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Summary 56 
Metabolites are important indicators of individual health and can serve as crucial 57 
targets for therapy. However, the genetic basis of many metabolites remains largely 58 
unexplored, especially among underrepresented East Asians and during critical 59 
periods such as pregnancy. In this study, we utilized genetic information obtained 60 
from non-invasive prenatal testing to conduct a genome-wide association analysis of 61 
84 metabolites, including 37 amino acids, 10 vitamins, 24 metal elements, and 13 62 
hormones, among 34,394 Chinese pregnant women. Of these metabolites, 52 and 11 63 
had not previously been studied in East Asians or globally. We identified 30 novel 64 
metabolite-gene associations. We also observed substantial differences in the genetic 65 
effects on hormones between pregnancy and non-pregnancy periods, suggesting effect 66 
modifications in response to physiological changes. Furthermore, we uncovered 67 
pervasive pleiotropic effects for 50.94% of the genetic associations among 68 
metabolites, as well as between six metabolites and eight pregnancy biomarkers. 69 
Using mendelian randomization, we identified potential causal relationships between 70 
plasma folate and ischemic stroke, vitamin D3 and Graves' disease, copper and open-71 
angle glaucoma, and androstenedione and rheumatoid arthritis. These discoveries 72 
provide invaluable genetic insights into human metabolism, laying the foundation for 73 
future mechanistic studies and the development of new therapeutic targets, 74 
particularly for underrepresented East Asians. 75 
Keywords: metabolites, genetic basis, multi-trait genome-wide association study, 76 
pregnancy, East Asians 77 

5617 words 78 

Introduction  79 
Metabolites are small molecules that act as intermediate or end products during the 80 
metabolic processes1. Their concentrations are influenced by both genetic and 81 
environmental factors2,3. Metabolites can have a crucial role in disease etiology and 82 
are often targeted in therapeutic interventions4,5.  Human genetics provides an 83 
important approach to understanding the determinants of metabolite alteration and 84 
assessing the role of metabolites in disease outcomes6. Genome-wide association 85 
studies (GWAS) of metabolites have identified thousands of variants associated with 86 
approximately 7,000 metabolites in blood plasma or urine, as reported in the latest 87 
GWAS catalog (r2023-01-30)7. However, like many other traits, human genetic 88 
studies of metabolites have been dominated by European populations8. Specifically, 89 
less than 300 metabolites (less than 4.29% of all metabolites) have been studied in 90 
East Asian populations, with generally small sample sizes (less than 2,000 91 

individuals)9–16. Therefore, there is a significant gap in our understanding of the 92 
genetic effects of metabolites in underrepresented East Asian populations. 93 
 94 
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Previous genetic studies of metabolites have not yet addressed the question of whether 95 
and how genetic effects may vary during pregnancy, a special and critical period that 96 
plays a pivotal role in human reproduction. Pregnancy involves a series of 97 
physiological changes and metabolic adaptations that necessitate a balanced 98 
metabolome for the health of both the mother and the fetus17. Observational 99 
epidemiological studies have demonstrated that inadequate or excessive metabolite 100 
concentrations can result in poor health outcomes or severe disease and adverse birth 101 
outcomes. For example, excessive vitamin A levels may cause fetal malformation18, a 102 
lack of folic acid (vitamin B9) was associated with a high risk of neural tube defects19, 103 
a deficiency of selenium was related to an elevated risk of miscarriage, pre-eclampsia, 104 
and growth restriction20,21, and vitamin D insufficiency was related to fetal bone 105 
growth retardation 22. To investigate the causal relationship and molecular 106 
mechanisms underlying these observational associations, genetic studies of plasma 107 
metabolite levels during pregnancy are crucial. However, maternal metabolites during 108 
pregnancy have not been explored using genome-wide association studies, and the 109 
genetic basis of metabolite levels during pregnancy is largely unknown. It is pertinent 110 
to investigate whether the genetic effects on metabolites, as estimated from genome-111 
wide association studies, may differ between pregnant and non-pregnant populations. 112 
Moreover, it is important to investigate whether metabolites assayed during this 113 
critical early period of human life may have a causal relationship with diseases that 114 
manifest later in life. Such investigations will yield critical insights into human 115 
metabolism, providing the foundation for downstream mechanistic studies and the 116 
identification of new therapeutic targets. 117 
 118 
Conducting large-scale genetic analyses, particularly in underrepresented populations, 119 
remains a significant challenge. In a prior pioneering study, we developed 120 
methodologies and protocols for robust genetic association analysis using non-121 
invasive prenatal testing (NIPT) data.23. In this study, we conducted genetic analyses 122 
of a set of 84 maternal metabolites (abbreviated as MM) during pregnancy, leveraging 123 
genetic resources obtained from NIPT and metabolite measurements from tandem 124 
mass spectrometry among 34,394 Chinese pregnant women. These 84 metabolites 125 
included 37 amino acids, 5 hydrophilic vitamins, 5 hydrophobic vitamins, 13 126 
hormones, and 24 trace elements and heavy metals. Of these metabolites, 52 have not 127 
been studied in East Asians, and 11 have not been investigated globally before (Table 128 
S1). The exact number of participants involved for each metabolite was detailed in 129 
Table S2. We performed both single- and multi-trait genome-wide association 130 
analyses to identify genetic signals that significantly contribute to plasma metabolite 131 
levels and to estimate SNP heritability. We compared the genetic effects of the same 132 
metabolite measurements estimated from both pregnancy participants and non-133 
pregnancy individuals. Additionally, we conducted wald ratio estimation and 134 
colocalization analyses to identify pleiotropic effects among metabolites in the 135 
context of the KEGG pathway and between metabolites and several pregnancy 136 
phenotypes reported in a companion study. Finally, we applied mendelian 137 
randomization to investigate the potential causal effects of pregnancy metabolites on 138 
disease traits in East Asian populations. This study represents the largest scale 139 
metabolite genome-wide association study in underrepresented East Asian 140 
populations and has provided the first insight into the genetic basis of the plasma level 141 
of 84 metabolites during pregnancy. 142 
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Results 143 

Study design and phenotypic distribution of the 84 metabolites 144 
The 34, 394 pregnant participants were recruited during their routine obstetric 145 
examinations in the city of Shenzhen, South China. The expense of the non-invasive 146 
prenatal test (NIPT) is covered by the government and the insurance in the Shenzhen 147 
city. When NIPT is provided, each participant was asked if they would like to partake 148 
in the pregnancy nutrition program for screening of metabolites. We did not identify a 149 
a difference of ages between participants partaking in the nutrition programs and 150 
those did not.  The mean age of the participants was 30 years (standard deviation 151 
[s.d.] 4.9), and the mean gestational week for blood sampling was 16 weeks plus 3 152 
days (s.d. 4.1 weeks) (Table S2). Non-invasive prenatal tests (NIPT) were provided as 153 
a routine prenatal screening test24, while tandem mass spectrometry (MS/MS) assays 154 
of 84 metabolites covering four categories were offered as an additional screening 155 
option to monitor the metabolite status of the participants using the same tube of 156 
blood plasma. 157 
 158 
For the NIPT test, whole genome low-pass sequencing (0.1x - 0.3x) was carried out, 159 
and we applied NIPT sequencing of the 34,394 participants using two sequencing 160 
platforms to minimize potential technical artifacts due to low-pass sequencing. 161 
Specifically, 18,091 of them were sequenced using the blackbird sequencing machine 162 
(BB) and 16,303 were sequenced using the Seq500 sequencing machine (Seq500). 163 
We performed variation calling, genotype imputation, and genome-wide association 164 
tests for data from each platform before we move on to the meta-analysis and the 165 
multi-trait association study. The genotype imputation was performed using an 166 
adaptive hidden Markov model with a Chinese population reference panel, and we 167 
achieved imputation accuracy of 0.758 and 0.892 for BB and Seq500 data, 168 
respectively (see Methods). 169 
 170 
In the MS/MS assay, due to limited plasma volume, we separated the samples for 171 
different assays including amino acids, hormones, water-soluble vitamins (WSV), fat-172 
soluble vitamins (FSV), and metal elements. The plasma volume limited our 173 
capability to examine each metabolite for all the 34,394 participants. The mean 174 
effective sample size was 7595, 10973, 8225 and 12033 for amino acid, hormone, 175 
vitamin and metal elements, respectively and was detailed in Table S2.  The plasma 176 
concentration of 84 metabolites followed a Gaussian distribution with the presence of 177 
outliers in a few of the metal elements (Figure 1). The mean value of the metabolites 178 
fell in the reference ranges except for 3MHis, Al, I, Ti, ALD, and vitamin D, which 179 
may be due to specific physiological status during pregnancy (Table S2). 180 
 181 
The metabolites tend to function in a pathway, and therefore we suspected that 182 
metabolites that play a role together in a specific pathway would be correlated with 183 
each other. The phenotypic correlation between the metabolites suggests that 184 
metabolites that belong to the same category tend to be more phenotypically 185 
correlated with each other than metabolites that belong to different categories (Figure 186 
S1, Table S3). Strong phenotypic correlations were observed between Met and His, 187 
among Phe, Ile/Leu, and Tyr/Val for the amino acids, between Cd and Hg, among Al, 188 
Ga, and V for metal elements, and between A4 and T, and between T1 and T2 for 189 
hormones. The phenotypic correlation was smaller for metabolites between different 190 
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categories, with the strongest correlation observed between VA and PSer/Sar 191 
(Spearman’s R ~ 0.41) and between VE and Car (Spearman’s R ~ 0.42). 192 
 193 

