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ABSTRACT 

 

Objectives 

To evaluate and compare different polygenic risk score (PRS) models in predicting Parkinson's 

disease (PD) across diverse ancestries, focusing on identifying the most suitable approach for each 

population and potentially contributing to equitable advancements in precision medicine. 

  

Methods 

We constructed a total of 105 PRS across individual level data from seven diverse ancestries. First, a 

cross-ancestry conventional PRS comparison was implemented by utilizing the 90 known European 

risk loci with weighted effects from four independent summary statistics including European, East 

Asian, Latino/Admixed American, and African/Admixed. These models were adjusted by sex, age, 

and principal components (28 PRS) and by sex, age, and percentage of admixture (28 PRS) for 

comparison. Secondly, a novel and refined multi-ancestry best-fit PRS approach was then applied 

across the seven ancestries by leveraging multi-ancestry meta-analyzed summary statistics and 

using a p-value thresholding approach (49 PRS) to enhance prediction applicability in a global 

setting.  

 

Results 

European-based PRS models predicted disease status across all ancestries to differing degrees of 

accuracy. Ashkenazi Jewish had the highest Odds Ratio (OR):  1.96 (95% CI: 1.69-2.25, p < 0.0001) 

with an AUC (Area Under the Curve) of 68%. Conversely, the East Asian population, despite having 

fewer predictive variants (84 out of 90), had an OR of 1.37 (95% CI: 1.32-1.42) and an AUC of 62%, 

illustrating the cross-ancestry transferability of this model. Lower OR alongside broader confidence 

intervals were observed in other populations, including Africans (OR =1.38, 95% CI: 1.12-1.63, 

p=0.001). Adjustment by percentage of admixture did not outperform principal components. Multi-

ancestry best-fit PRS models improved risk prediction in European, Ashkenazi Jewish, and African 

ancestries, yet didn't surpass conventional PRS in admixed populations such as Latino/American 

admixed and African admixed populations. 

  

Interpretation 

The present study represents a novel and comprehensive assessment of PRS performance across 

seven ancestries in PD, highlighting the inadequacy of a 'one size fits all' approach in genetic risk 

prediction.  We demonstrated that European based PD PRS models are partially transferable to 

other ancestries and could be improved by a novel best-fit multi-ancestry PRS, especially in non-

admixed populations.  
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INTRODUCTION  

 

The heritability attributed to idiopathic Parkinson’s disease (PD) in European populations is 

estimated to be around 22%
1
. Genome-wide association studies (GWAS) have been key at 

identifying common loci that contribute to PD risk. A total of 90 risk variants across 78 independent 

loci have been associated with PD risk in European ancestry populations
1
. More recently, large-

scale efforts are focusing on increasing genetic diversity in PD studies to unravel the genetic 

architecture of disease across ancestries
2–5

. The first and largest trans-ethnic PD GWAS meta-

analysis performed to date in European, East Asian, Latino/Admixed American, and African 

ancestry populations identified a total of 78 loci reaching or maintaining genome-wide significance, 

12 of which had not been previously identified
6
. 

 

A polygenic risk score (PRS) can be generated to estimate an individual's susceptibility to a binary 

outcome, exploring the cumulative estimated effect of common genetic variants on an individual's 

phenotype like PD
7,8

. In this context, PRS alone has not been shown to have clinical utility in 

predicting PD in European populations, with only 56.9% sensitivity and 63.2% specificity to predict 

disease at best
9
. PRS utility improves both sensitivity (83.4%) and specificity (90.3%) when including 

relevant clinical criteria such as olfactory function, family history, age, and gender
9,10

. Similarly, the 

integration of environmental factors ameliorates case/control stratification 
10,11

 while the 

combination of multi-omics and clinical criteria in PRS models boosts prediction across multiple 

diseases 
11,12

. 

 

Nevertheless, the current focus on European ancestries in PRS development highlights a significant 

research gap. Using PRS to calculate disease risk in a single population may exacerbate existing 

health disparities as it cannot be accurately implemented across diverse ancestries 
13,14

. Despite 

challenges in the direct applicability of European-ancestry PRS, there's growing evidence for their 

cross-ancestry transferability, as seen in their association with diseases like Alzheimer's
15

, breast 

cancer
16

, and venous thromboembolism among non-European groups
17

. This indicates potential for 

methodological refinements to improve PRS reliability and address health equity concerns
18–20

. 

 

In the PD genetics field, studies investigating how cumulative genetic risk varies within and 

between different ancestral populations have not been conducted. Here, we perform the most 

comprehensive assessment of PRS in PD by implementing two approaches: First, we explore 

differences in the application and generalizability of the conventional PD PRS model using 

population-specific summary statistics across seven individual-level cohorts of diverse ancestry 

populations, including East Asians, Central Asians, Latino/Admixed American, Africans, African 

admixed, and Ashkenazi Jewish individuals. Secondly, we build multi-ancestry best-fit PRS models 

for these diverse ancestry populations based on summary statistics from a recent PD multi-ancestry 

GWAS meta-analysis
21

. By doing so, we aim to provide insights that will lead to the development of 

more accurate and inclusive genetic prediction models for PD research, thereby enhancing PRS's 

predictive power and contributing to equitable advancements in precision medicine. 

 

METHODS 

 

Study Participants 

Our study workflow is highlighted in Figure 1. We obtained multi-ancestry individual-level data 

from the Global Parkinson's Genetics Program (GP2) https://gp2.org/
22

 release 6 (doi: 

10.5281/zenodo.10472143, https://doi.org/10.5281/zenodo.10472143. These data (here referred 

to as target data) were used to test PRS models and comprised a total of 41,831 participants, 

including 24,709 individuals diagnosed with PD, 17,246 controls, and 2,876 participants diagnosed 
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with neurological diseases other than PD. After excluding related individuals (those at the first 

cousin level or closer) that could bias our PRS assessments and those classified as non-PD cases, 

our dataset comprised a total of 29,051 individuals, of which 15,989 were PD cases and 13,062 

controls. The following genetic ancestries were included: African admixed, African, Ashkenazi 

Jewish, Latino/Admixed American, Central Asian, East Asian, and European populations 

(Supplementary Figure 1, see Methods for ancestry clustering description). Detailed demographic 

and clinical characteristics can be found in Table 1. 

