and Geomatic Engineering, ETH Zürich, Zurich, Switzerland
3Federal Office of Meteorology and Climatology MeteoSwiss, Payerne, Switzerland
4Allergy Unit, Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
5Christine Kühne-Center for Allergy Research and Education, Davos, Switzerland

Corresponding Author: Heinz Singer
Email: heinz.singer@eawag.ch, Phone: +41 58 765 5577

Abstract

Background:
Pollinosis, commonly known as seasonal allergic rhinoconjunctivitis or hay fever, is the world’s most prevalent allergic disorder, posing substantial health and economic impacts. This study explores the application of wastewater-based epidemiology (WBE) to assess the population-scale burden of pollinosis by correlating antihistamine markers in wastewater with airborne pollen data.

Methods:
Over two years, 251 wastewater samples – each representing a 24-hour period with excreta from approximately 471,000 individuals – were collected in Zurich (Switzerland). Eleven antihistamine markers were analyzed in the samples using liquid chromatography high-resolution mass spectrometry (LC-HRMS). The relationship between wastewater antihistamine loads – primarily fexofenadine selected due to its high concentrations and stability – and airborne pollen concentrations of 47 taxa was investigated using a linear non-negative least squares regression model.

Results:
The wastewater loads of second-generation antihistamines, namely bilastine, cetirizine, and fexofenadine, displayed a strong seasonal correlation with airborne pollen patterns. For fexofenadine about half of its annual usage was linked to episodes of acute pollen exposure. A noted delay and persistence in consumption implied enduring symptoms following exposure. Grass pollen accounted for a quarter of annual consumption, indicating high population allergy burden. Increases in fexofenadine loads during periods without known allergenic pollen suggested additional triggers for allergy symptoms, potentially yew pollen.

Conclusions:
The striking correlation between second-generation antihistamines in wastewater and pollen suggests that WBE is a viable tool to assess population-scale allergy burden. Deciphering the interplay between pollen allergen exposure, prevalence, and symptom severity, requires further research, which would benefit from advancements in automated pollen measurements and the institutionalization of WBE.

Keywords: Pollinosis, antihistamines, wastewater-based epidemiology, airborne pollen, seasonal allergic rhinoconjunctivitis
1. Introduction
In recent decades, the prevalence of allergic diseases, particularly in industrialized countries, has been on the rise, presenting a significant health challenge [1,2]. These conditions not only cause discomfort and distress to patients but also impose a substantial economic burden. In Europe, for instance, the management of seasonal allergies incurs annual costs estimated between 50 and 150 billion euros [3]. Among these allergic disorders, pollinosis, also referred to as seasonal allergic rhinoconjunctivitis, or simply hay fever, emerges as the most prevalent, estimated to affect one-fifth of the Swiss population [4].

While pollen exposure serves as the primary trigger for pollinosis, this multifaceted condition is influenced by a diverse range of external factors. These encompass elements such as air pollution, heat, humidity, thunderstorms, and the diversity of pollen allergens [5,6]. Together, these factors not only augment the allergenic potential of pollen, but also influence an individual's susceptibility to these allergens [7–9]. Additionally, global phenomena like climate change and urbanization are posited to significantly contribute to the shifting epidemiology of seasonal allergies, further amplifying the challenge of understanding and managing these conditions [10–14]. Understanding the intricate interplay of these factors and their impact on pollinosis requires comprehensive monitoring at a population-scale and the triangulation of data with environmental factors. This is challenging with clinical studies focusing on individual patients due to the high level of effort required. To address this gap, alternative approaches such as digital epidemiology and symptom diary apps have been explored [15–17].

However, these methods may be susceptible to limitations in obtaining representative samples, recall bias, and the need for active participations, hindering their full potential. In contrast, wastewater-based epidemiology (WBE) offers objective insights into community-level health without the need for active participation from individuals. WBE has demonstrated its efficacy in monitoring pathogen exposure during the SARS-CoV-2 pandemic and extends its utility to study community-wide consumption of pharmaceuticals, diet and lifestyle products, as well as exposure to industrial chemicals and pesticides [18–20].

Notably, previous applications of WBE have indirectly explored the influence of environmental factors, such as air pollution and heat, on acute asthma and cardiovascular conditions by analyzing pharmaceuticals in wastewater [21,22]. The current study, to the best of our knowledge, for the first time uses WBE to study the population burden of seasonal allergies by investigating the relationship between antihistamine residues excreted to wastewater and airborne pollen exposure.