Genome-wide association analysis identifies 53 metabolite-gene 194 
associations 195 
Based on the abovementioned observation of the phenotypic correlation within the 196 
same metabolite categories, we conducted a multi-trait genome-wide association 197 
study for each metabolite by utilizing information obtained from GWAS of 198 
metabolites from the same category. Firstly, we performed a regression analysis 199 
using PLINK25, to regress the quantile-transformed metabolite value on the genotype 200 
dosage for BB and Seq500 sequencing data, respectively.  The analysis was adjusted 201 
for confounding factors, including the first three principal components, maternal age, 202 
gestational week of non-invasive prenatal testing (NIPT), MS/MS testing, and the 203 
inferred sex of the fetus. Detailed information can be found in Table S4. 204 
Subsequently, we conducted a meta-analysis using METAL26 to combine GWAS 205 
summary statistics from BB and Seq500.  Finally, we utilized the multi-trait 206 
association test algorithm implemented in MTAG27

  to generate trait-specific effect 207 
estimates for each SNP, using information from summary statistics of 208 
metabolites within the same metabolite categories.  209 
 210 
The genomic control lambda (GC lambda) for the 84 metabolite molecules ranged 211 
from 0.9 to 1.05, indicating a negligible inflation of association statistics. In total, we 212 
identified 53 genetic associations reaching genome-wide significance (p<5x10-8)  for 213 
33 metabolites, including 14 amino acids, 7 elements, 6 hormones, and 7 vitamins 214 
(Figure 2). Among the 53 loci, 23 were previously known to be associated with the 215 
corresponding metabolite level, while 30 were novel discoveries. The largest 216 
standardized effect for each of the four metabolite categories was observed at (1) the 217 
CPS1-ERBB4 locus (lead SNP rs75472842, βnor=-0.46,  where an additional copy of 218 
the T allele decreases 60.92 μmol/L glycine in maternal plasma); (2) the CXorf47 219 
locus (lead SNP rs1804495, βnor=-0.34,  where an additional copy the A allele 220 
decreases 43.75 μg/L iodine); (3) the ZNF468 locus (lead SNP rs4801940, βnor=-0.20, 221 
where an additional copy of the T allele decreases 0.45 ng/mL 17OHP); and (4) the 222 
LINC00441 locus ( rs144131853, βnor=-0.32, where an additional copy of the T allele 223 
decreases 0.32 ng/mL of vitamin D3) (Table 1). The complete information for the 53 224 
genetic loci can be found in Table S5. We present the Manhattan, quantile-quantile, 225 
and locuszoom plots for the 53 metabolite-gene associations in Figure S2. Below, we 226 
summarize the key findings for each metabolite category. 227 

Amino acids 228 
We found 18 independent association signals for 14 amino acids (Figure 2a, Table 229 

1). All signals were first discovered in the East Asian population, and 12 were 230 
previously reported in the European population and demonstrated consistent effect 231 
estimates according to the GWAS catalog or PhenoScanner (Table S5).  We focused 232 
on the interpretation of the six novel association signals found for six amino acids. 233 
The first novel signal was found for the 3-Methylhistidine (3MHis), an amino acid 234 
biomarker for muscle protein turnover at the CDK12 locus (lead SNP rs11078912-A: 235 
beta=0.07, 95% CI: 0.04 to 0.09, P= 1.88×10-8) (Figure 2a, Table S5). The 236 
rs11078912 variant was an expression quantitative trait locus (eQTL) for FBL20, 237 
which plays a role in protein metabolism28 and was strongly associated with HDL, 238 
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eGFR, and diseases such as asthma and rheumatoid arthritis29. However, this 239 
association had not been previously reported, likely due to limited genetic studies 240 
(only four small-scale GWAS studies were documented for 3MHis in the GWAS 241 
catalog). 242 
 243 
Two novel association signals were identified between the AGA locus (lead SNP 244 
rs12645096-T: beta=-0.13, 95% CI: -0.11 to -0.16, P= 9.07×10-26), the ASPG locus 245 
(lead SNP rs1744294-T: beta=-0.13, 95% CI: -0.10 to -0.17, P= 1.54×10-16), and 246 
aspartic acid (Asp). rs12645096 is a strong eQTL for AGA, which encodes the 247 
aspartylglucosaminidase in many tissues such as artery, thyroid, and lungs (p-value < 248 
1.7e-32) in GTEx. Similarly, rs1744294 is also an eQTL for ASPG that encodes 249 
asparaginase. Both aspartylglucosaminidase and asparaginase deficiencies can lead to 250 
an increased Asn and Asp, which explained the genetic association observed in our 251 
study. Those associations had not been previously reported due to limited genetic 252 
studies on this metabolite29,30. While Asp has been used for the treatment of fatigue 253 
and improvement of athletic performance and muscle strength without good scientific 254 
evidence supporting its use31, the identified genetic association may serve as 255 
instrumental variables for causal inference of its utility when combined with data 256 
from biobanks with genomic data.   257 
 258 
The fourth novel genetic association was identified for homocysteine (Hcy) at the 259 
intergenic VSTM5-HEPHL1 locus (lead SNP rs16919711-A: beta=-0.08, 95% CI: -260 
0.12 to -0.05, P= 2.90×10-8). The rs16919711 variant was an eQTL for PANX1 and 261 
GPR83 in cultured fibroblasts cells and the cerebellar hemisphere in the brain. 262 
However, the summary statistics of the previous 14 GWAS on Hcy were not available 263 
for download, and we were not able to evaluate the effect size of rs16919711 in other 264 
studies. As Hcy is an important biomarker for cardiovascular and cerebrovascular 265 
disease32, it will be worthwhile to replicate and validate the function of this novel 266 
association signal.  267 
 268 
Finally, we found a novel association between sarcosine (Sar) and the intergenic 269 
SLC29A2-NPAS4 locus (lead SNP rs11227478-A: beta=0.08, 95% CI: 0.05 to 0.11, 270 
P= 2.08×10-8) and an association between Valine (Val) and the AGXT2 locus (lead 271 
SNP rs191495-T: beta=-0.05, 95% CI: -0.03 to -0.07, P= 1.69×10-8). rs11227478 is 272 
an eQTL for CTSF in several tissues and has been reported to associate with height 273 
and forced vital capacity29. There was limited knowledge of rs191495 at the 274 
mitochondrial aminotransferase AGXT2.  Information from future functional studies is 275 
critical for interpreting these observed genetic associations.   276 

