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Abstract

While digital phenotyping provides opportunities for unobtrusive, real-time mental health
assessments, the integration of its modalities is not trivial due to high dimensionalities and
discrepancies in sampling frequencies. We provide an integrated pipeline that solves these
issues by transforming all modalities to the same time unit, applying temporal independent
component analysis (ICA) to high-dimensional modalities, and fusing the modalities with
linear mixed-effects models. We applied our approach to integrate high-quality, daily self-
report data with BiAffect keyboard dynamics derived from a clinical suicidality sample of
mental health outpatients. Applying the ICA to the self-report data (104 participants, 5712
days of data) revealed components related to well-being, anhedonia, and irritability and social
dysfunction. Mixed-effects models (55 participants, 1794 days) showed that less phone
movement while typing was associated with more anhedonia (f = -0.12, p = 0.00030). We
consider this method to be widely applicable to dense, longitudinal digital phenotyping data.
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Introduction

Traditionally, mental health assessments are administered by professionals in the clinic and
therefore occur infrequently, outside the context of an individual’s daily life. The ubiquity of
smartphones presents many opportunities for more frequent mental health assessments
outside of the clinic.! A popular and direct measure of mental state administered through
smartphones are self-report questionnaire-style prompts, like ecological momentary
assessment (EMA), which repeatedly sample behaviour and experiences in their natural
environment, in real-time.? As with any measurements that rely on active user engagement,
however, EMA imposes burden on the participant and is therefore prone to attrition.?
Therefore, the development of passive, unobtrusive smartphone measures that predict
mental state is receiving increasing attention.*

Quantifying behavioural phenotypes using data collected unobtrusively from wearable digital
devices is referred to as digital phenotyping.> One example of this approach is the open-
science i0OS app BiAffect.® Developed by our team, BiAffect replaces the user’s iPhone
keyboard. It collects keyboard typing metadata (e.g., typing speed) as well as accelerometery
data (movement and orientation while typing). Previous work has shown that typing speed
predicts cognitive processing speed and shows an age-modulated, diurnal pattern.”2 In
addition, several measures such as accelerometer displacement and autocorrect rate have
been shown to predict depression or mania ratings.®®° These findings highlight the potential
of passively collected typing data in clinical contexts.

While providing unique opportunities, the inception of this new technology requires
analytical workflows that can extract meaningful behavioural phenotypes from the underlying
timeseries. This poses several analytical challenges. Most importantly, it is often necessary to
integrate data modalities that are acquired at different sampling frequencies. This is
important, for example, to validate the predictive power of digital phenotyping measures for
mental health and cognition, most commonly against self-report measures.* However, self-
report prompts tend to occur, at most, several times a day, which forms a data stream that is
very sparse compared to the hundreds of daily samples collected by smartphones. Therefore,
any study that aims to validate digital phenotyping measures of mental health must first
address temporal misalignment. An additional problem arises when data are high-
dimensional, making dimensionality reduction techniques desirable.

The solution we employ involves: 1) applying temporal independent component analysis (ICA)
to the high-dimensional modalities, 2) transforming all modalities to the same time unit
through resampling or aggregation, and 3) then fusing the modalities through linear mixed-
effects models as in prior work.1%1% Temporal ICA decomposes a multivariate time series into
a limited set of components by maximising their statistical independence in the time
domain.112 Crucially, ICA does not collapse the time domain, allowing classical resampling
and aggregation techniques to align the generated independent components with the other
digital phenotyping modalities. Additionally, ICA can compress data into a smaller number of
independent components, making it ideally suited for dimensionality reduction. This means
that fewer mixed-effects models need to be constructed, leading to a more parsimonious
system of models that suffers less from multiple comparison corrections.

To demonstrate the value of our approach, we apply it to integrate high-quality self-report
data with digital phenotyping data from the CLEAR-3 trial, a randomised controlled crossover
trial that investigated how a hormonal intervention impacts menstrual cycle exacerbation of
suicidal ideation and affective symptoms. The trial featured a unique clinical sample of mental
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Figure 1: Overview of analysis pipeline. The ICA diagram displays how a collection of multiple time series (one series for every
self-report item) gets decomposed into a mixing matrix (depicted as a bar diagram) and a reduced number of independent
components with the time domain kept intact. Every item time series is constructed by concatenating the individual
participant time series. The complete case and identifiability constraints are specified in the Results. ICA = independent

component analysis; LMER = linear mixed-effects regression.

health outpatients who were assigned female at birth (AFAB) and reported suicidal ideation

in the past month. Participants self-reported on a large array of questionnaire items

pertaining to affective, cognitive, and behavioural functioning on a daily basis and received

substantial monetary compensation for the completion of daily ratings to ensure a high

response rate that is not feasible in real-world applications. Meanwhile, they were
encouraged to use the BiAffect iOS keyboard for the duration of the study.