 

Target data  

Genotype data generation and quality control 

We performed genotype data generation according to standard protocols from the Global 

Parkinson's Genetics Program (GP2) https://gp2.org/ 22
 release 6 (doi: 10.5281/zenodo.10472143, 

https://doi.org/10.5281/zenodo.10472143). In summary, samples were genotyped on the 

NeuroBooster array (v.1.0, Illumina, San Diego, CA) that includes 1,914,935 variants encompassing 

ancestry informative markers, markers for identity by descent determination, and X-chromosome 

SNPs for sex determination. Additionally, the array includes 96,517 customized variants. 

Automated genotype data processing was conducted on GenoTools 
23

, a Python pipeline built for 

quality control and ancestry estimation of data. Additional details can be found at 

https://pypi.org/project/the-real-genotools/ 
23

. 

  

Quality control (QC) was conducted following standard protocols, with adjustments made to 

enhance precision and reliability. Samples exhibiting a genotype call rate below 98% (--mind 0.02), 

discordant sex determinations (0.25 <= sex F <= 0.75), or significant heterozygosity (F <= -0.25 or F 

>= 0.25) were excluded from the analysis. Additional QC measures involved the exclusion of SNPs 

with a missingness rate above 2%, variants deviating significantly from Hardy-Weinberg Equilibrium 

(HWE P value < 1E-4), and variants showing non-random missingness by case-control status (P≤1E-

4) or by haplotype (P≤1E-4 per ancestry). 

 

Ancestry predictions 

Ancestry predictions were refined using an updated and expanded reference panel, which, as of 

January 2024, comprises samples from the 1000 Genomes Project 

(https://www.internationalgenome.org/data-portal/data-collection/phase-1)
24

 , Human Genome 

Diversity Project
25

, and an Ashkenazi Jewish population dataset
26

. This panel includes 819 African, 

74 African Admixed and Caribbean, 471 Ashkenazi Jewish, 183 Central Asian, 585 East Asian, 534 

European, 99 Finnish, 490 Latino/Admixed American, 152 Middle Eastern, and 601 South Asian 

individuals. Palindromic SNPs were excluded to improve accuracy (AT or TA or GC or CG). Further 

filtering of SNPs within the panel was conducted to exclude variants with a minor allele frequency 

(MAF) below 0.05, a genotyping call rate less than 0.98, and Hardy-Weinberg equilibrium (HWE) p-

value less than 1E-4. The process ensured the extraction of variants overlapping between the 

reference panel SNP set and the samples under study, totaling approximately 39,302 variants for 

ancestry estimations. Missing genotypes were imputed using the mean value of the variant from 

the reference panel. 

 

To evaluate the efficacy of ancestry estimation, an 80/20 train/test split was applied to the 

reference panel samples, and principal components (PCs) were calculated using the overlapping 

SNPs. By applying transformations through UMAP, the global genetic population substructure and 

stochastic variation were visualized. Training a linear support vector classifier on the UMAP-

transformed PCs resulted in consistent predictions, with balanced accuracies between 95% and 

98%, as verified by 5-fold cross-validation on the test data from the reference panel. These 

classifier models were then applied to the dataset to generate ancestry estimates for all samples. 

Detailed methodologies for the cloud-based and scalable pipeline employed for genotype calling, 
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QC, and ancestry estimation are documented in the GenoTools 
23

 GitHub repository 

(https://doi.org/10.5281/zenodo.10719034)
27

. 

Following ancestry estimation, we excluded those with second-degree or closer relatedness 

(kinship coefficient > 0.0884). PCs that were used as covariates in the PRS analysis were 

recalculated per ancestry post-QC and ancestry determination. The percentage of ancestry was 

then computed using the supervised functionality of ADMIXTURE (v1.3.0; 

https://dalexander.github.io/admixture/binaries/admixture_linux-1.3.0.tar.gz), leveraging the 

labeled reference panel data to estimate ancestry proportions accurately. 

 

Imputation 

Variants with a minor allele frequency (MAF) of less than 0.05 and Hardy-Weinberg equilibrium 

(HWE) p-value less than 1E-5 were excluded before submission to the TOPMed Imputation server. 

The utilized TOPMed reference panel version, known as r2, encompasses genetic information from 

97,256 reference samples and over 300 million genetic variants across the 22 autosomes and the X 

chromosome. As of October 2023, the TOPMed panel includes approximately 180,000 participants, 

with 29% of African, 19% of Latino/Admixed American ancestry, 8% of Asian ancestry, and 40% of 

European ancestry (https://topmed.nhlbi.nih.gov/). Further details about the TOPMed Study
28

, 

Imputation Server
29

, and Minimac Imputation
30

 can be accessed at 

https://imputation.biodatacatalyst.nhlbi.nih.gov. Following imputation, the resulting files 

underwent pruning based on a minor allele count (MAC) threshold of 10 and an imputation Rsq 

value of 0.3.  