 277 

Vitamins 278 
We identified 12 loci that have a strong impact on the levels of seven vitamins in 279 
maternal plasma, six of which are known associations and six of which are novel 280 
associations (Figure 1b). We have confirmed the previously known association 281 
between the 5-methyltetrahydrofolate level (MF5) and the NPPB-RNU5E-1 locus 282 
(lead SNP rs75014290, P= 9.49×10-15), which is located near MTHFR, the gene that 283 
encodes the methylenetetrahydrofolate reductase. We also identified a new 284 
association between MF5 and variants within the FOLR1-FOLR2 gene locus (lead 285 
SNP rs35954619-A: beta=-0.09, 95% CI: -0.06 to -0.12, P= 3.00×10-9), an eQTL for 286 
FOLR1 which encodes the folate receptor 1 and folate receptor beta, and was 287 
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previously associated with the asymmetrical dimethylarginine levels related to heart 288 
rate variability 33. On average, individuals with an additional T and A alleles for 289 
rs75014290 and rs35954619, respectively, exhibit 2.78 ng/mL and 3.19 ng/ml lower 290 
5-methyltetrahydrofolate in maternal plasma during pregnancy (see Table 1).   291 
 292 
We have also identified a new association between vitamin B2 (VB2) and the 293 
SLC52A3 gene (lead SNP rs6140149-A: beta=-0.08, 95% CI: -0.05 to -0.10, P= 294 
1.32×10-10), which is known to play a role in water-soluble vitamin metabolism 34 , as 295 
well as a new association between vitamin B5 (VB5) and the TCF23-SLC5A6 locus 296 
(lead SNP rs1659696-A: beta=0.10, 95% CI: 0.07 to 0.13, P= 3.92×10-13), an eQTL 297 
for ATRAID, which plays a role in cell cycle arrest in all-trans-retinoic acid signal 298 
pathway28. The discoveries of the three new genetic associations with the three water-299 
soluble vitamins, despite their strong biological relevance, were due to a lack of 300 
previous genome-wide association studies (Table S1).  301 
 302 
As for the fat-soluble vitamins, we identified the known associations between 25-303 
Hydroxyvitamin D3 level (VD3) and three loci GC (rs1352846, P= 6.61×10-33) 304 
PDE3B (rs10766189, P= 1.95×10-20), and DHCR7 (rs12789751, P= 2.67×10-15), as 305 
well as two known associations for vitamin E (VE) at the APOA5 (P= 1.39×10-8) and 306 
vitamin K (VK) at the LOC102724279-CYP4F2 locus (P= 1.18×10-37). Additionally, 307 
we have identified a new association for vitamin A (VA) at the GCKR locus (lead 308 
SNP rs1260333-A: beta=0.07, 95% CI: 0.05 to 0.10, P= 5.31×10-9); a new 309 
association for VD3 at the LINC00441 locus (lead SNP rs144131853-A: beta=-0.04, 310 
95% CI: 0.05 to 0.09, P=1.60×10-9); and two new associations for VE at the RNF215 311 
(lead SNP rs61583714-T: beta=0.14, 95% CI: 0.12 to 0.17, P= 2.31×10-28) and GGH 312 
(lead SNP rs117494536-A: beta=0.12, 95% CI: 0.10 to 0.15, P= 8.16×10-20) locus. 313 
The LINC00441, RNF215, and the GGH loci were eQTL for RB1 in adipose tissue, 314 
SEC14L3 in Thyroid, and GGH in the whole blood, suggesting biological relevance.  315 
 316 

Metal elements 317 
We identified eleven genetic associations for seven different metal elements, 318 
including three previously reported and eight novel signals (Figure 2b). The three 319 
known loci were the CP locus for copper level (Cu) (lead SNP rs17838831: P= 320 
1.46×10-30), the TMPRSS6 locus for iron level (Fe) (lead SNP rs877908: P= 2.41×10-321 
26 ), and the BHMT2 locus for selenium level (Se) (lead SNP rs2909855: P= 2.00×10-322 
36 ).   323 
 324 
The eight novel associations included the GIGYF2 locus, an eQTL for C2orf82 for the 325 
barium level (Ba) through lead SNP rs13424351-A (beta=-0.10, 95% CI: -0.07 to -326 
0.12, P= 4.32×10-13); the CCDC170 locus (lead SNP rs9397433-A: beta=-0.07, 95% 327 
CI: -0.05 to -0.09, P= 1.60×10-9) and the LOC401312-LOC541472 locus, an eQTL 328 
for the IL6 antisense RNA 1 (IL6-AS1) (lead SNP rs58879058-T: beta=0.07, 95% CI: 329 
0.05 to 0.10, P= 2.00×10-10) for copper level (Cu); the SERPINA7 locus associated 330 
with iodine level (I) through lead SNP rs1804495-A, which is a missense variant ( 331 
beta=-0.27, 95% CI: -0.25 to -0.30, P= 2.13×10-106); the AGMAT locus(lead SNP 332 
rs6679229-A: beta=-0.06, 95% CI: -0.04 to -0.08, P= 2.00×10-9) and the BORCS7-333 
ASMT locus, an eQTL for AS3MT (lead SNP rs12764049-A: beta=-0.06, 95% CI: -334 
0.04 to -0.08, P= 2.80×10-9) were associated with the magnesium level (Mg); and 335 
lastly the EPRS locus, an eQTL for EPRS (lead SNP rs12764049-T: beta=0.07, 95% 336 
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CI: 0.05 to 0.10, P= 1.71×10-9) and the MORC4 locus, an eQTL for PRPS1 (lead 337 
SNP rs12764049-T: beta=0.16, 95% CI: 0.13 to 0.18, P= 3.40×10-39) were 338 
associated with  strontium level (Sr) in maternal plasma.  339 
 340 
The discovery of the strong association between the missense variant rs1804495 at 341 
SERPINA7 and iodine level is noteworthy since no GWAS had been performed 342 
previously for iodine.  SERPINA7 encodes the major thyroid hormone transport 343 
protein, TBG, in serum.  We found that one additional copy of the A allele decreases 344 
11.12 ug/L iodine in maternal plasma, providing evidence for the regulation of iodine 345 
metabolism through a common missense genetic polymorphism present in TBG. 346 
Lastly, the remaining seven novel genetic associations displayed specific functions 347 
and warrant further studies for biological validation. 348 
 349 

Hormone 350 
We identified 12 loci that have a genetic influence on the plasma levels of six 351 
hormones, as presented in Figure 2d. Those included the known association between 352 
the CYP3A7-CYP3A51P locus and the estrone (E1)  (lead SNP rs4646462,  P= 353 
7.20×10-20) and the association between the BORCS7-ASMT locus and the 17-354 
hydroxyprogesterone (17OHP) measurement (lead SNP rs10883790, P= 1.45×10-17).  355 
 356 
We also identified ten novel signals. For instance, the CYP2C18 locus was found to 357 
associate with the 11-Deoxycorticosterone (DOC) (lead SNP rs12764049-A: beta=-358 
0.12, 95% CI: -0.15 to -0.10, P= 6.74×10-22). The lead SNP rs1926711 is an eQTL of 359 
CYP2C19, a monooxygenase that catalyzes many reactions involved in the synthesis 360 
of cholesterol, steroids, and other lipids and in drug metabolism.  361 