We applied temporal ICA to the self-report data to distil the large number of items into fewer
dimensions and predict their time course from BiAffect-derived data streams. Before running
the ICA, we concatenated the self-report data of all participants along the temporal domain,
both to increase the number of time steps fed into the analysis and to get a common set of
independent components that applies to all participants.?>1> Temporal ICA then takes such a
matrix of time series and decomposes it into a time-free mixing matrix and a set of
components that are independent in the temporal domain. The mixing matrix specifies how
the independent components combine to generate the original measures. We consequently
constructed a separate data fusion model for each component, employing strict multiple
comparison corrections. An overview of our approach is given in Figure 1.

We demonstrate that our method yields a set of interpretable components of self-report data
as well as stable associations between these components and keyboard-derived measures in

a clinical sample with suicidal ideation.
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Results

Demographics

Our release of the CLEAR-3 data set contained 109 participants. Missing data patterns are
given in Figure 2. Some participants did not have self-report data in their baseline period,
which meant that the ICA was run on 104 participants. Their demographics are given in Table
1. For the models, we included all BiAffect data that fell within the range of included self-
report data (see Figure 2).

Linear mixed-effects models require their cases to be complete, i.e., for one day, both BiAffect
and self-report features needed to be present. We had a substantial number of incomplete
days due to missing keyboard data because participants would sometimes choose to replace
the BiAffect keyboard with their own keyboard due to, for instance, multilingual requirements
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Figure 2: Missingness patterns of BiAffect and self-report data for all participants in the sample. Blank spaces (no grey or
blue blocks) indicate that no records whatsoever were available for that date. For the self-report panel, all blocks that are
present are also marked as included for the ICA analysis (cyan strikethrough), while those that do not are marked as excluded
(red strikethrough). For the BiAffect panel, we included those data in the regression that were both present and fell within
the included self-report range.
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currently not supported by BiAffect. Overall, these incomplete cases resulted in the exclusion
of 44 participants. We further required at least two observations for every week within a
participant to allow identifiability of the random interaction between week and participant.
We therefore excluded an additional 5 participants, leaving us with 55 participants. The
demographics of this subgroup are given in Table 1. In total, 5712 days’ worth of data were
fed into the ICA, while the mixed-effects models were built with 1794 days.

ICA LMER
N 104 55
Age (mean (SD)) 25.66 (4.63) 26.73 (4.87)
Race (%)
Caucasian 49 (47.1) 26 (47.3)
African American 14 (13.5) 7(12.7)
Asian 10 (9.6) 5(9.1)
Don't Know or More than one race 28 (26.9) 14 (25.5)
Unknown 3(2.9) 3(5.5)
Ethnicity (%)
Hispanic 29 (27.9) 15 (27.3)
Non-Hispanic 73 (70.2) 38 (69.1)
Unknown 2(1.9) 2(3.6)
Education (%)
High school degree, GED, or trade school 10 (9.6) 4(7.3)
Post-graduate work 23 (22.1) 15 (27.3)
Some college or 2-year degree 28 (26.9) 13 (23.6)
4-year college degree 39 (37.5) 20 (36.4)
Unknown 4 (3.8) 3(5.5)
Income (%)
<$15,000 12 (11.5) 6(10.9)
$15,000-$34,999 17 (16.3) 10 (18.2)
$35,000-$79,999 39 (37.5) 19 (34.5)
$80,000-$100,000 12 (11.5) 5(9.1)
>$100,000 17 (16.3) 11 (20.0)
Unknown 7(6.7) 4(7.3)
Baseline Clinical Categories (%)
Any current depressive disorder 64 (61.5) 32 (58.2)
Any current anxiety disorder 63 (60.6) 30 (54.5)
Any current obsessive-compulsive disorder 11 (10.6) 4(7.3)
Any current substance use disorder 17 (16.3) 7(12.7)
Any current eating disorder 12 (11.5) 6(10.9)
Any current trauma-related disorder 25 (24.0) 9(16.4)

Table 1: Participant demographics. The LMER group is a subgroup of the ICA group. ICA = independent component analysis;
LMER = linear mixed-effects regression; SD = standard deviation.