 

Model 1: Conventional polygenic risk score approach 

 

Ancestry-specific summary statistics generation 

A total of four population-specific summary statistics were used to compute PRS versus the seven 

GP2 individual level data ancestry cohorts (Supplementary Table 1a). We obtained summary 

statistics for the European population from the largest European PD GWAS meta-analysis to date 

conducted by Nalls and colleagues (2019) (https://pdgenetics.org/resources). This study included 

1,456,306 individuals, of which 1,400,000 were controls, 37,688 were cases and 18,618 were proxy 

cases (defined as having a first degree relative with PD). African admixed summary statistics were 

obtained from 23andMe, which are based on 194,273 individuals including 193,985 controls and 

288 cases. In order to achieve better-powered summary statistics for the East Asian population, we 

meta-analyzed two independent summary statistics including the largest East Asian PD GWAS 

meta-analysis to date
2
 and 23andMe summary statistics from East Asian ancestry, which yielded a 

total of 183,802 individuals, including 176,756 controls and 7,046 cases. In a similar way, we 

conducted GWAS meta-analysis to generate better powered Latino/Admixed American summary 

statistics, combining the largest Latino PD GWAS meta-analysis from the LARGE-PD Consortium
3
 

with 23andMe Latino/Admixed American summary statistics. This cohort consisted of a total of 

584,660 individuals, where 582,220 were controls and 2,440 PD cases. A summary of these data 

could be found in Supplementary Table 1a. 23andMe participants provided informed consent and 

volunteered to participate in the research online, under a protocol approved by the external 

AAHRPP-accredited IRB, Ethical & Independent (E&I) Review Services. As of 2022, E&I Review 

Services is part of Salus IRB (https://www.versiticlinicaltrials.org/salusirb). The full GWAS summary 

statistics for the 23andMe discovery data set will be made available through 23andMe to qualified 

researchers under an agreement with 23andMe that protects the privacy of the 23andMe 

participants. Datasets will be made available at no cost for academic use. Please visit 

https://research.23andme.com/collaborate/#dataset-access/ for more information and to apply to 

access the data.   
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A comprehensive explanation of each step to generate 23andMe summary statistics can be found 

elsewhere
31

. Briefly, the 23andMe data generation process could be summarized in the following 

steps. After genotyping of 23andMe participants was completed, an ancestry classifier algorithm 

was used to determine participant ancestries based on local ancestry and reference populations. 

Next, phasing was performed to reconstruct haplotypes using genotyping platform-specific panels 

followed by imputation of missing genotypes, expanding the variant dataset using two independent 

reference panels. Related individuals were then excluded using a segmental identity-by-descent 

estimation algorithm to ensure unrelated participants. Finally, a GWAS analysis adjusted by 

covariates age, sex, and principal components was conducted followed by GWAS QC measures to 

flag potential issues with SNPs, ensuring data integrity. 

 

For a detailed description of the methods used to generate East Asian summary statistics, refer to 

the study by Foo et al.
2
. Similarly, detailed information on the Latino/Admixed American summary 

statistics can be found in Loesch et al.
3
. The GWAS meta-analysis of each population was carried 

out using fixed effects based on beta and SE values for the 90 risk variants. This meta-analysis was 

conducted utilizing the METAL package, which is accessible at 

https://genome.sph.umich.edu/wiki/METAL_Documentation. 

 

Conventional polygenic risk score calculation 

For conventional PRS calculations, we extracted the 90 risk predictors previously linked to PD risk in 

European ancestry populations
1
 from GP2 individual level data for each of the seven ancestries. 

Scores were weighted by the effect sizes derived from the four population-specific summary 

statistics previously mentioned (European, African Admixed, Latino/Admixed American, East Asian) 

and adjusted by principal components and percentage of admixture, leading to the generation of 

56 PRS models.  Logistic regression analysis was employed to predict PD status adjusted either by 

gender, age, and 10 PCs or by gender, age, and percentage of admixture (Figure 1). This model was 

standardized to a Z-score with a mean of 0 and a standard deviation of 1. After calculating the allele 

counts of each variant between cases and controls, we calculated the mean effect of each variant 

by multiplying the allele count difference by the beta coefficient, or effect size, to estimate the 

average impact of each variant's allele count difference on disease phenotype. We focused on 

variants with the most significant impact for PRS prediction (variants with the highest mean effect). 

The results were visualized through heatmaps for ancestry comparisons, density plots displaying 

probabilities of disease, forest plots for magnitude of effects comparison per summary statistics, 

area under the curve (AUC) and receiver operating characteristic curve (ROC) assessments for 

sensitivity and specificity. Finally, UpSet visualizations were used to display heterogeneity 

estimated across known loci and multiple ancestries. 

 

Model 2: Multi Ancestry Best-Fit PRS approach 

 

Ancestry-specific summary statistics generation 

For this model we used Kim et al., 2024
6
 summary statistics from the latest multi-ancestry PD 

GWAS meta-analysis, that includes four populations. The European cohort, was composed of data 

from Nalls et al., 2019
1
, including 1,467,312 individuals; 56,306 cases (including proxy cases), 

1,411,006 controls, and a Finnish cohort of 95,683 participants of which 1,587 were cases and 

94,096 controls. The East Asian population combined data from Foo et al., 2020
2
, and 23andMe, 

totaling 183,802 individuals of which 7,046 were cases and 176,756 controls. The Latino/Admixed 

American data was generated merging Loesch et al., 2021
3
 and 23andMe, encompassing 584,660 

individuals, of which 582,220 were controls and 2,440 cases. Additionally, the African admixed 

population, which derived solely from 23andMe, consisted of 194,273 individuals, including 288 

cases and 193,985 controls. A comprehensive analysis was conducted which aggregated summary 

statistics across all studies, including a total of 2,525,730 individuals, of which 49,049 were PD 
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cases, 18,618 proxy cases and 2,458,063 controls, highlighting the substantial scope and diversity 

of the data integrated into this meta-analysis. 

 

Multi-ancestry best-fit polygenic risk score calculation  

PRS were computed using PRSice-2
32

. We implemented a multi-step process to estimate the 

cumulative genetic risk attributed to a set of SNPs based on p-value thresholding for each cohort by 

using multi-ancestry GWAS summary statistics by Kim et al., 2024
6
 (Figure 1). PRSice-2 was used to 

select independent genetic variants following default clumping settings. This approach includes 

adhering to standardized values (250 kb window, population-specific LD estimation, and an LD 

threshold of r² < 0.1). The selection was rigorously tailored to each ancestry, facilitating an 

ancestry-specific assessment. 