 362 
In addition to the well-known association between the CYP3A7-CYP3A51P locus and 363 
E1, we found four novel signals for E1.  These signals included the SULT1B1-364 
SULT1E1 locus (lead SNP rs1220712-T: beta=-0.08, 95% CI: 0.06 to 0.10, P= 365 
2.11×10-13), the OASL-P2RX7 locus (lead SNP rs2708101-T: beta=0.07, 95% CI: 366 
0.05 to 0.09, P= 1.84×10-9), the LINC00379-MIR17HG locus (lead SNP rs74241688-367 
A: beta=0.08, 95% CI: 0.06 to 0.11, P= 3.27×10-9) and the VCX3A-PUDP locus 368 
(lead SNP rs6639741-A: beta=0.07, 95% CI: 0.05 to 0.09, P= 3.81×10-9). 369 
 370 
Furthermore, we discovered a novel signal for Estradiol (E2) levels within STS (lead 371 
SNP rs802900-: beta=0.06, 95% CI: 0.04 to 0.09, P= 3.78×10-8). Similar to the 372 
VCX3A-PUDP locus for E1, this signal is also an eQTL for PUDP, which plays a role 373 
in nucleotide salvage.  374 
 375 
Lastly, we found three novel signals,  including two for 11-Deoxycortisol (11DOC) at 376 
the CYP11B2-LOC100133669 (lead SNP rs143728108-T: beta=0.07, 95% CI: 0.04 377 
to 0.09, P= 1.88×10-8) and the FDX1 ( lead SNP rs1073527-T: beta=0.08, 95% CI: 378 
0.06 to 0.10, P= 1.47×10-10) locus, which plays roles in the steroid, vitamin D and 379 
bile acid metabolism and one signal for 17α-Hydroxyprogesterone (17OHP) at the 380 
ZNF468 locus (lead SNP rs4801940-T: beta=-0.10, 95% CI: -0.08 to -0.13, P= 381 
9.49×10-15).  382 
 383 
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SNP heritability and genetic correlation 384 
To assess the heritability of the 84 metabolites, we employed the LD score regression 385 
(LDSR) technique35 to estimate SNP-based heritability. We then compared this 386 
estimate to the heritability computed from summary statistics of GWAS from prior 387 
investigations36 (see Method). Among the 84 metabolites, 67 (78.6%) exhibited a SNP 388 
heritability greater than zero (Figure S6, Table S6). The SNP-based heritability 389 
estimates ranged from 0.4% to 22.2% with a median of 6.5% the 67 metabolites. 390 
Notably, Ala (����

�  = 22.2%), Hg (����
�  = 17.7%), 17OHP (����

�  = 10.1%), VD3 391 
(����

�  = 18.4%) and MF5 (����
�  = 10.9%) demonstrated the highest SNP heritability 392 

among the amino acid, metal elements, hormone, fat, and water vitamin categories, 393 
respectively.  394 
      When comparing the SNP heritability of 15 metabolites from our study to the 395 
publicly available GWAS summary statistics from prior investigations (Kettunen et 396 
al., 2016 & Neale's lab), our study found that all three vitamins, VD3, VA, and VE, as 397 
well as the metal element Mg and three amino acids, namely, Tyr, Ile, and Val, 398 
exhibited higher SNP heritability (Table S6). However, for the remaining five amino 399 
acids and two metal elements, our study found lower SNP heritability (Figure S7).  400 

 401 

Comparison of estimated genetic effects with a non-pregnancy Chinese 402 
cohort 403 
All but eight of the 53 genetic loci identified in this study demonstrated the same 404 
effect direction and reached nominal significance (P<0.05) between the two different 405 
sequencing technologies (Black Bird and BGI-Seq500) (Figure S8, Table S5). The 406 
eight loci that did not reach nominal significance in one of the two sequencing 407 
technologies displayed the same effect direction, likely due to lack of power. These 408 
results provide support for the robustness of the GWAS hits. 409 
 410 
To further explore the possibility of pregnancy-specific genetic associations, we 411 
compared the effect size and the p-value for the 53 loci with an independent study of 412 
1,553 non-pregnancy Chinese individuals (Female N=642, Male N=911) from the 413 
BGI-Shenzhen multi-omics cohort37. These 1,553 participants underwent whole-414 
genome sequencing and a total of 80 out of the 84 metabolites investigated in the 415 
present study were also assayed for each individual using the same tandem MS 416 
technology(see Methods). Notably in the BGI-Shenzhen multi-omics cohort, amino 417 
acids, vitamins, and hormones were assayed using plasma, the same sampling 418 
material as this study while the metal elements were assayed using whole blood. A 419 
linear regression, adding individual sex and the first two PCs as the covariates, was 420 
performed for each of the metabolites (see Method). A regression using only the 421 
female individuals was also performed in the non-pregnancy cohort and the results 422 
and the conclusions drawn below were consistent.   423 
 424 
Interestingly, after excluding four signals for Hcy, Ba, I, and DOC that were not 425 
assayed and for Hyl and Se that the lead SNPs were not present in the non-pregnancy 426 
cohort, 25 loci discovered in the present study were not replicated in the non-427 

pregnancy cohort (47.2%, P>0.05 or effect size were opposite)(Figure S9, Table S7). 428 
The inconsistency in genetic effects between the pregnancy and non-pregnancy 429 
cohorts varied among the four categories of metabolites. 5 out of the 16 signals in the 430 
amino acid category (31.3%), 7 out of the 8 signals in the element category (87.5%), 431 
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all of the 10 signals in the hormone category (100%), and 2 out of 13 signals in 432 
vitamin category (15.4%) demonstrated inconsistent genetic effects between the 433 
pregnancy and non-pregnancy participants. 434 
  435 
We summarized the reasons for the inconsistency in genetic effects for each category 436 
as follows: (1) the low consistency for the element category was likely due to the 437 
difference between the plasma and whole blood sampling,  as differences in the mean 438 
values of the elements between the two populations were observed (Table S7); (2) the 439 
low consistency for hormones between the two studies may suggest pregnancy-440 
specific genetic effects, in accordance with the difference in the phenotypic 441 
distribution between the two populations or may be due to a lack of power in the non-442 
pregnancy GWAS study; (3) for amino acids, the inconsistency of genetic effect for 443 
the ASPG locus with Asp, the SLC29A2-NPAS4 locus with Sar, and the AGXT2 locus 444 
with Val were likely due to the differences between the two cohorts, while the 445 
inconsistency for the KLKB1 locus with Arg and the ASS1 locus with Cit was 446 
probably due to lack of power, since the two association signals were previously 447 
known. For vitamins, the overall phenotypic distribution between the two populations 448 
was similar, except for MF5 and VB5, and therefore the rest of the association signals 449 
tended to be consistent between the pregnancy and non-pregnancy cohorts.  450 