Independent component analysis

The mixing matrix for a 5-component temporal ICA solution is shown in Figure 3 (10- and 20-
component solutions are shown in Supplementary Fig. 1 and 3). The values of this matrix
indicate how much every estimated independent component contributes to the measured
values of a self-report item (loading). We selected 34 self-report items from the CLEAR-3 trial
that pertained to various aspects of affective, cognitive, and behavioural functioning and
were potentially relevant to acute suicidal ideation. These items are subsets of the Daily
Record of Severity of Problems (DRSP),'® Brief Agitation Measure (BAM),'’ Brief Irritability
Test (BITe),*® Adult Suicidal Ideation Questionnaire (ASIQ),*® Positive and Negative Affect
Schedule (PANAS),?° Interpersonal Needs Questionnaire (INQ),?* and some EMA items
derived from a prior study (denoted here as ‘Miscellaneous’ or ‘Misc’). The exact questions
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corresponding to the self-report items are given in Supplementary Table 1. Since every
column in Figure 3 is linked to an independent component, we will refer to them by their
component number.
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Figure 3: Mixing matrix of the 5-component decomposition of the self-report data. Bar opacity is an additional
representation of the loading values. For questionnaire abbreviations, please refer to the main text. IC = independent
component.

IC 1 has large positive loadings for the FeltHappy, FeltCapable, and FeltConnected items,
which are the only items in our set that pertain to positive affect. The loadings for the rest of
the items are in the opposite, negative direction. We will therefore refer to this as the “well-
being” component. This polarity pattern reappears for all investigated model orders, up to a
reversal of the polarity (Supplementary Fig. 1 and 3). IC 2 shows the same (reversed) pattern,
but also displays large loadings for Lackinginterest, Unmotivated, and Anhedonia, while the
loadings for all other items are comparatively small. We will refer to this IC as the “anhedonia”
component. IC 3 shows negative associations with all items in our set, possibly indicating a
mean offset of which the intensity varies over time. E.g., if a participant gives consistently
lower ratings than other participants, this might be represented with a higher IC 3 intensity.
IC 4 gives positive loadings for items measuring agitation (BAM) and the related construct of
irritability (BITe), as well as several DRSP items focused on interpersonal reactivity and
conflict. We will refer to this IC as the “irritability and social dysfunction” component. Finally,
IC 5 displays negative associations with the BITe and small, mixed loadings on the DRSP items.
This mix makes it challenging to interpret this component, so we will refrain from naming it.

Fusion with keyboard dynamics

The BiAffect preprocessing pipeline was based on previous studies.®** In brief, all keyboard
and accelerometery data were aggregated to the daily level. We extracted the following
features: 1) median inter-key delay (IKD), an inverse measure of typing speed, 2) 95%
percentile IKD, a measure of pausing within typing sessions, 3) mean absolute deviation
(MAD) IKD, which quantifies typing speed variability,® 4) autocorrect rate, 5) backspace rate,
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6) the total number of key presses per day, 7) the percentage of typing sessions spent upright,
and 8) the percentage of typing sessions where the phone recorded movement.

Our mixed-effects models contained fixed effects for all BiAffect features, random intercepts
for participants, and random interactions between week and participant. We found no gross
violations of model assumptions. For the remainder of this section, we have declared any
effects with (corrected) p-values beneath a = 0.05 significant. Forwards-fitting of the random
effects indicated that the interaction of week and participant was a significant addition to all
models (for all models, p < 0.0001). Model parameter estimates are given in Table 2. After
Bonferroni correction, we found that less phone movement corresponded to more anhedonia
(IC 2) on the same day (B = -0.12, p = 0.00030). As for terms with p < 0.05 only in the
uncorrected case, we found that increased movement rate was associated with greater well-
being (B =0.071, uncorrected p =0.0051) in the IC 1 model, higher median IKD (slower typing)
predicted more anhedonia (B = 0.098, uncorrected p = 0.013) in the IC 2 model, lower median
IKD (faster typing; B =-0.094, uncorrected p = 0.030) and a higher total number of key presses
(B =0.062, uncorrected p = 0.027) predicted more irritability and social dysfunction in the IC
4 model, and a lower total number of key presses predicted higher IC 5 intensity (B = -0.060,
uncorrected p = 0.025).