2. Materials and methods
2.1. Chemicals and solutions
Information regarding the chemicals and solutions utilized for the analysis of the eleven antihistamine markers bilastine, cetirizine, desloratadine, 3-hydroxydesloratadine, diphenhydramine, fexofenadine, fexofenadine N-oxide, hydroxyzine, loratadine, meclizine, and rupatadine in wastewater is provided in the supporting information (SI 1.2).

2.2. Wastewater sample collection and storage
Volume-proportional 24-hour composite samples were collected from the raw influent at the wastewater treatment plant (WWTP) of Zurich (ARA Werdhölzli) using on-site sampling infrastructure. Sampling was conducted from February to July 2021 (pollen season) and in December 2021 (pollen off-season) on a daily basis, while in the remaining months of 2021 and 2022, samples were collected every 13th day. The wastewater samples were kept at 4°C in the auto-sampler during the 24 hours of sampling and were then transferred into muffled 100mL glass bottles and stored at -20°C until chemical analysis.

More information on the WWTP catchment characteristics and the sampling procedure is provided in SI 1.1.

2.3. Wastewater sample preparation
The wastewater samples were thawed and centrifuged at room temperature at 279.5 RCF for 10 minutes (Centrifuge 5427 R, Eppendorf). 600 µL of supernatant were transferred to a new glass vial and spiked with 10 µL of the isotope-labeled internal standard (ISTD) mix to a final concentration of 1000 ng/L (SI 1.2). A ten-point calibration in Evian mineral water ranging from 10 ng/L to 10 µg/L was prepared from four ethanol-based working standard solutions. For each measurement batch, three independently prepared samples were analyzed to determine the precision of the analytical method. Furthermore, specific samples were spiked with the target analytes at seven concentration levels ranging from 50 ng/L to 5 µg/L to assess analyte recoveries in sample matrix.

For cetirizine the calibration (nine-point ranging from 10 ng/L to 5 µg/L) and the spiked samples (six-point ranging from 50 ng/L to 2.5 µg/L) were prepared independently from ACN:H2O (1:1, v/v) -based working solutions analogous to the procedure described above.

2.4. LC-HRMS measurements
The wastewater samples were analyzed for the target substances with large volume direct injection reversed-phase liquid chromatography high-resolution mass spectrometry (LC-HRMS). The chromatographic system consisted of a PAL auto-sampler (CTC Analytics, Switzerland) and a Dionex UltiMate3000 RS pump (Thermo Fisher Scientific, USA). A sample volume of 100 µL was injected on a reversed-phase C18 column (Atlantis® T3 3 µm, 3.0 x 150 mm; Waters). The chromatographic separation was performed at a flow rate of 300 µL/min with a mobile phase gradient, starting with 100% of eluent A (water and 0.1% v/v formic acid). After 1.5 minutes, eluent B (methanol and 0.1% v/v formic acid) was increased for 17 minutes to 95%, held for 10 minutes, and lowered again to the starting conditions, followed by a 4-minute re-equilibration phase. The samples were measured on a hybrid quadrupole-orbitrap high-resolution mass spectrometer (Orbitrap ExplorisTM 240 from Thermo Fisher Scientific) in positive ionization mode (ESI, 3.5 kV). Full-scan were recorded at a resolution (R) 120 000 (at m/z 200) followed by five MS/MS experiments (R = 30 000 at m/z...
200). Fragmentation of target ions was triggered based on an inclusion mass list and performed using higher energy collision-induced dissociation (HCD) with stepped collision energies of 15, 45, and 90%. The HRMS measurements were evaluated with TraceFinder 5.1 (Thermo Fisher, USA). Target analytes were quantified based on the area ratio of the reference standard (STD) and the corresponding ISTD of the analyte. Detailed information on the LC-HRMS settings and measurement quality control is presented in SI 1.3 and 1.4.