Extensive genetic pleiotropy among metabolites 451 
Metabolites were known to be interacting with each other, playing roles in certain 452 
pathways, we inferred the existence of genetic pleiotropy for the metabolites 453 
investigated in this study. Specifically, the 84 metabolites examined in this study were 454 
involved in 42 KEGG pathways (Table S8) 38. The two largest pathways were the 455 
aminoacyl-tRNA biosynthesis and steroid hormone biosynthesis pathways, 456 
comprising 20 amino acids and 13 hormones in our study. We aim to explore whether 457 
the genetic associations we identified suggest pleiotropy.   458 
 459 
Among the 53 association signals, 27 (50.94%) affected two or more metabolite (P < 460 
0.001, Figure S10). By utilizing a wald ratio estimator to identify the potential causal 461 
effect of one metabolite on another using a single SNP39, we found 16 genetic 462 
associations with a significant effect connecting 18 metabolites (Table S9). The 463 
pathway analysis of these 18 metabolites revealed nine pathways with nominal 464 
significance (P < 0.05) (Table S10). We visualized the pleiotropic effect in the 465 
context of the KEGG pathways (Figure 3). For instance, in the cyanoamino acid 466 
metabolism pathway, the ASPG locus (lead SNP rs1744297) suggested an effect from 467 
Asp on Asn while the AGA-LINC01098 locus (lead SNP rs12645096) locus affected 468 
both the Asn and Asp. In addition, the CPS1-ERBB4 locus (lead SNP rs10272406) 469 
and ZNF713 (lead SNP rs72933867) locus suggested an effect from Ser on Gly, 470 
different from the direction suggested in the KEGG pathway (Figure 3a).  In another 471 
amino-acid-related aminoacyl-tRNA biosynthesis pathway, KLKB1 (lead SNP 472 
rs4253255) showed an effect from Arg on Met but not the other way around (Figure 473 
3b).  In the steroid hormone biosynthesis pathway, four gene loci, including 474 
LOC101928327-DIRC3-AS1 (lead SNP rs2162000), EGR2-NRBF2 (lead SNP 475 
rs10822140), CYP3A5 (lead SNP rs1419745) and JMJD1C (lead SNP rs6479891) 476 
mutually regulated A4-T-17OHP, E1-E2, E1-E2-CORT, and E1-E2-DHEA, 477 
respectively (Figure 3c).  For the ubiquinone and other terpenoid-quinone 478 
biosynthesis pathway that involved vitamins, the LOC102724279-CYP4F2 locus (lead 479 
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SNP rs12462273 and rs62107763) and APOA5 locus (lead SNP rs3741298) affected 480 
VK and VE simultaneously (Figure 3d).  481 
 482 
The KEGG pathways lack information on interactions between trace elements and 483 
between metabolites of different categories. Nonetheless, we found that the CXorf57 484 
(rs72618342), SERPINA7 (rs1804495), and MORC4 (rs6616617) loci affected I and 485 
Sr levels in the opposite direction (Figure S10). Moreover, the EGR2-NRBF2 486 
(rs10822140) and CYP3A5 (rs1419745) loci displayed bi-directional effects between 487 
any two hormones in E2, E1, CORT, and Ser (Table S9). Lastly, the GGH 488 
(rs72658350) locus suggested an effect of VE on Glu level but not the other way 489 
around (Table S9, Figure S10).  490 

Causal maternal metabolites for pregnancy phenotypes and human 491 
complex traits 492 
To investigate the newly discovered genetic associations with metabolites, we 493 
performed a colocalization analysis for each of the 53 significant loci, using around 494 
100 pregnancy phenotypes from a companion study (Zhu et al., manuscript in 495 
submission). Furthermore, we conducted a bi-directional two-sample Mendelian 496 
randomization (MR) analysis between the metabolites and 120 phenotypes from the 497 
Biobank Japan Project (BBJ), released in the IEU open GWAS project40 (see 498 
Methods).  499 
 500 
The results of the colocalization analysis revealed six loci that demonstrated a strong 501 
signal of colocalization between maternal metabolites and pregnancy biomarkers 502 
(posterior probabilities of H4, PPH4 > 0.5) (Figure S11). These included shared 503 
pleiotropic effects between maternal Mg and serum creatinine (CR) and uric acid 504 
(UA) at the AGMAT locus (Figure S11a), vitamin VA and serum creatinine (CR) and 505 
pre-albumin (PA) at the GCKR locus (Figure S11b), E1, E2 and the mean platelet 506 
volume (MPV) at the EGFR-NRBF2-JMJD1C locus (Figure S11c), 3MHis and urine 507 
glucose (GLU_U) at the FBXL20-CDK12 locus (Figure S11d), Fe and mean 508 
corpuscular hemoglobin (MCH) at the TST-TMPRSS6 locus (Figure S11e), and I and 509 
free thyroxine (FT4) at the SERPINA7 locus (Figure S11f). These findings contribute 510 
to new knowledge of pleiotropy between maternal metabolites and biomarker traits 511 
during pregnancy. 512 
 513 
In the mendelian randomization analysis, after excluding heterogeneity, horizontal 514 
pleiotropy, and reverse causality (see Methods), we identified significant causal 515 
relationships between seven metabolites and 15 human traits and diseases from BBJ 516 
(P<0.01) (Figure 4). We found that genetically predicted MF5 was associated with 517 
increased high-density lipoprotein (HDL) (beta=0.10, 95% CI: 0.04 to 0.16, P= 518 
8.56×10-4) and a reduced risk of ischemic stroke (OR=0.84, 95% CI: 0.73 to 0.95, P= 519 
7.07×10-3). The discovery of the relation between MF5 and these two traits verified 520 
previous MR study and randomized controlled trials (RCT) in the European 521 
population41,42.  Although MF5 protects against ischemic stroke, no causal effect of 522 
MF5 on cardiovascular disease such as coronary artery disease was identified in the 523 
BBJ (P= 0.62), consistent with the biological function of folate in the nucleic acid 524 
synthesis and DNA repair, and medical evidence of folate in nervous system 525 
development43.  526 
 527 
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Furthermore, the MR analysis suggested that genetically predicted VD3 was 528 
associated with an increased risk of Graves’ disease (GD) (OR=1.40, 95% CI: 1.12 to 529 
1.77, P= 3.41×10-3). This differs from observational studies, which suggested that 530 
patients with GD were more likely to be deficient in VD compared to the controls, 531 
based on a small sample size of less than 10044,.  However, RCTs did not prove that 532 
VD supplementation improves the course of GD45 . The most recent RCT observed a 533 
trend for increased risk of treatment failure and relapse of hyperthyroidism with VD 534 
supplementation46. An MR analysis in the UK Biobank (UKBB) Europeans suggests 535 
no significant associations between VD3 and hyperthyroidism47. Therefore, to 536 
confirm the effect of VD3 on GD observed in this study, further replication and 537 
mechanism validation are required.  538 
 539 
Regarding the metal elements, we found that genetically predicted plasma Cu was 540 
associated with an increased risk of open-angle glaucoma (OR=1.51, 95% CI: 1.23 to 541 

1.84, P= 7.21×10-5).As for the hormones, genetically predicted 11DOC was 542 
associated with an increased risk of smoking initiation, consistent with previous 543 
observational evidence48,  and a larger fractional shortening (FS, the size of the 544 
ventricle at the end of systole and diastole) derived from the transthoracic 545 
echocardiogram (TTE) data. In addition, A4 was associated with a higher level of 546 
eGFR, total bilirubin, blood sugar, lower level of lactate dehydrogenase, urea nitrogen, 547 
and a decreased risk of rheumatoid arthritis- consistent with reported observational 548 
analysis49. Lastly, E1 was associated with a lower level of chloride and alumin, which 549 
was not reported previously.  550 