Supplementary analyses

We investigated the stability of the ICA solutions across multiple FastICA restarts and found
that in most cases the well-being and anhedonia components would combine into one
component that indicated general affect (Supplementary Fig. 5). Phone movement remained
a significant predictor of anhedonia. When the ICA solutions featured the general affect
component instead, we found that phone movement also significantly predicted the general
component.

To verify that IC 3 represented a mean offset of self-report responses for certain participants,
we correlated the average responses with the IC 3 values and found a negative correlation
(Supplementary Fig. 7).
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Ic1 Ic2 IC3 [’} IC5

B p' p B p' p B p' p B p' p B p' P
Median IKD 0.034 0.36 1 0.098 0.013 0.52 0.023 052 | 1| -0.094 0.030 |1 0.018 0.66
95th percentile IKD -0.013 0.68 1 -0.030 0.36 1 -0.015 063 | 1| 0057 012 |1 -0.023 051 |1
MAD IKD -0.0022 0.94 1 -0.027 0.42 1 0.043 016 | 1| 0053 014 |1 0.0016 096 |1
Autocorrect rate 0.015 0.58 1 -0.00029 0.99 1 -0.034 020 | 1| 0022 047 |1 -0.015 062 |1
Backspace rate -0.016 0.51 1 0.032 0.20 1 0.018 045 | 1 | -0.0045 087 |1 0.0047 086 | 1
Total number of key presses -0.00083 | 0.97 1 0.022 0.39 1 -0.030 021 | 1| 0062 0027 |1 -0.060 0.025 | 1
Movement rate 0.071 0.0051 | 0.20 -0.12 <0.0001 | 0.00030 | 1.4e-05 1 1| 0.055 0.058 | 1 -0.020 048 |1
Upright rate 0.037 0.14 1 0.016 0.55 1 0.026 029 | 1| 0017 056 |1 -0.027 032 |1

Table 2: Mixed-effects model estimates with their uncorrected and corrected p values. Every IC corresponds to a separate model. p’ indicates uncorrected p values, p indicates Bonferroni-
corrected p values. IC = independent component; IKD = inter-key delay; MAD = mean absolute deviation.


https://doi.org/10.1101/2023.11.29.23299169
http://creativecommons.org/licenses/by-nc-nd/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2023.11.29.23299169; this version posted November 30, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in
perpetuity.
It is made available under a CC-BY-NC-ND 4.0 International license .

Discussion

In this work, we introduce a generic method for the analysis and integration of digital
phenotyping with self-report data. It utilises temporal ICA to extract interpretable
components from the data while keeping the temporal dimension of the data intact, providing
a principled method to align different data modalities. We validated the method in a dataset
acquired from participants with a history of suicidal ideation and found well-being,
anhedonia, and irritability and social dysfunction components in the high-dimensional self-
report data. This low-dimensional representation could be predicted by smartphone typing
dynamics and accelerometery in that more phone movement while typing was associated
with less anhedonia. To our knowledge, this is the first study to demonstrate that passively
collected smartphone keyboard dynamics are predictive of a low-arousal state in people with
suicidal ideation, as measured using extensive validated instruments that are hard to deploy
at scale.

Our method aligned self-report and keyboard dynamics data, allowing their joint analysis and
providing further evidence for the use of keyboard dynamics as an ecologically derived marker
of mental well-being. Moreover, we distilled high-dimensional data into interpretable
components that can be related to the existing literature more easily.

For instance, the emergence of the wellbeing, anhedonia, and irritability and social
dysfunction components, as identified by our temporal ICA, can be interpreted in the light of
the core affect framework.?? According to the core affect theory, core affect is “a
neurophysiological state that is consciously accessible as a simple, non-reflective feeling” and
is a blend of two dimensions: Pleasure-displeasure and activation-deactivation.?? Our
components are easily mapped onto this domain. The well-being component aligns mainly
with the pleasure dimension and is quite neutral w.r.t. activation. Anhedonia, on the other
hand, indicates low activation and a small amount of displeasure. The irritability and social
dysfunction component most likely is a blend of high activation and displeasure. Since core
affect is postulated to be involved in emotional episodes,?? it is encouraging that our temporal
ICA is able to identify components that can readily be compared to the core affect dimensions
and predicted with data collected passively using smartphones.