2.5. Wastewater daily population loads

Substance-specific daily population-normalized wastewater loads (DPL, mgd⁻¹1000p⁻¹) were determined by first multiplying the concentrations measured in the wastewater samples (c_sample, µgL⁻¹) by the daily wastewater volume (Flow_WWTP, m³d⁻¹) and then dividing by the estimated population in the catchment (Pop_WWTP, 1000p), as described in Equation 1.

\[
DPL = \frac{c_{sample} \times Flow_{WWTP}}{Pop_{WWTP}}
\]

2.6. Pollen measurements

Pollen data from the operational measurements of the Swiss pollen network at the Federal Institute of Meteorology and Climatology, MeteoSwiss, were utilized in this study. The quantification of airborne pollen was conducted in alignment with standardized procedures (EN 16868:2019-09) [23]. The characteristics of the pollen measurement station are detailed in SI 1.5.

2.7. Airborne pollen – fexofenadine model

A linear model was used to characterize the relation of airborne pollen exposure and antihistamine residues in wastewater at population-scale (Equation 2).

In this descriptive model, the fexofenadine load (DPLᵢ, mgd⁻¹1000p⁻¹) is a function of a baseline value (bᵢ, mgd⁻¹1000p⁻¹), the concentrations of the n allergenic airborne pollen taxa (cᵢ, pollen m⁻³) and non-negative weighting factors (wᵢ, -).

\[
DPLᵢ = bᵢ + \sum_{i=1}^{n} \left(\frac{1}{6} \sum_{d=1}^{l-1} cᵢ,d \right) \times wᵢ
\]

Fexofenadine loads were observed also during periods of negligible pollen exposure, mainly but not exclusively in winter months. Therefore, a baseline was needed to describe presumably pollen-independent consumption: A day was defined as a baseline point if no allergenic pollen taxa exceeded the lowest load classification (SI 1.6) in the nine preceding days. The baseline for the remaining days was then derived from linear interpolation between baseline points. The baseline values from 2021 were also used for 2022 since the lower temporal coverage of sample analysis in this year did not allow to determine an independent baseline. The fexofenadine loads exceeding the baseline were described by a pollen-dependent term. The pollen concentrations cᵢ were smoothed by using mean values from the six previous days (SI 2.3.1).

Non-negative Least Squares Regression (NNLS) was used to determine the linear relationship between mean pollen concentrations and residual fexofenadine loads (DPL – bᵢ). Positive coefficients were constrained since negative wᵢ values are not physically meaningful. Although a linear response to pollen loads is expected, this linearity may be disrupted at minimal threshold or saturation levels. The coefficients wᵢ were optimized using scipy.optimize.nnls solver in Python.

3. Results

3.1. Antihistamine dynamics in wastewater

Out of the eleven antihistamine markers (bilastine, cetirizine, desloratadine, 3-hydroxydesloratadine, diphenhydramine, fexofenadine, fexofenadine N-oxide, hydroxyzine, loratadine, meclizine, and rupatadine) analyzed in the wastewater samples, bilastine, cetirizine, fexofenadine, and diphenhydramine were detected in measurable quantities in the majority of samples (Table SI 7). The absence of quantifiable amounts for the other compounds can be attributed to several factors, including: i) low prescribed doses and excretion rates (such as loratadine, desloratadine, and 3-Hydroxydesloratadine), ii) low stability in the wastewater matrix (seen in the case of meclizine and fexofenadine N-oxide), iii) the lack of registered products in Switzerland (rupatadine), and iv) relatively poor ionization properties (notably desloratadine and meclizine) leading to higher limits of quantification (LOQ) using the current analytical method (Table SI 6 and Table SI 7).

Samples collected between 13.7.2021 and 18.7.2021 were excluded due to heavy rain and potential discharges of untreated wastewater through combined sewer overflows, leading to underestimation of daily loads. Additionally, outliers for fexofenadine on 18.4.2021, cetirizine on 23.3.2021 and 15.2.2021, and diphenhydramine on 10.6.2021 and 11.2.2021 were excluded due to unusually high values and suspicion of disposal of unconsumed medication in the wastewater.

The wastewater loads of second-generation antihistamines, including fexofenadine, bilastine, and cetirizine, demonstrated pronounced seasonal patterns that exhibited a strong correlation among them (Figure 1).
Figure 1: (A-B) Temporal patterns of antihistamine wastewater populations loads in Zurich during 2021 and 2022. A) Antihistamine population loads relative to the average off-season values of January, November, and December (grey). B) Correlation of wastewater population loads [mg/d/1000p] from 2021 and 2022.