 

Subsequently, we implemented a multi p-value thresholding approach to determine the most 

informative SNPs for inclusion in the PRS, ranging from inclusive (P < 0.5) to stringent (P < 1e-8) 

criteria. This facilitated the evaluation of PRS predictive performance at varying levels of SNP 

inclusion. For each cohort, the PRS was calculated by summing the alleles associated with PD and 

weighted by the effect sizes reported by Kim et al., 2024
6
.  

 

For each cohort we calculated the best p-value threshold for SNP inclusion versus PD risk. We 

adjusted the model by a disease prevalence of 0.005, sex, age, and PCs. Results were compared 

between cohorts summarizing the best-fit model for each ancestry including its thresholds and 

number of included SNPs. We computed Odds ratios (OR) along with their corresponding 95% 

confidence intervals (CI) for each ancestry group. We visually depicted the performance of the 

models through both bar plots and heatmaps.  

 

Sample size and power calculations 

We conducted power calculations to estimate the sample size needed to achieve 80% power with a 

significance level of 0.05, using the methodology proposed by Dudbridge et al.
33

 (additional details 

can be found at https://github.com/DudbridgeLab/avengeme/). These estimations were made 

considering the 90 risk variants and the heritability estimates reported in Nalls et al. 2019 (defined 

as the percentage of the phenotype attributed to genetic variation, h
2
 = 22%) at a 1% PD 

prevalence. The required sample size for PRS to predict disease status was 544 individuals, so we 

selected cohorts with more than 500 participants. After fulfilling this criteria,  we calculated the 

power that each of them had following the values stated in Nalls et al. 2019
1
; a Pseudo R2 of 0.054, 

and an OR of 2.03. (see Table 1 and https://github.com/GP2code/multiancestry-PRS_PRSice; 

doi:10.5281/zenodo.11110944).  

 

RESULTS 

 

Risk estimates show expected high levels of heterogeneity in predicting disease status across 

diverse ancestry populations 

In analyzing the distribution patterns of the 90 risk alleles from Nalls et al. 2019
1
 across the seven 

ancestry cohorts under study, significant heterogeneity was observed among these predictors 

following standardization of the effect allele for each estimate. Differences between ancestries 

were evident, including the number of valid predictors (Supplementary Table 2), directionality, 

frequency, and magnitude of effect (Figure 2, Supplementary Table 3).  

 

Further analysis was conducted to determine the individual effect size contributions of genetic 

variants within each population. These analyses, detailed in Supplementary Table 4, uncovered 

discrepancies among the 90 variants not only in effect size, as depicted in Figure 2, but also in the 

primary variants influencing PRS across populations. In terms of the largest effect contribution, 
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LRRK2 G2019S and GBA1 N370S exhibit the most substantial effects in European and Ashkenazi 

Jewish populations, with the effect in Ashkenazi Jewish being considerably higher. Conversely, 

SNCA (rs356182) emerges as the principal variant for East Asian, Central Asian, African, and African 

admixed populations. Notably, in Latino/Admixed American populations, LRRK2 G2019S is the 

foremost contributor followed by SNCA (rs356182), presenting a different pattern than the one 

observed in the other cohorts. 

 

Regarding the overall number of variants, the East Asian population showed the fewest number of 

valid predictors (Figure 2, Supplementary Table 2), with 84 imputed variants out of 90, followed by 

African (88), Ashkenazi Jewish (88), and Central Asian populations (89). European, African admixed, 

and Latino/Admixed American populations each displayed 90 valid imputed predictors. This result 

serves as a proof of concept, suggesting the existence of varying linkage disequilibrium risk 

patterns associated with PD across diverse populations. It underscores the significant amount of 

genetic variability that remains unexplored in understanding disease risk. 

 

Conventional polygenic risk scores performance across diverse ancestries 

European GWAS-derived PRS models adjusted by sex, age and PCs and including the 90 risk 

predictors from Nalls et al. 2019 
1
 exhibited variable predictive accuracy across all ancestries. In 

European ancestry populations (positive control), this model achieved an OR of 1.60 (95% CI: 1.54-

1.70, p < 0.0001) (Table 2a), with an AUC of 0.63, confirming the expected predictability 
1
. The 

Ashkenazi Jewish population exhibited the highest OR of 1.96 (95% CI: 1.69-2.25, p < 0.0001) (Table 

2a), accompanied by an AUC of 0.68 (Table 4), suggesting a comparable predictive capability within 

this group generally enriched with LRRK2 G2019S and GBA1 N370S carriers which are major 

contributors to the PRS. A similar predictive outcome extended to other ancestries, including East 

Asians with an OR of 1.37 (95% CI: 1.32-1.42, p < 0.0001) (Table 2a) and AUC of 0.62 (Table 4), 

despite having the lowest number of valid predictors (84) within the cohorts studied. The PRS 

model for African ancestries yielded an OR of 1.38 (95% CI: 1.12-1.63) (Table 2a) with an AUC of 

0.54, low sensitivity (0.09) and high specificity (Table 4), pointing to a substantial imbalance in 

predictive performance. The African Admixed, Latino/Admixed American and Central Asian 

populations achieved a statistically significant association (p-values of < 0.0001) with ORs of 1.57 

(95% CI:1.29 - 1.91), 1.77 (95% CI:1.36 - 2.30), and 1.72 (95% CI:1.32 - 2.30) (Table 2a) respectively, 

but without adequate discriminative abilities as shown by the ROC curve associated estimates seen 

in Table 4 and Supplementary Figures 3a-b). 