Discussion 551 
We identified a total of 53 genetic associations, including 30 novel genetic 552 
associations for 19 metabolites. The consistency of the effect sizes of the associations 553 
between the two sequencing technologies demonstrated the robustness of our 554 
findings. Notably, our comparison of genetic associations with an independent cohort 555 
of non-pregnancy individuals revealed substantial differences in genetic effects on 556 
metabolites, especially those of the hormone category. These findings provide 557 
valuable insights into human genetics, demonstrating that genetic effects can change 558 
or be modified through interactions with internal and external environments, despite 559 
DNA stability throughout life. Furthermore, the study also highlights the importance 560 
of mechanistic studies to obtain an advanced understanding of the biological 561 
mechanisms of pregnancy and reproduction. 562 
 563 
We identified pervasive pleiotropic effects in 27 of the 53 metabolite-associated loci 564 
(50.94%), which were enriched in nine KEGG pathways, suggesting genetic 565 
determination of metabolic flux. Our study emphasizes the importance of multi-trait 566 
association analysis rather than analyzing metabolites independently. We also 567 
identified novel pleiotropic effects between metabolites of different categories, 568 
including the shared effect between I and Sr, between three hormones (E2, E1, 569 
CORT) and Ser, and between VE and Glu. Furthermore, analyzing the shared genetic 570 
effects between metabolites and a hundred pregnancy phenotypes revealed novel 571 
pleiotropy between six metabolites and eight pregnancy biomarkers, unraveling new 572 
and complex functions of the metabolites. In our Mendelian randomization analysis of 573 
metabolites and 120 phenotypes, we identified potential causal relationships between 574 
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plasma folate and ischemic stroke, vitamin D3 and Graves' disease, copper and open-575 
angle glaucoma, and androstenedione and rheumatoid arthritis. These novel findings 576 
provide essential information for the development of new therapeutic targets for 577 
complex diseases. 578 
      579 
Our study has a few limitations. Firstly, due to a lack of birth cohort studies with 580 
genetic data in China and East Asians, we were not able to evaluate the potential 581 
causal impact of several maternal metabolites on severe pregnancy diseases and 582 
adverse birth outcomes reported in observational studies. However, the genetic 583 
discoveries obtained from this study made it possible to answer this question in the 584 
future, along with the effects in China to build large-scale birth cohorts51. Our 585 
findings of changing genetic effects during pregnancy, especially in hormones, raise 586 
caution for Mendelian randomization studies, which examined the effect of 587 
genetically predicted life-long exposures on the outcomes52. This will not be a 588 
problem for the metabolites that demonstrated consistent genetic effects between the 589 
pregnancy and the non-pregnancy status. However, for metabolites that with altering 590 
genetic effects such as hormones, how may the pregnancy-specific genetic effect 591 
impact late-onset disease will require further investigation. Our report on the potential 592 
causal effects of maternal metabolites on human traits and diseases will require more 593 
biological validation and replication from independent studies. Lastly, although the 594 
current studies represented the largest-scale metabolite genome-wide association 595 
studies in East Asians, expanding the sample size and types of metabolites will 596 
facilitate a more systematic understanding of biological pathways. Finally, the genetic  597 
associations identified from this study are from a single time point in early pregnancy, 598 
we are expecting that more metabolite changes will appear in the later stage of 599 
gestation. However, the current study provides a first view on the genetic effects on 600 
metabolites during the pregnancy period and we have observed substantial changes in 601 
genetic effect, suggesting the metabolites already changes in the early period of 602 
pregnancy.     603 
 604 
This study consistently proves that NIPT sequencing data can be used for medical 605 
genetic studies following our previous study introducing the utility of the non-606 
invasive prenatal sequencing data in human genetics53.  As NIPT sequencing is 607 
quickly expanding to more than ten million individuals around the world nowadays, 608 
sophisticated study designs and suitable methods will enable the use of this invaluable 609 
genetic resource. The methods and knowledge obtained from this study can speed up 610 
future efforts from the medical and scientific community to integrate multi-omics data 611 
with NIPT data to answer fundamental biological and clinical questions.  612 
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Methods 645 
Participant recruitment and plasma sample preparation  646 
All the 34, 394 participants were recruited via the non-invasive fetal trisomy test and 647 
the pregnancy nutrition program between year 2017 and 2018. They underwent 648 
pretest counseling and filled in informed written consent before blood sampling. 649 
16The study was reviewed and approved by the Institutional Review Board of BGI 650 
(BGI-IRB21184) in strict compliance with regulations regarding ethical 651 
considerations and personal data protection.  652 

5ug peripheral whole blood was drawn from each of the participant and stored 653 
in the EDTA anticoagulant tubes to avoid hemolysis.  The plasma was obtained by 654 
centrifugation (3000 rpm, 10 min) and was preserved at -80°C until assay. As for 655 
amino acid extraction, 40 μL plasma was mixed with 20 μL stable-isotope labeled 656 
internal standard (IS) in sulfosalicylic acid to precipitate proteins, followed by vortex 657 
and centrifugation (4000 rpm, 4°C, 20 min). Regarding hormones, 250 μL plasma 658 
mixed with 205 μL IS solutions were filtered through solid-phase extraction (SPE), 659 
followed by washing with 25% methanol and eluting with 100% dichloromethane. 660 
The elution was evaporated by nitrogen and was reconstituted in 25% methanol. For 661 
vitamin extraction, approximately 200 μL plasma were mixed with 600 μL 662 
methanol/acetic acid/IS for water-soluble vitamins (WSV), or with 1000 μL 663 
methanol/acetonitrile/IS for fat-soluble vitamins (FSV), followed by vortex and 664 
centrifugation (4000 g, 4°C, 20 min). The supernatants were evaporated by nitrogen 665 
and were reconstituted by either 60 μL deionized water (WSV) or 80 μL 80% 666 
acetonitrile (FSV). As regards metal elements, 100 μL plasma were mixed with 400 667 
μL nitric acid/hydrogen peroxide for decomposition at 105°C for 3 hours. The 668 
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decomposed products were cooled down and delivered to mass spectrometry after 669 
dilution with deionized water. 670 
 671 
Quantitative measurement of metabolites using mass spectrometry 672 
The metabolites in blood were targeted and quantified using liquid chromatography 673 
coupled with triple quadrupole mass spectrometry (LC MS/MS), including 674 
ACQUITY UPLC I-Class (Waters) mounted with C18 column, Triple Quad 5500 675 
(Sciex) and Xevo TQ-S (Waters). The MS/MS spectra corresponding to metabolites 676 
were acquired at positive ion mode with multiple reaction monitoring scans. The 677 
metal elements were measured by inductively coupled plasma mass spectrometry 678 
(ICP MS/MS), i.e. 7700x ICP-MS (Agilent). The mass spectra acquired were 679 
processed with MultiQuant (V. 3.0.2, Sciex) for amino acids, hormones and FSV, 680 
MassLynx (V. 4.1, Waters) for WSV and MassHunter (V. B.01.03, Agilent) for metal 681 
elements. The calibration curves were implemented with stable isotope-labeled 682 
compounds as internal standards. The accuracy of quality controls (QCs) with 683 
isotope-labeled IS was managed approximately every 15 samples to ensure the inter-684 
batch stability.  685 

Sequencing assays 686 
Details of the sequencing protocol were published previously in 54. In brief, within 8h 687 
of blood collection, plasma was extracted from whole blood after two turns of 688 
centrifugation. The plasma samples were subsequently subjected to library 689 
construction, sample quality control and 36-cycle single-end multiplex sequencing on 690 
BlackBird or BGI-seq500 platform. The reads were trimmed to 35bp before 691 
bioinformatic analysis.  Filtering of poor quality reads was carried out using 692 
SOAPnuke (https://github.com/BGI-flexlab/SOAPnuke).  A read was removed if it 693 
contained more than 30% low quality bases (Q<=2) or N bases. In general, each 694 
participant was whole-genome sequenced to 5-10 million cleaned reads, representing 695 
a sequencing depth around 0.06x -0.1x.  696 

Correlation between metabolite concentrations 697 
We have investigated the correlation between metabolite concentrations in two 698 
aspects. First, we estimated the spearman correlation coefficient between the 699 
phenotypes. Second, we applied the correlation model implemented in LD score 700 
correlation (LDSC) to compute the genetic correlation between any two of the 701 
metabolites (Bulik-Sullivan et al., 2015). Correlation was visualized as a heatmap 702 
using R.  703 

Genotype imputation 704 
We employed STITCH (version 1.2.7) 55 to impute genotype probabilities for the BB 705 
and Seq500 individuals in a five-megabase window with a 250K buffer assuming 40 706 
ancestral haplotypes, respectively. Allele frequency information from the Chinese 707 
population (CHB+CHS+CDX, N=301) in the 1KG impute2 reference panel was used 708 
for the initial values for the EM optimization of the model parameters.  The imputed 709 
variants included 8.16 million known polymorphic sites in 22 autosomal 710 
chromosomes and chrX with a 1KG East Asian allele frequency >=0.01. All the loci 711 
recorded in the GWAS catalog are also included for imputation.  For each of the 712 
imputed sites, there is an IMPUTE2-style info score (Marchini et al., 2007) and a P-713 
value for violation of Hardy Weinberg equilibrium (HWE-pvalue in short) 714 
(Wigginton et al., 2005).  We used info score greater than 0.4, and minor allele 715 
frequency greater than 0.01 as filtration threshold to obtain the significantly 716 
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associated variants. Imputation accuracies were estimated using Pearson’s R2 717 
between the true genotype from high-coverage WGS of 50 participants (40x) and the 718 
imputed genotype dosage.  719 