During the pollen off-season in late summer, fall and winter, the wastewater loads remained consistently low (Figure 1A). However, distinct periods in spring and summer displayed a significant surge, with fexofenadine loads ten-fold or higher compared to winter levels. In contrast, the wastewater loads of the first-generation antihistamine diphenhydramine remained stable throughout the entire study period.

3.2. Airborne pollen patterns and fexofenadine wastewater loads

Fexofenadine was chosen as the representative compound for second-generation antihistamines in the descriptive modeling of the relationship between pollen exposure and antihistamine consumption, due to its detectability above the LOQ in all samples and its high stability (SI 2.2 and SI 3.3). The observed high correlation among the loads of second-generation antihistamines further justifies this simplification.

Out of the 47 pollen taxa and miscellaneous pollen measured in this study, particular attention was given to the 14 allergenic taxa: alder, ash, beech, birch, sweet chestnut, grass, hazel, hornbeam, mugwort, oak, plane, plantain and ragweed. The pollen data in Figure 2 is limited to taxa that exhibited at least once a “very strong” burden, as determined by the four estimated pollen load classes (low, moderate, strong, very strong), in the investigated years of 2021 and 2022. Data on additional pollen taxa and detailed information on pollen load classification are provided in SI.

In 2021, during which daily wastewater loads of antihistamines were analyzed, the temporal pattern of pollen can be roughly divided into three periods, delineated by periods of low pollen burden. All three pollen periods coincide with elevated wastewater loads of fexofenadine and correspondingly low loads during phases of low pollen burden (Figure 2).
Figure 2: Concentrations of allergenic airborne pollen (number pollen/m3) and fexofenadine wastewater loads (mg/1000 persons/day) in Zurich during 2021 and 2022. Upper limits of pollen taxa-specific load classes are indicated by a horizontal line. Days from 2021 in which no pollen taxa exceeded the lowest load class in the previous 9 days are shaded in grey. The pollen mean values of the previous 6 days are represented by shaded areas.
During the first period, spanning from early February to the end of March, the early pollen of hazel and alder dominated among the allergenic taxa, with similar concentration ranges in both 2021 and 2022. Additionally, exceptionally high concentrations of yew pollen were measured during this time, surpassing the maximum concentrations of the other pollens by an order of magnitude (Figure SI 5).

The second period, lasting from the end of March to mid-May, is characterized by elevated concentrations of the allergenic pollen of ash, hornbeam, birch, oak, plane and beech. Ash concentrations were comparably high in both years, whereas hornbeam, birch and oak showed pronounced inter-year variance. Concentrations of beech and plane pollen were comparably low, never exceeding 100 pollen/ m³ during the study period in both years (Figure SI 5).

In the last period, from late May to the end of July, grass pollen dominated, coinciding with low pollen concentrations of sweet chestnut and plantain. Grass pollen concentrations started to increase at the beginning of June and exceeded 150 pollen/m³ on several days in both years.

Relatively low pollen concentrations were observed for the allergenic taxa of mugwort (maximum 8 pollen/m³), ragweed (maximum 4 pollen/m³), and sorrel (maximum 12 pollen/m³) in both 2021 and 2022 (Figure SI 6).

For the additional pollen species of the cypress family, olive family, nettle family, and pine, for which there are indications for allergenicity, only insignificant concentrations were measured (SI 2.4).

3.3. Non-Negative Least Squares Regression Model

The observed temporal pattern of fexofenadine wastewater loads can be characterized by two main components: i) baseline consumption, independent of specific pollen counts, and ii) consumption associated with exposure to specific pollen taxa (Figure 3).

The baseline consumption further divides into two subcategories: i) fexofenadine consumption during winter months when allergenic pollen is typically absent (referred to as baseline off-season), and ii) increased background consumption during spring and summer months, persisting despite minimal pollen exposure over a nine-day period (termed baseline pollen season).

Fexofenadine residual loads, obtained by subtracting the baseline from total loads, were analyzed using a linear non-negative least square regression model to estimate the impact of exposure to specific pollen taxa. The most effective model for describing the relationship between pollen exposure and fexofenadine residual loads utilized a transformation of pollen concentrations using the mean of the preceding 6 days ($R^2=0.84$), implying smoothing and considering a temporal offset. Additional modeling results with alternative pollen concentration transformations are available in SI 2.3.1.
Considering exclusively the 14 allergenic pollen types, the model identified 10 pollen taxa (alder, ash, beech, birch, grasses, hazel, hornbeam, plane, plantain, sweet chestnut) to describe the seasonal pollen exposure-dependent consumption of fexofenadine (Figure 3A).