 

Across all ancestries studied, PRS developed from ancestry-specific summary statistics based on the 

90 risk predictors did not outperform European-based PRS models using Nalls et al., 2019
1
 

summary statistics, most likely due to limited statistically powered population-specific summary 

statistics and population differences in LD risk patterns which may not be representative of our 

current understanding of disease risk based on European populations (Table 2a-2b, Supplementary 

Table 2, Figure 3).  

 

Adjustment for percentage of admixture versus principal components does not generally 

ameliorate polygenic risk score performance 

We aimed to further adjust by the potential variability caused by admixture patterns. As 

demonstrated by the results highlighted in Table 2b and schematically depicted in Figure 3, PRS 

performance for each ancestry does not improve when the models are adjusted by the percentage 

of admixture versus PCs, except in the case of the East Asian population, were the model adjusted 

by percentage of admixture displayed an OR of 1.38 (0.81-2.33, p< 0.0001) compared to PCs 

adjustment. This observation suggests that adjustment by PCs sufficiently accounts for ancestry in 

the conventional PRS model and for most of the assessed populations.  
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Multi-ancestry best-fit polygenic risk score models surpass conventional approaches except in 

admixed populations 

Our multi-ancestry best-fit PRS model based on p-value thresholding demonstrates varied 

effectiveness across ancestries, enhancing genetic risk prediction particularly in European, 

Ashkenazi Jewish, and East Asians, and showing a substantial improvement for African populations 

(Table 3, Figure 3b, Supplementary Figure 5). European populations achieved a high level of 

predictive accuracy with a p-value threshold of 5E-07, and 266 selected SNPs to reach an OR of 1.66 

(1.60 - 1.71) (Table 3). Similarly to the conventional PRS, Ashkenazi Jewish displayed stronger 

association with an OR of 2.81 (2.33 - 3.39), utilizing 459 SNPs and a threshold of 5E-06 (Table 3). 

The East Asian population showed the highest efficiency with a low threshold of 5E-08, using the 

lower number of SNPs (211 SNPs) and achieving an OR of 1.47 (1.33 - 1.62) (Table 3). However, for 

African Admixed, Latino/Admixed American, and Central Asian populations the multi-ancestry best-

fit PRS model performed worse than conventional PRS. No major differences in AUC estimates 

were observed when comparing Multi-ancestry best-fit PRS with the conventional model. Figure 4 

compares ROC curves across ancestries. 
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DISCUSSION 

 

To our knowledge, this study represents the first comprehensive assessment of PRS in predicting 

PD risk in a multi-ancestry context. While previous genetics research has primarily focused on 

studying populations of European ancestry
1,34,35

, our study expands on previous knowledge by 

comparing the performance of conventional PRS across seven ancestry populations while 

implementing a novel and refined multi-ancestry best-fit polygenic risk score approach to enhance 

prediction applicability in a global setting.  

 

Our study reveals that although our understanding of PD risk is predominantly derived from 

European genetic studies, the conventional PRS model utilizing summary statistics from this 

population shows to some extent applicability across diverse populations, including Ashkenazi 

Jewish (harboring certain levels of European ancestry and enriched with LRRK2 and GBA1 carriers) 

and East Asians. Interestingly, adjusting the model to account for percentage of admixture versus 

conventional PCs does not significantly improve its predictive accuracy. Furthermore, PRS models 

derived from the 90 risk predictors originating from European populations and constructed using 

estimates from population-specific summary statistics failed to enhance predictions. This is likely 

attributed to the scarcity of statistically robust population-specific summary statistics and 

variations in LD risk patterns among populations, potentially diverging from the prevailing 

understanding of disease risk as established in European populations
36

. 

 

To reconcile these discrepancies and enhance our ability to forecast risk, we devised a best-fit 

multi-ancestry PRS approach based on p-value thresholding by leveraging multi-ancestry GWAS 

data as the base to select the best set of cumulative SNPs discriminating cases from controls. Our 

approach optimizes the model notably for less admixed populations. Taking into consideration p-

value thresholding and population-specific LD patterns, we managed to enhance the model's 

precision in the context of risk yet seems less effective in more genetically admixed populations. 

The varied performance of the best-fit PRS across different ancestries exemplifies the challenge 

that a 'one size fits all' approach presents in genetic research, advocating for a more nuanced 

strategy in precision medicine that accommodates the rich genetic variability of global populations. 

 

The results observed in East Asian aligns with the work of Foo et al., 2020 
2
 and supports the cross 

population applicability of PRS, that has already been evidenced in this population in the context of 

Alzheimer’s disease
37

, breast cancer
38

, and colorectal cancer
39

. The major contributor for the PRS in 

this cohort was SNCA (rs356182), with an absolute mean effect twice as high as LRRK2 G2019S, the 

highest SNP in Europeans (Supplementary Table 4).  This result is particularly compelling as 

Europeans and East Asian genetics ancestries are very different -illustrated in ancestry prediction 

models- (Supplementary Figure 1), and contrasts with the hypothesis that the accuracy of PRS 

depends on genetic ancestry relatedness 
13

.  

 

Several limitations should be acknowledged. Due to limited information on heritability, disease 

prevalence, and risk predictors for non-European ancestries, sample size power calculations were 

performed using current estimates from the European population as a reference. Consequently, 

this may result in a biased estimate regarding the sample size required to predict disease status 

across diverse ancestries. Additionally, the estimates of our models are influenced by the number 

of available SNPs in each dataset, which introduces bias. This bias arises from variations in the 

quality and completeness of SNP imputation across different populations, where some of them 

may have a larger number of imputed variants e.g., 90 for Latino/Admixed American compared to 

others (e.g., 84 for East Asian and 88 for African). This is due to differences in variant frequencies in 

which common risk variation contributing to disease in Europeans is rare when assessed in other 

populations and therefore impacted by limited imputation. An additional important limitation is 
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the absence of individual-level replication datasets per ancestry. The lack of replication data 

hampers the robustness and generalizability of our findings across different individual level data 

from diverse ancestral populations. Furthermore, the scalability of our framework is hindered by 

the absence of accurate and well-powered ancestry-specific summary statistics for each population 

in our study, like the African Admixed summary statistics that were used in this study.  