Genome-wide association analysis with PLINK 720 
Since the variance regression approach assumes that the trait values follow 721 
multivariate normal distribution, we performed a rank transformation of the 722 
metabolite raw values using the empirical normal quantile transformation approach 723 
after removal of outliners in the raw value distribution56. We then applied the linear 724 
regression model implemented in Plink v1.9 to detect the associations between the 725 
imputed genotype dosage and the transformed values of the metabolites 57. The 726 
covariates in the regression model include maternal age, gestational week upon 727 
sampling, the top three principal components of PCA and the inferred gender of the 728 
fetus computed from the NIPT data. The regression analysis was performed for black 729 
bird and Seq500 sequencing data independently that produced effect size, standard 730 
errors, number of effect individuals and p-value for each of the imputed sites. 731 

Meta-analysis and multi-trait genome-wide association test using the MTAG 732 
approach 733 
We applied the inverse variance based approach implemented in METAL to perform 734 
the meta-analysis integrating the effects from BB and Seq500 regression outcomes 26. 735 
Since many metabolites may have shared genetic correlation, we applied the multi-736 
trait genome-wide association studies based on the metal summary statistics using the 737 
MTAG approach 27. The resulting beta, p-value and standard errors were used for 738 
downstream analysis. During the MTAG analysis, we noticed that the time and 739 
memory that required for performing multi-trait genome wide association studies 740 
using all the 84 metabolites is too consuming due to very large Omega and Sigma 741 
matrices and we cannot finish the computation successfully in the end. After a 742 
personal communication with the MTAG author, we performed the MTAG analysis 743 
for each amino acid (N=37), element (N=24), hormone (N=13) and vitamin (N=10), 744 
respectively.  745 
 746 
Identification of independent significant loci 747 
After learning the effect size and the p-value from the meta-analysis, we defined 748 
independent loci as significant variants clustered in a 1Mbp window. The lead SNP 749 
was defined as the SNP in the 1Mbp window that has the smallest p-value. We didn’t 750 
observe multiple independent signals in one locus after performing a conditional test 751 
using Plink v1.9.  Furthermore, locuszoom was applied to visualize the loci 58. The 752 
reported loci were determined from the conditional test after the single marker 753 
analysis using a significance threshold P value ≤ 5 x 10-8. Since the genome-wide 754 
association study was performed on the quantile-transformed metabolite value (βnor), 755 
we applied the following formula β = βnor * sdpheno to obtain the effect on real 756 
metabolite level where sdpheno refers to the standard deviation of values of certain 757 
phenotype. Both βnor and β were reported in Table 1 and Table S3. 758 
 759 

SNP heritability 760 
The genomic inflation factor λGC , the heritability, the intercept, and ratio using the 761 
LD score regression approach based on the summary statistics35. 12 out of the 84 762 
metabolites display negative heritability. After personal communication with the 763 
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LDSC author, this may be due to a lack of power for those traits because of small 764 
sample size. We set those metabolites with negative heritability as zero in Figure S8 765 
and Table S7. The UK Biobank heritability was obtained from 766 
https://nealelab.github.io/UKBB_ldsc/ .  767 
 768 
 769 
Comparison with the non-pregnancy population  770 
1,553 participants (Female N=642 , Male N=911) from Shenzhen local area were 771 
recruited. Written form of consent was signed by each individual. The white blood 772 
cell of each individual were whole-genome sequenced to around 30x using the BGI-773 
seq500 platform. A total of the 81 out of the 84 metabolites were investigated for each 774 
individual using the same protocol for the pregnancy study that the amino acids, 775 
vitamins and hormones were assayed using plasma while the elements were assayed 776 
using the whole blood. The three metabolites not investigated were I, Ba and DOC. 777 
WGS data were aligned and variants called by the Picard 778 
(http://picard.sourceforge.net), BWA 59 and GATK v3.8 best practice 60pipeline. SNPs 779 
with mapping quality greater than 40, sequencing depth greater than 4, variant quality 780 
greater than 2.0, Phred score of Fisher’s test p-value for stand bias smaller than 60.0, 781 
Haplotype score smaller than 13.0 and distance of alternative allele from the end of 782 
reads greater than 8.0 were kept for following analyses. We removed SNPs deviating 783 
from Hardy-Weinberg (P-value < 1×10-5), markers with more than 1% missing 784 
genotype data and variants with smaller than 1% minor allele frequencies. Individuals 785 
with heterozygosity greater than there standard deviations were excluded. One 786 
individual among relatives within 3rd degree of relationship was randomly selected to 787 
keep in the clean data set. PCA was performed to investigate population stratification. 788 
No clean sub-cluster was observed. Typical north to south Grandaunt was 789 
demonstrated by the first principal component.  Linear regression adding individual 790 
sex and top two principal components as covariates was performed for each of the 791 
significant locus identified from the pregnancy study. We also performed regression 792 
using only the female individuals adjusting top two PCs. No inflation was observed in 793 
this analysis (λGC ~ 1).   794 
 795 

KEGG and pleiotropy analysis  796 
To investigate the pleiotropy among metabolites, for each of the 53 significant loci (P 797 
value ≤ 5 x 10-8), we visualized the effect and P value for the lead SNP in a forest plot 798 
(Figure S10). Strong pleiotropy was defined as the observation of a lead SNP that 799 
affects at least two metabolites with a significance level of 10-3. To further understand 800 
the relationship between the SNP variants and multiple metabolites, we conducted a 801 
wald ratio estimation implemented in the tsls package in R for each of the 27 variants 802 
that suggest pleiotropy. We performed a total of 54 tests, corresponding to a p-value 803 
less than 0.001 after the Bonferroni correction. We summarized and visualized the 804 
pleiotropic correlation in the KEGG pathway using the metaboanalyst website 805 
(https://www.metaboanalyst.ca/).  806 
 807 
 808 

Colocalization analysis  809 
To investigate whether the same genetic variants may drive the associations with 810 
metabolites and the pregnancy phenotypes reported in a companion paper, we 811 
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undertook a colocalization analysis. We applied a stringent Bayesian analysis 812 
implemented in the coloc R package61z with default parameters to estimate the 813 
posterior probability (PP) that the metabolites and the pregnancy phenotypes shared a 814 
single causal SNP at the locus. The SNPs in the 1�Mb range of the tested 815 
instrumental variable that have MAF over 0.05 were used for analysis.Metabolites 816 
with a PPH4 > 0.5 (posterior probabilities of two traits sharing one causal SNP) were 817 
considered to be colocalized.  818 
 819 

Two-sample Mendelian randomization between metabolites and 120 traits 820 
from the Biobank of Japan 821 
To investigate the potential causal impact of the metabolite on human traits or 822 
diseases, we performed Mendelian randomization analyses using four methods: the 823 
inverse variance weighted (IVW) method, the MR Egger method, the weighted 824 
median method, and the weighted mode method implemented in the TwoSampleMR 825 
R package62.   The metabolites that passed the correction threshold P<0.01 were 826 
retained for pleiotropy and heterogeneity evaluation. Cochran’s Q statistic was used to 827 
examine the heterogeneity of the IVs. Horizontal pleiotropy was evaluated using the 828 
MR Egger approach with a return of intercept values. MR Steiger test63 was applied to 829 
test the directionality of the effect. Only potential causal effects passing the 830 
pleiotropy, directionality, and heterogeneity tests were reported in our study (P>0.05).  831 
 832 

Data availability 833 
The summary statistics of the metal meta-analysis outcome and the MTAG outcome 834 
have been deposited into CNGB Sequence Archive 22 of CNGBdb23 with accession 835 
number CNP0003025.  836 
 837 
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Figures and tables 
 

 

Figure 1. Phenotypic distribution of the 84 metabolites  

Shown were the logarithm of the concentration for a) 37 amino acids b) 10 vitamins c) and d) 24 

elements and e) 13 hormones. Units of the metabolites were shown in the title of the y-axis. The 

outliners were excluded in the genome-wide association analysis.  
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Figure 2. The 53 significant genetic associations with the metabolites. Manhattan plot of all 
the genetic associations for amino acids (a), vitamins (b), metal elements (c) and hormones 
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(d). The x-axis is the chromosomal position and the y-axis represents the minus logarithmic 
transformation of the P value from the GWAS regression model. The black and grey 
horizontal line represents the P value of the genome-wide significance level at P=5.0×10-8 

and P=1.0×10-5. Each significant locus is annotated by the nearest gene symbol with the 
corresponding trait in parenthesis. Gene symbols in red suggest that the genetic association 
locus (1Mbp centering on the lead SNP) was not previously identified in the GWAS catalog 
or PubMed. Gene symbols in black reflect known associations.  
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Figure 3.  Genetic variants that affect multiple metabolites in the context of KEGG 

pathway 

Shown are SNPs that suggest a significant causal effect in the wald ratio estimates (p<0.05/53). 