Specifically, we showed that phone movement was predictive of the anhedonia component,
which is intuitively understandable in that less movement while typing is associated with
more anhedonia, a higher lack of interest and a higher lack of motivation. Additionally, we
found that phone movement was a trend significant, positive predictor of well-being, which
complements the relationship between movement and anhedonia. Since this is the first study
investigating the relationship between smartphone keyboard dynamics and suicidality, there
is only a small set of prior literature to compare our findings to. Zulueta et al., for example,
reported that more phone movement (calculated differently than in our study) predicted
higher depression and mania ratings in a sample of participants with bipolar disorder.®
However, they also pointed out that bipolar depression can manifest as either psychomotor
retardation or agitation,?® and therefore their results may not be directly comparable to our
findings.

In addition, we found the trend significant effect that larger IKDs (slower typing) predict more
anhedonia and that smaller IKDs (faster typing) are related to increased levels of irritability
and social dysfunction. While we refrain from drawing conclusions due to the lack of prior
literature, it is notable that our findings conform to intuition. Our data also suggest that more
key presses predict higher levels of irritability (IC 4 and 5). We note that previous digital
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phenotyping studies have used measures related to data quantity (e.g., the duration of
periods of successful data collection) to detect schizophrenia severity and relapses,?*> which
suggests the utility of employing typing dynamics quantity metrics for similar purposes. This
would be an interesting direction for future work.

There are several caveats and limitations that we would like to highlight. First, the more
components we request from the ICA, the more challenging their interpretation becomes.
Many components of the 10- and 20-component solutions, for instance, contain a mix of
positive and negative loadings for items from a single scale, which would suggest that such
components represent either very specific aspects of a domain or just capture noise
(Supplementary Fig. 1 and 3). On the other hand, we stress that low-dimensional ICA solutions
need not be the optimal ones. Other decompositions might be equally valid, depending on
the level of granularity one wishes to examine.?®

Second, Figure 2 showed that in some participants substantial portions of the BiAffect data
are missing. Indeed, some participants strongly preferred the autocorrect behaviour of the
native iOS keyboard, whilst others had multilingual requirements that were not supported by
the current version of the BiAffect keyboard. These limits mainly exist because we developed
BiAffect and its autocorrect functionalities in-house; they should not be inherent to keyboard
typing dynamics itself. We also point out that high proportions of missing data are prevalent
in most digital phenotyping studies. With ICA as the core part of our processing pipeline, we
can handle this missingness under stationarity conditions. Moreover, the fact that, due to our
study incentivisation, the proportions of missingness for data that require active participation
(self-report) are much lower than those of passively collected data (BiAffect) is an exception
rather than the norm compared to other studies.?®

Third, while we have found that phone movement while typing is predictive of anhedonia, it
is not entirely clear if and how our anhedonia component contributes to suicidal ideation.
Links have been found between arousal and suicidal behaviour,?” but more research is needed
to determine how our anhedonia component maps onto the arousal operationalisations used
in the literature. Once this mapping has been clearly delineated, we can potentially leverage
the fluctuations in phone movement as part of an early warning system for heightened levels
of suicidal ideation.

Finally, the digital phenotyping analysis toolbox is still far from complete. For instance, not
much is known about the autocorrelation properties of keyboard and accelerometery
dynamics. While our previous research has identified diurnal patterns in keyboard dynamics,®
it is not unlikely that there are weekly, monthly, or even seasonal patterns in the BiAffect
features, warranting further research.

To conclude, temporal ICA is an effective tool to decompose high-dimensional, daily self-
report data without collapsing the time domain. In our dataset containing affective self-report
data of people assigned female sex at birth with a history of suicidal ideation, we found ICA-
based representations of affect that mapped onto digital phenotyping measures in an
interpretable fashion, namely as wellbeing, anhedonia, and irritability and social dysfunction
components consistent with the pleasure and activation axes found in core affect theory. We
consider this method to be widely applicable and a valuable contribution to the methods
toolbox for analysing densely sampled longitudinal and digital phenotyping data.
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Methods

Study design

Our study utilised data from the CLEAR-3 trial, a randomised controlled crossover trial that
investigated how perimenstrual administration of estradiol (E) and progesterone (P), relative
to natural steroid withdrawal under placebo, impacts menstrual cycle exacerbation of suicidal
ideation and affective symptoms (NCT04112368). The study was approved by the UIC
Institutional Review Board. Data acquisition for this study was ongoing, so only baseline (pre-
experimental) data were used for this study, which consisted of at least a full menstrual cycle.
Recruitment and exclusion criteria

All participants were assigned female sex at birth (AFAB), reported past-month suicidal
ideation (SlI), and were in outpatient treatment. Participants, who were recruited from the
community via social media ads and received up to US$1,250 after completing the entire trial,
were 18 to 45 years of age, had normal menstrual cycles (25-35 days), did not take any
hormonal medications, and had normal weight (BMI 18-29). Exclusion criteria included any
long-term nonpsychiatric health condition, a history of hospitalisation for mania or psychosis,
or any affective or substance use disorder deemed likely to interfere with safe participation
in the clinical trial. All participants provided informed consent for study participation.