 

To overcome these limitations future research should prioritize larger sample sizes for individual-

level datasets per ancestry, and availability of well-powered ancestry-specific summary statistics. 

Moreover, new strategies in PRS construction, like incorporating local ancestry estimates
40

, could 

significantly improve outcomes in highly admixed populations. This approach enables us to utilize 

summary statistics from the ancestry PRS panel corresponding to the specific chromosomal region 

of the individual under risk inference, mitigating inflation or deflation caused by ancestry-specific 

risk alleles. Studying biomarker-defined PD cohorts, as opposed to those diagnosed based on 

clinical diagnostic criteria, is crucial, as at least 5% of individuals diagnosed with PD do not 

demonstrate neuronal alpha-synuclein, which is required for definitive diagnosis
41

. Additionally, 

applying multi-modality machine learning (ML) approaches
12

 that combine adjusted 

transcriptomics, genetics, and clinical data into a predictive model, could provide a more 

comprehensive understanding of PD risk and improve prediction accuracy across diverse 

ancestries. By utilizing ML algorithms such as deep learning, complex patterns and interactions that 

may not be evident when using individual data modalities alone can have the potential to enhance 

the precision and applicability of PD risk assessment models. This would lead to improved risk 

prediction and personalized strategies for prevention, diagnosis, and treatment for all.  

 

This study is the first to comprehensively compare two PRS approaches to predict PD risk across 

seven ancestries, comparing the conventional model based on genetic risk defined through GWAS 

conducted in European populations versus a more refined multi-ancestry best-fit approach. Despite 

these efforts, our study reveals the need for additional data and novel approaches, such as the 

inclusion of local ancestry information to improve PRS applicability in highly admixed groups. Here, 

we confirm the transferability of European-derived PRS models to other ancestries, opening 

avenues for their broader use. Integrating clinical and genetic data
9
 with cutting-edge multi-

modality machine learning techniques
12

 could reveal complex disease patterns previously 

unnoticed. Future research, employing composite PRS analysis for optimized SNP selection across 

ancestries, holds promise for more accurate risk predictions. Such progress is pivotal for advancing 

PRS precision and its application in PD, potentially revolutionizing prevention, diagnosis, and 

treatment on a personalized level. 
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Data and Code Availability: 

Data was obtained from the Global Parkinson’s Genetics Program (GP2) and is accessible through a 

partnership with the Accelerating Medicines Partnership in Parkinson's Disease (AMP-PD) and can 

be requested via the website's application process (https://www.amp-pd.org/). GWAS summary 

statistics from GP2's release 6 are available for all datasets (doi: 10.5281/zenodo.10472143, 

https://doi.org/10.5281/zenodo.10472143). 23andMe summary statistics is available upon 

application through their website (https://research.23andme.com/dataset-access/). GenoTools 

(version 10; https://github.com/GP2code/GenoTools) was used for genotyping, imputation, quality 

control, ancestry prediction, and data processing. A secured workspace on the Terra platform was 

created to conduct genetic analyses using GP2 release 6 data and summary statistics 

(https://app.terra.bio/). Additionally, all scripts used for this study can be found in the public 

domain on GitHub (https://github.com/GP2code/multiancestry-PRS_PRSice; 

doi:10.5281/zenodo.11110944). 
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Figure 1: Schematic study workflow
Summarized study diagram divided in 
three panels. The first panel displays 
the target data,  from seven diverse 
ancestry groups: African Admixed 
(AAC), African (AFR), Ashkenazi Jewish 
(AJ), Latino/Admixed American (AMR), 
Central Asian (CAS), East Asian (EAS), 
and European (EUR). In the second 
panel, the two models being compared 
are detailed: a) The Conventional PRS 
approach, which evaluates 90 PD risk 
variants identified by Nalls et al., 2019, 
in each of the seven ancestries 
weighted by the effect sizes derived 
from four population-specific GWAS 
(EUR, AAC, AMR, EAS) and adjusted by 
principal components and percentage 
of admixture, leading to the 
generation of 56 scores; b) The Multi 
Ancestry Best Fit PRS approach, which 
employs the PRSice software tool, 
computing p-value thresholding along 
variant-specific weights by leveraging 
full summary statistics from Kim et al., 
2024 (pruned using default 
parameters).  The outcomes are 
visualized in the third panel, through 
heatmaps for ancestry comparison, 
density plots for disease probability, 
forest plots for effect size, and 
Receiver Operating Characteristic 
(ROC) plots for evaluating the models’ 
sensitivity and specificity.
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Figure 2: Upset plot showing risk heterogeneity across multiple ancestries.
The 90 risk variants are represented in this plot in a granular way. The Y axis represents each ancestry populations and the X axis the 90 risk variants. The color bar 
shows the magnitude of effects as log of the odd ratio (beta value) and directionality, with red color denoting negative directionality, and purple and blue colors 
denoting positive directionality. 
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Figure 3: Polygenic risk score performance for predicting disease status in the different models.
Left panel shows results for conventional PRS calculation and right panel the best fit PRS model. The Y axis represents individual level data, and the X axis represents the two different PRS 
approaches per population-specific summary statistics. The color bar indicates the magnitude of effect as zeta value (beta/se). The darker the color, the larger the magnitude of effect. The asterisks 
indicate statistical significance of P value.