In 2021, hazel and alder exposure during late February to late March induced relatively low fexofenadine intake. In contrast, in early April to end of June, with primarily ash, beech, birch, hornbeam, and plane blooming, significantly higher antihistamine loads were observed with hornbeam and plane pollen identified as primary allergens during this phase. Grass pollen were the main contributors during the late period between early June and late July.

Notably, two periods in 2021, mid to late March and mid-April, showed elevated fexofenadine wastewater loads not explainable by the occurrence of any allergenic pollen taxa.

In 2022, daily pollen contribution to fexofenadine loads was modeled, with wastewater analysis performed only every thirteenth day. In most cases, the modeled pollen contribution was similar to 2021, except for birch and hornbeam, which showed significant differences in pollen concentrations between the two years. Inclusion of wastewater data from 2022, despite limited temporal coverage, provided valuable information for establishing boundaries and determining pollen-specific weighting factors, particularly for birch pollen, present only at low concentrations in 2021.

Inclusion of five additional pollen taxa with potential allergenicity (cypress family, nettle family, olive family, pine, yew) showed little change in the estimated allergy burden, except for March, where increased fexofenadine loads could partly be explained by yew pollen (Figure 3B).

Uncertainty in the allocation of the contribution of alder and hazel pollen, based on the considered pollen species, shows the limitation of modeling the allocation of pollen types with a synchronous temporal pattern. Consequently, estimated contributions should be viewed prudently as combined projections for species that bloom simultaneously.

Overall, the model performed well in identifying the suspected key allergenic pollen taxa even when including all 47 measured pollen taxa and miscellaneous pollen (Figure SI 11).
4. Discussion
The seasonal wastewater pattern of second-generation antihistamines (fexofenadine, bilastine, and cetirizine) observed in this study aligns with their expected usage for managing seasonal allergy symptoms, especially in pollinosis cases. The high correlation between these three drugs suggests no interference from industrial sources, systematic sewer disposal, or changes in the drug market during the study period. The consistent loads of diphenhydramine throughout the seasons correspond to its major prescription as a sedating agent, indicating no systematic errors in wastewater sampling or analysis causing seasonal effects.

The elevated wastewater loads of fexofenadine, along with its pronounced seasonal pattern compared to other antihistamines, can be attributed to its high daily dosage, excretion factor, and application spectrum (Table SI 6). The considerable day-to-day fluctuation of second-generation antihistamine wastewater loads underscores the necessity for high temporal resolution in symptom tracking, which may limit the use of indicators such as sales data (no daily resolution). In future studies, the inclusion of short-acting β2 adrenergic receptor agonists (such as salbutamol) and endogenous histamine urine metabolites (for instance, 1,4 methylimidazole acetic acid) could provide further insights into the relationship with asthmatic symptoms and additional histamine-mediated conditions. However, the analytical quantification of histamine metabolites presents notable challenges and their potential as biomarkers is presumably limited to systemic mastocytosis rather than allergen exposure [24–26].

The observations from this study indicate that for fexofenadine, approximately one-third of the annual load is consumed independently of pollen season (Baseline Off-Season). This could potentially be attributed to the treatment of non-seasonal allergies or conditions that, while not allergic, are histamine-mediated, such as mastocytosis. The remaining two-thirds are consumed in a seasonal manner (Figure SI 12). Among this seasonal portion, around one-third seems to be consumed independently of acute pollen exposure (Baseline Pollen-Season). This could be an indication for long-term prophylactic treatment for pollinosis symptoms, or treatment of pollen-independent seasonal allergies. Individuals whose pollen exposure is partially detached from the catchment area, but who still contribute to the wastewater, such as commuters or tourists, could also contribute to this background.

Our results further suggest that roughly half of the consumed fexofenadine can be attributed to acute pollen exposure. The general temporal delay and persistence of increased antihistamine loads following pollen exposure cannot be solely explained by the duration required for metabolization, excretion and in-sewer transport, which is estimated to be approximately one day (Table SI 1 and Table SI 6). The persistence of increased loads therefore likely reflects enduring symptoms in allergy sufferers post-exposure.