Keypress data preprocessing

The keypress data were aggregated in two steps. First, individual keypresses were aggregated
into typing sessions, which begin as soon as the user presses the first key and end when the
keyboard is no longer displayed or after six seconds of inactivity.'* For each session, the
number of autocorrect and backspace presses were counted and divided by the total number
of keypresses in the session to get the autocorrect and backspace rates. In addition, the total
number of keypresses was counted. Finally, the inter-key delays (IKDs) were calculated
between all successive alphanumeric keypresses in the session. From these IKDs, we
calculated 1) the median IKD, an inverse measure of typing speed, 2) the 95" percentile IKD,
a measure of pausing within sessions, and 3) the mean absolute deviation (MAD) IKD, which
quantifies typing speed variability.?

After session-level aggregation, the sessions were aggregated to the daily level by taking the
mean of all session-level variables. The one exception to this rule were the total numbers of
session key presses, which were simply summed across the day. Any days with less than 750
key presses were excluded from further analysis to ensure proper feature estimation.
Finally, the number of key presses was log-transformed and all BiAffect features were
standardised w.r.t. the entire sample (i.e., grand mean set to 0 and overall variance to 1) to
aid model fitting.

Accelerometer data preprocessing

Our accelerometer data only included samples collected while the participant was typing on
the BiAffect keyboard. While collecting data all throughout the day would yield more data, it
would also be more taxing for the smartphone battery, and offloading the accelerometer
recording to an external device would require participants to wear an extra device.
Accelerometer data were grouped into typing sessions and low-pass filtered using a second-
order bidirectional Butterworth filter with a cutoff frequency of 4 Hz to remove noise.*
Afterwards, every sample within a session was classified as either moving (also ‘active’) or
stationary based on the magnitude of the filtered x, y, and z accelerometer readings.
Magnitudes close to 1 reflect the natural gravitational pull of the earth and therefore indicate
the user’s phone is at rest. We classified samples with a magnitude below 0.95 and above
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1.05 as active, and everything that fell within these (inclusive) bounds as stationary. An entire
session was classified as active if over 8% of its constituent samples was classified as active.
In addition, each session was classified as upright or not using the median values of the
filtered x and z values. If the median z value of a session was (strictly) below 0.1 and the
median x value was in-between -0.2 and 0.2 (inclusive), the session was classified as upright.*
Sessions that were not classified as upright could potentially indicate that participants were
using their phone while lying down.

Finally, by counting the number of active and upright sessions within a day and dividing those
counts by the total number of sessions within a day, we get a rate of active and a rate of
upright sessions per day.

Independent component analysis

The Supplement gives a mathematical description of how a temporal independent
component analysis (ICA) factorises data into a mixing and a source matrix. We used the
FastICA algorithm to estimate these matrices from the original self-report data.l® More
specifically, we used the parallel version with G set to the log cosh function and a; =1,
implemented in R (version 4.2.2) by the fastICA package (version 1.2.3).

ICAs are typically run on continuous data that can take negative values, while our self-report
data were strictly positive Likert scales. We therefore log-transformed all self-report
measures prior to running the ICA.

Solving for independent components typically necessitates a stochastic optimisation and
therefore has associated run-to-run variability. We ran a sensitivity analysis to check the
extent of this variability (Supplementary Fig. 5).

Data fusion models

A mathematical formulation of the data fusion models is given in the Supplement. We used
the nlme package (version 3.1.160) for R to create these models. We determined conformity
to the linear mixed-effects model assumptions by visual assessment. To assess normality of
the residuals and random effects, we examined their QQ plots. Heteroskedasticity was judged
by plotting the standardised residuals versus the fitted values. We constructed a separate
model for each IC and employed Bonferroni corrections to avoid multiple comparison
problems.
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