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 9, 2024. ; https://doi.org/10.1101/2023.11.28.23299090doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.28.23299090
http://creativecommons.org/licenses/by/4.0/


Figure 4: Polygenic risk score model performance evaluation for Multi-ancestry best fit PRS
The ROC curve depicts an evaluation of the PRS best fit model's performance for each target data population, represented in a different colored curve. The true positive rate is plotted on the 
Y axis against the false positive rate on the X axis. The sensitivity of the model increases with increasing Y value. The specificity (1-specificity) of the model decreases as the X value increases. 
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Table name Title
Table 1 Demographic characteristics of individual level data and power calculations
Table 2.a Polygenic risk scores vs. PD status adjusted by age, sex, and PCs across multiple ancestry populations
Table 2.b Polygenic risk scores vs. PD status adjusted by age, sex, and percentage of ancestry across multiple ancestry populations
Table 3 Multi-ancestry best-fit polygenic risk score analysis
Table 4 Area under the curve calculation across multiple ancestry population
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 Power
Ancestry Total Male (n, %) n AAO (mean ± SD) n Age (mean ± SD)
EUR 19138 12541 (61.23%) 11656 57.95 ± 12.00 7482 65.03 ± 10.56 100.00%
AAC 1058 439 (40.92%) 255 58.57 ± 12.58 803 65.84 ± 10.43 81.99%
AMR 502 286 (54.98%) 363 50.19 ± 13.88 139 63.17 ± 9.04 30.09%
EAS 3827 2510 (65.01%) 1534 49.85 ± 12.87 2293 62.37 ± 11.21 99.98%
AFR 2539 1430 (56.12%) 916 57.24 ± 12.85 1623 63.55 ± 15.40 99.51%
AJ 1458 1321 (68.51%) 1001 60.26 ± 11.61 457 67.77 ± 9.66 73.13%
CAS 529 264 (49.15%) 264 47.01 ± 13.56 265 55.14 ± 5.32 49.21%

Table 1. Demographic characteristics of individual level data and power calculations

Cases Controls

Legend: EUR = European, AAC = African Admixed, AMR =  Latino/Admixed American, EAS = East Asian, AFR =  African, AJ = Ashkenazi 
Jewish, CAS = Central Asian, AAO = age of onset for cases and Age = age at recruitment for controls, SD = standard deviation. Power 
calculations. were made with estimates from previous work by Nalls et al., 2019: Pseudo R^2 = 0.054 and Odds ratio = 2.03.
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Table 2a. Polygenic risk scores vs. PD status adjusted by age, sex, and PCs across multiple ancestry populations

Ancestry Summary statistics Odds Ratio (95% CI) p value
AAC 1.15 (1.11- 1.19) < 0.0001
EUR 1.60 (1.54 - 1.70) < 0.0001
AMR 1.27 (1.23 - 1.32) < 0.0001
EAS 1.37 (1.32 - 1.42) < 0.0001

AAC 1.37 (1.14 - 1.70) 0.001
EUR 1.57 (1.29 - 1.91) < 0.0001
AMR 1.15 (0.96 - 1.39) 0.120
EAS 1.36 (1.13 - 1.65) 0.010

AAC 1.52 (1.16 - 1.99) 0.002
EUR 1.77 (1.36 - 2.30) < 0.0001
AMR 1.37 (1.06 - 1.75) 0.016
EAS 1.678 (1.29 - 2.19) < 0.0001

AAC 1.11 (1.01 - 1.23) 0.042
EUR 1.50 (1.35 - 1.67) < 0.0001
AMR 1.21 (1.09 - 1.37) < 0.0001
EAS 1.30 (1.17 - 1.44) < 0.0001

AAC 1.26 (1.10 - 1.50) 0.009
EUR 1.38 (1.12 - 1.63) 0.001
AMR 1.15 (0.97 - 1.36) 0.121
EAS 1.32 (1.10 - 1.57) 0.002

AAC 1.03 (0.91 - 1.18) 0.629
EUR 1.96 (1.69 - 2.25) < 0.0001
AMR 1.24 (1.08 - 1.41) 0.002
EAS 1.30 (1.13 - 1.48) < 0.0001

AAC 1.20 (0.911- 1.58) 0.194
EUR 1.72 (1.32 - 2.30) < 0.0001
AMR 1.46 (1.12 - 1.90) 0.005
EAS 1.27 (0.99 - 1.62) 0.067

AJ

CAS

Legend: EUR = European, AAC = African Admixed, AMR =  Latino/Admixed 
American, EAS = East Asian, AFR =  African, AJ = Ashkenazi Jewish, CAS = 
Central Asian, 95% CI: 95 % Confidence interval

EUR

AAC

AMR

EAS

AFR
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Table 2b.Polygenic risk scores vs. PD status adjusted by age, sex, and percentage of ancestry across multiple ancestry populations

Ancestry Summary statistics Odds Ratio (95% CI) p value
AAC 1.15 (1.11 - 1.19) < 0.0001
EUR 1.60 (1.54 - 1.65) < 0.0001
AMR 1.27 (1.23 - 1.32) < 0.0001
EAS 1.37 (1.32 - 1.42) < 0.0001

AAC 1.38 (1.14 - 1.66) 0.001
EUR 1.65 (1.361- 2.00) < 0.0001
AMR 1.27 (1.06 - 1.53) 0.011
EAS 1.44 (1.189 - 1.74) < 0.0001

AAC 1.40 (1.09 - 1.77) 0.007
EUR 1.70 (1.33 - 2.18) < 0.0001
AMR 1.31 (1.03 - 1.68) 0.027
EAS 1.63 (1.28 - 2.09) < 0.0001

AAC 1.17 (1.07 - 1.28) < 0.0001
EUR 1.59 (1.45 - 1.74) < 0.0001
AMR 1.36 (1.24 - 1.46) < 0.0001
EAS 1.38 (0.81 - 2.33) < 0.0001

AAC 1.24 (1.05 - 1.46) 0.013
EUR 1.32 (1.11 - 1.57) 0.002
AMR 1.13 (0.96 - 1.34) 0.148
EAS 1.29 (1.08 - 1.53) 0.004

AAC 1.05 (0.92 - 1.20) 0.479
EUR 1.95 (1.69 - 2.25) < 0.0001
AMR 1.24 (1.08 - 1.41) < 0.0001
EAS 1.29 (1.13 - 1.48) < 0.0001