Red lines suggest the same direction of the effect allele while the green line indicates the 

opposite direction of the effect alleles for the two connected metabolites. Two-edged arrows 

suggest significant effects of the SNP were observed on both connected metabolites while the 

single-edged arrows suggest a significant effect on the pointed metabolite. Statistic details of the 

wald ratio estimates can be found in Table S8. KEGG pathway plot was generated using the 

online pathway analysis module at https://www.metaboanalyst.ca/ .  
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Figure 4.  Forest plot displaying the effect of the pregnant metabolites on adult traits by 

two-sample mendelian randomization. Effects and P values were shown if P<0.01 based on a 

Bonferroni correction of five categories of metabolites. The colors of the boxes correspond to the 

metabolite categories in Figures 1 and 2. The inverse variance weighted method was applied for 

the MR analysis and only potential causal relationships without horizontal pleiotropic effect 

(P>0.05) and heterogeneity (P > 0.05) were shown. **: P<0.01;  ***:P<0.001 
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Table 1. The fifty-three genetic loci associated with maternal plasma metabolites  

 
Metabolites  Effect allele Gene βnor 

#1 β #2 P Novelty 

Amino acids (μmol/L) 

3MHis rs11078912-A CDK12 0.11 0.18 1.88E-08 Novel 

Aad rs2062987-A DHTKD1 -0.11 -0.07 3.01E-08 Known 

Arg rs4253311-A KLKB1 -0.20 -9.99 3.76E-26 Known 

Asn rs11627783-T ASPG 0.30 11.37 6.61E-29 Known 

Asp rs12645096-T AGA-LINC01098 -0.21 -1.80 9.07E-26 Novel 

Asp rs1744294-T ASPG -0.17 -1.48 1.55E-16 Novel 

bAla rs6550015-T GADL1 0.21 0.40 4.98E-44 Known 

Cit rs4740223-A ASS1 -0.16 -2.56 4.27E-11 Known 

Gly rs72933867-T CPS1-ERBB4 -0.46 -60.92 3.26E-85 Known 

Gly rs35331719-A ALDH1L1-AS2 0.10 13.02 1.10E-09 Known 

Gly rs804896-A C16orf46 -0.09 -11.92 3.18E-08 Known 

Hyl rs1979905-A PSMA4 0.16 0.07 8.81E-14 Known 

Hcy rs16919711-A VSTM5-HEPHL1 -0.11 0.00 2.90E-08 Novel 

Sar rs11227478-A SLC29A2-NPAS4 0.11 0.15 2.08E-08 Novel 

Ser rs511059-T ZNF697-PHGDH 0.27 23.45 6.50E-10 Known 

Ser rs10272406-A ZNF713 0.15 13.50 7.04E-15 Known 

Tyr rs14399-A SLC16A10 -0.10 -4.15 2.06E-10 Known 

Val rs191495-T AGXT2 -0.07 -11.66 1.69E-08 Novel 

Elements (μg/L) 

Ba rs13424351-A GIGYF2 -0.10 -0.09 4.32E-13 Novel 

I rs1804495-A SERPINA7 -0.34 -43.75 2.13E-106 Novel 

Se rs2909855-A BHMT2 0.19 16.10 2.00E-36 Known 

Sr rs2647437-T EPRS 0.10 2.88 1.71E-09 Novel 

Sr rs6616617-T MORC4 0.19 5.76 3.40E-39 Novel 

Elements (mg/L) 

Cu rs17838831-T CP -0.18 -0.31 1.46E-30 Known 

Cu rs9397433-A CCDC170 0.10 0.18 1.60E-09 Novel 

Cu rs58879058-T LOC401312-

LOC541472 

0.10 0.16 1.97E-09 Novel 

Fe rs877908-T TMPRSS6 -0.19 -0.26 2.41E-26 Known 

Mg rs6679229-A AGMAT -0.08 -1.51 2.00E-09 Novel 

Mg rs12764049-A BORCS7-ASMT -0.06 -1.24 2.79E-09 Novel 

Hormones (ng/mL) 

A4 rs2162000-A LOC101928327-

DIRC3-AS1 

-0.078 -0.112 1.79E-08 

 

Known 
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DOC rs1926711-A CYP2C18 -0.15 -0.01 6.74E-22 Novel 

E1 rs1220712-T SULT1B1-SULT1E1 0.10 0.18 2.11E-13 Novel 

E1 rs4646462-A CYP3A7-CYP3A51P 0.18 0.34 7.20E-20 Known 

E1 rs2708101-T OASL-P2RX7 0.11 0.21 1.84E-09 Novel 

E1 rs74241688-A LINC00379-MIR17HG 0.18 0.34 3.27E-09 Novel 

E1 rs6639741-A VCX3A-PUDP 0.06 0.12 3.81E-09 Novel 

E2 rs802900-A STS 0.02 0.10 3.78E-08 Novel 

11DOC rs143728108-T CYP11B2-

LOC100133669 

0.08 0.02 1.89E-08 Novel 

11DOC rs1073527-T FDX1 0.10 0.03 1.47E-10 Novel 

17OHP rs10883790-A BORCS7-ASMT 0.12 0.27 1.45E-17 Known 

17OHP rs4801940-T ZNF468 -0.20 -0.45 9.49E-15 Novel 

Vitamins (ng/mL) 

MF5 rs75014290-T NPPB-RNU5E-1 -0.13 -2.78 2.31E-14 Known 

MF5 rs35954619-A FOLR1-FOLR2 -0.15 -3.19 3.00E-09 Novel 

VB2 rs6140149-A SLC52A3 -0.11 -0.78 1.32E-10 Novel 

VB5 rs1659696-A TCF23-SLC5A6 0.10 5.02 3.93E-13 Novel 

VA rs1260333-A GCKR 0.11 41.53 5.31E-09 Novel 

VD3 rs1352846-A GC 0.23 4.44 6.61E-33 Known 

VD3 rs145497491-A PDE3B 0.16 3.05 1.95E-20 Known 

VD3 rs11546509-A DHCR7 -0.15 -2.84 2.67E-15 Known 

VD3 rs144131853-A LINC00441 -0.32 -6.31 1.60E-09 Novel 

VK rs62107763-T LOC102724279-

CYP4F2 

-0.27 -0.25 1.18E-37 Known 

Vitamins (μg/mL) 

VE rs3741298-T APOA5 -0.11 -1.12 1.39E-08 Known 

VE rs61583714-T RNF215 0.18 1.91 2.31E-28 Novel 

VE rs117494536-A GGH 0.15 1.61 8.16E-20 Novel 

 

 
#1: βnor refers to the effect size for the standardized, quantile-transformed metabolite level, 

corresponding to the unit change of the metabolite per allele change of the variant. 
#2: β refers to the effect size for the unstandardized metabolite level, corresponding to the change 

of the metabolite per allele change of the variant.  
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