Notably, systematic targeted preventive consumption based on pollen forecasts, which would theoretically display the opposing temporal offset, was not observed at the population level. Furthermore, our investigations provide indication of non-linearity between pollen exposure and symptoms, with minimal thresholds of pollen required to cause treatable symptoms. For instance, in the period from late July to early September, smaller peaks in grass pollen concentrations no longer trigger increases in antihistamine consumption. However, data with daily resolution over longer time periods would be necessary to estimate pollen taxa-specific load class thresholds accurately.

According to the model, grass pollen account for approximately one quarter of the annually consumed fexofenadine, making them the pollen class with the highest allergy burden in this study. In comparison, the birch-homologous group, including birch, alder, hazel, oak, and hornbeam contributed to approximately 10 percent of the annual fexofenadine load [27]. Within this group, hornbeam in 2021 and birch in 2022 showed the highest contributions, while early hazel and alder had minimal impact on consumption. The model further indicated that the allergy burden of plane is similar to that of alder and hazel combined, while the impact of plantain is comparable to that of birch.

These results are generally in agreement with high sensitization reported for grass and birch allergens in Swiss students [28]. However, allergy burden of early flowering hazel and alder may be underestimated by misinterpretation of allergic symptoms for cold symptoms and impact of plantain overestimated due to synchronicity with grass pollen.

Observed indication of allergenic potential of yew pollen at population-scale needs to be addressed in further clinical studies [29–31]. It is noteworthy that the study location, Zurich, has one of the largest yew tree populations in Europe and the measured pollen concentrations were considerably high, exceeding up to 10,000 pollen/m³ [32,33]. Additional pollen types with potential allergenicity, such as the cypress family, olive family, nettle family, and pine, currently do not seem to have allergenic potential at the population level, but this may change with progression of climate change [12,34].

In conclusion, our study observed a strong correlation between second-generation antihistamines in wastewater and airborne pollen exposure, underscoring WBE’s viability to investigate the population-scale allergy burden. WBE excels in providing anonymous, aggregated data, reflecting the cumulative effects of allergic conditions. Longitudinal triangulation with supplemental data enables an objective understanding of the factors affecting symptom severity and prevalence, exemplified by our observations on yew pollen.

The scope of this pilot study constrained our ability to interpret these cumulative effects, necessitating the use of a simplified linear model with challenges in establishing baselines and discerning pollen-specific contributions. To gain a deeper insight into the dynamics between pollen allergen exposure and symptom prevalence and severity at the population-scale, expanded research is needed. Efforts should integrate data over extended periods, including mast blooming events for specific pollen taxa, incorporate local effects in pollen measurements, and delve into additional contextual factors like air quality and population dynamics. Advancements in automated pollen measurements, potentially providing improved spatial and temporal pollen information, along with the global trends towards institutionalization of wastewater monitoring, offer a promising foundation for future studies in this direction [35–38].
Author contributions:
Conceptualization: SB, HS, CO, PSG; Methodology: SB, MS, HS, BCL, BCR; Measurements: SB, MS; Resources: SB, CO, HS, PSG, BCL, BCR; Original Draft: SB; Review & Editing: SB, CO, HS; Final submission: all authors

Acknowledgments
The authors would like to thank the personnel of the WWTP Zurich, with particular acknowledgment to Rey Eyer for his efforts in sampling. We also express our sincere thanks to Philipp Longrée for his support on LC-HRMS analysis, and to Andreas Scheidegger for his expertise and assistance in statistical analysis.

AI-assisted technology, ChatGPT, was utilized exclusively for language improvement in the manuscript. The authors take full responsibility for the content of the publication.

This research received funding from the Swiss Federal Office of Public Health (FOPH, contract number: [142003899/321-446/1]). Eawag further supported the study with additional funds to enable daily sample analyses.

Conflict of interest
PSG has received speaker fees from ALK, Allergopharma, Bencard, Buehlmann, Euroimmun, Stallergenes and ThermoFisher. All other authors declare no conflict of interest.

Data availability
The full dataset, along with the associated analysis and visualization scripts, will be made available to the public through the Eawag Research Data Institutional Collection (ERIC-open).

References