AAC 1.21 (0.98 - 1.50) 0.074
EUR 1.48 (1.19 - 1.83) < 0.0001
AMR 1.47 (1.17 - 1.82) < 0.0001
EAS 1.39 (1.12 - 1.72) < 0.0001

AJ

CAS

Legend: EUR = European, AAC = African Admixed, AMR =  Latino/Admixed 
American, EAS = East Asian, AFR =  African, AJ = Ashkenazi Jewish, CAS = 
Central Asian, 95% CI: 95 % Confidence interval

EUR

AAC

AMR

EAS

AFR
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Table 3. Multi-ancestry best-fit polygenic risk score analysis

Ancestry Threshold PRS R2 adj Full R2 Null R2 Coefficient Standard Error No. of SNP Empirical-P Odds Ratio (95% CI) Area under the curve
EUR 5.00E-07 0.03 0.04 0.01 0.50 0.02 266 1.00E-04 1.66 (1.60 - 1.71) 0.63
AAC 1 0.02 0.09 0.07 0.45 0.13 1437677 0.00409959 1.58 (1.22 - 2.04) 0.64
AMR 0.05 0.03 0.05 0.01 0.77 0.18 137795 0.00019998 2.15 (1.52 - 3.04) 0.58
EAS 5.00E-08 0.02 0.28 0.27 0.39 0.05 211 1.00E-04 1.47 (1.33 - 1.62) 0.59
AFR 5.00E-07 0.01 0.08 0.07 0.35 0.05 493 1.00E-04 1.42 (1.30 - 1.55) 0.59
AJ 5.00E-06 0.06 0.06 0.01 1.03 0.10 459 1.00E-04 2.81 (2.33 - 3.39) 0.69
CAS 5.00E-05 0.01 0.13 0.11 0.33 0.11 1145 0.0135986 1.39 (1.13 - 1.72) 0.57

Legend: EUR = European, AAC = African Admixed, AMR =  Latino/Admixed American, EAS = East Asian, AFR =  African, AJ = Ashkenazi Jewish, CAS = Central Asian. Threshold 
is the best p value interval for SNP inclusion for the target phenotype. PRS R2 adj is the variance in the target phenotype explained by the PRS adjusted by a prevalence set to 
0.005, Full R2 is the variance explained by the full-model regression (includes covariates), Null R2 is the variance explained by the covariates. Coefficient is the regression 
coefficient for the model. No. of SNP is the number of SNPs included in the PRS and empirical p is the p value obtained from simulation, which corrects for both multiple 
thresholds tested in order to obtain the optimal threshold. Odds ratios with the 95% confidence intervals were calcualted for each ancestry group. 
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Ancestry
Summary 
statistics

Area under 
the curve

Accurac
y

95% CI 
Accuracy

Balanced 
Accuracy

Sensitivity Specificity

AAC 0.54 0.61 (0.60- 0.62) 0.50 1.00 0.00
EUR 0.63 0.63 (0.63 - 0.64) 0.56 0.88 0.24
AMR 0.57 0.61 (0.60- 0.62) 0.51 0.97 0.05
EAS 0.59 0.61 (0.61 - 0.62) 0.52 0.95 0.09

AAC 0.59 0.76 (0.73 - 0.78) 0.50 0.00 1.00
EUR 0.63 0.76 (0.73 - 0.78) 0.50 0.01 0.99
AMR 0.56 0.76 (0.73 - 0.78) 0.50 0.00 1.00
EAS 0.61 0.76 (0.73 - 0.78) 0.50 0.00 1.00

AAC 0.57 0.73 (0.69- 0.76) 0.50 1.00 0.00
EUR 0.62 0.72 (0.68 -  0.76) 0.51 0.99 0.02
AMR 0.57 0.73 (0.68 - 0.76) 0.50 1.00 0.00
EAS 0.61 0.73 (0.68 - 0.76) 0.50 1.00 0.00

AAC 0.57 0.60 (0.59 – 0.62) 0.52 0.07 0.96
EUR 0.62 0.62 (0.61 – 0.64) 0.56 0.25 0.87
AMR 0.58 0.60 (0.59 - 0.62) 0.50 0.07 0.95
EAS 0.56 0.60 (0.58 – 0.61) 0.50 0.02 0.98

AAC 0.54 0.65 (0.63 - 0.66) 0.50 0.00 1.00
EUR 0.54 0.65 (0.63 - 0.66) 0.50 0.00 1.00
AMR 0.51 0.65 (0.63 - 0.66) 0.50 0.00 1.00
EAS 0.53 0.65 (0.63 - 0.66) 0.50 0.00 1.00

AAC 0.54 0.69 (0.66- 0.71) 0.50 1.00 0.00
EUR 0.68 0.70 (0.67 - 0.72) 0.54 0.94 0.15
AMR 0.56 0.69 (0.66 - 0.71) 0.50 1.00 0.00
EAS 0.57 0.69 (0.66 - 0.71) 0.50 1.00 0.00

AAC 0.55 0.53 (0.49 - 0.57) 0.53 0.47 0.60
EUR 0.56 0.53 (0.49 - 0.57) 0.53 0.49 0.57
AMR 0.58 0.56 (0.52 - 0.60) 0.56 0.53 0.59
EAS 0.56 0.54 (0.50- 0.58) 0.54 0.51 0.57

CAS

Legend: EUR = European, AAC = African Admixed, AMR =  Latino/Admixed American, EAS = East Asian, AFR =  African, AJ 
= Ashkenazi Jewish, CAS = Central Asian, 95% CI: 95 % Confidence interval

Table 4. Receiver operating characteristic estimates for specificity and sensitivity across 
multiple ancestry populations

EUR

AAC

AMR

EAS

AFR

AJ
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