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Summary 
 
The biological mechanisms through which most non-protein-coding genetic variants affect disease risk 
are unknown. To investigate the gene-regulatory cascades that ensue from these variants, we mapped 
blood gene expression and splicing quantitative trait loci (QTLs) through bulk RNA-sequencing in 4,732 
participants, and integrated these data with protein, metabolite and lipid QTLs in the same individuals. 
We identified cis-QTLs for the expression of 17,233 genes and 29,514 splicing events (in 6,853 genes). 
Using colocalization analysis, we identified 3,430 proteomic and metabolomic traits with a shared 
association signal with either gene expression or splicing. We quantified the relative contribution of the 
genetic effects at loci with shared etiology through statistical mediation, observing 222 molecular 
phenotypes significantly mediated by gene expression or splicing. We uncovered gene-regulatory 
mechanisms at GWAS disease loci with therapeutic implications, such as WARS1 in hypertension, IL7R 
in dermatitis and IFNAR2 in COVID-19. Our study provides an open-access and interactive resource of 
the shared genetic etiology across transcriptional phenotypes, molecular traits and health outcomes in 
humans (https://IntervalRNA.org.uk). 
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Introduction 
 
The majority of genetic variants associated with common diseases and other complex traits identified 
through genome-wide association studies (GWAS) lie in non-protein-coding sequences.1 Consequently, 
the molecular mechanisms that underpin many of these genotype–phenotype associations are unclear. 
Molecular quantitative trait locus (QTL) mapping studies, which identify genetic determinants of 
transcript, protein or metabolite abundance, can address this knowledge gap by identifying the molecular 
intermediaries that mediate genetically driven disease risk. These studies can provide specific 
hypotheses for functional validation experiments.2,3 
 
Molecular QTL data can be used for a range of biomedical applications. For example, they have the 
potential to identify and validate new therapeutic targets and pathways; inform about the biological 
mechanisms of drug action and safety; highlight novel therapeutic indications; and reveal clinically 
relevant biomarkers.4-6 
 
Many previous studies have carried out QTL mapping within a single molecular domain such as 
expression (eQTL) or protein (pQTL) analysis.7-12 However, QTL data from multiple -omic modalities 
are needed to fully understand the causal molecular chain of events from genetic variation to complex 
trait phenotypes.13 Moreover, the availability of multi-modal data in a single population sample enhances 
the interpretation and validity of causal inference analyses. For example, mediation analysis in a single 
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cohort presents a strategy for identifying phenotypes that share a common genetic pathway and for 
quantifying the proportion of the total genetic effect on those phenotypes.14 
 
Here, we use the INTERVAL study15,16, a bioresource of approximately 50,000 blood donors with 
extensive multi-dimensional ‘omics’ profiling, to identify gene expression and splicing QTLs based on 
peripheral blood RNA-sequencing (n=4,732 individuals). Then, we integrate the QTL data with 
additional molecular QTL data derived from the same study (Figure 1). These data include plasma 
protein levels measured through an antibody-based proximity extension assay (Olink Target panels, 
n=4,662–4,981 individuals)17,18 and an aptamer-based multiplex protein assay (SomaScan v3, n=3,301)5, 
as well as serum metabolite levels measured using an untargeted mass spectrometry platform 
(Metabolon HD4, n=14,296)10 and a nuclear magnetic resonance spectroscopy platform (Nightingale 
Health, n=40,849)19,20. 
 
Our data reveal genetic effects on the expression and splicing of local and distant genes. We assess 
shared genetic etiology across molecular traits and health outcomes using statistical colocalization. 
Then, we further investigate the genetic effects on downstream molecular phenotypes through 
transcriptional events by conducting mediation analyses. Based on these analyses, we develop an open-
access portal that enables exploration of this compendium of molecular QTLs 
(https://IntervalRNA.org.uk). 
 

 
 
Figure 1. Overview of the multi-omic data available in the INTERVAL study and external cohorts, 
as well as the main analytical approaches. Abbreviations: UKB-PPP, UK Biobank Pharma 
Proteomics Project; COVID-19 HGI, COVID-19 Host Genetics Initiative; MAF, minor allele frequency; 
QTL, quantitative trait locus. 
 
 
Results 
 
Genetic regulation of local gene expression and splicing. We performed bulk RNA-sequencing on 
peripheral blood collected from 4,732 blood donors recruited as part of the INTERVAL study 
(Methods). The expression levels of 19,173 autosomal genes and 111,937 de novo transcript splicing 
phenotypes (herein referred to as “splicing events”) from differential intron usage ratios in 11,016 genes 
were quantified. Then, we mapped local (cis) expression QTLs (eQTLs) within ±1Mb of the 
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transcription start site (TSS) and splicing QTLs (sQTLs) within ±500kb of the center of the spliced 
region. 
 
We identified 17,233 genes (89.9% of the 19,166 tested) with at least one significant cis-eQTL (“cis-
eGene”) at a false-discovery rate (FDR) <0.05 (Tables S1 and S2; Methods). To identify independent 
signals at each cis-eQTL, we performed stepwise conditional analyses (Methods). Across the 
transcriptome, this revealed 56,959 independent signals (53,457 unique lead variants), with a median of 
3 independent signals per gene (range: 1–23; Tables S1 and S3). We compared our results to those from 
the eQTLGen Consortium study by Võsa et al, a meta-analysis of eQTL studies based on microarray 
and RNA-sequencing data (n=31,684 individuals).9 Z-scores from eQTL lead SNPs were highly 
correlated between these studies (Pearson r2=0.9; Figure S1; Tables S2 and S4). These results highlight 
the consistency of eQTL discovery results across independent datasets and mapping technologies. 
 
Next, we investigated genetic associations with splicing events, identifying 29,514 splicing event 
phenotypes with a cis-sQTL at FDR<0.05 (Tables S1 and S5). These splicing events with a cis-sQTL 
were mapped to 6,853 genes (“cis-sGenes”) with a median of 3 splicing events observed per cis-sGene 
(range: 1–128). This included 543 cis-sGenes that were not identified as cis-eGenes. The long non-
coding RNA FAM157C, which is involved in cell proliferation and induction of apoptosis,21 contained 
the most splicing events (n=128, within 11 clusters defined by shared splice donor or acceptor sites). 
While this gene is known to contain 33 exons, the splicing events were mostly intronic (n=105/128) and 
rarely overlapping previously defined exon boundaries (n=9/128). Across all splicing events with cis-
sQTLs, these had a median length of 1,549bp and excised a protein-coding sequence in 32.4% of cases 
(the remainder related to intronic and UTR excisions). The median distance from the cis-sQTL lead 
variants to the center of the splicing event was 187bp upstream, with lead variants forming a bimodal 
distribution around the start and end of the sGene (Figure 2A). 
 
After conditional analysis for each cis-sQTL, we identified 47,050 independent signals (34,205 unique 
lead variants), with a median of one independent signal per cis-sQTL (range: 1–20; Tables S1 and S6). 
To characterize independent variant effects on transcript splicing, we compared primary and secondary 
cis-sQTLs. Primary cis-sQTL signals were enriched within the gene body of sGenes compared to 
secondary signals (p=2.84×10-314, chi-squared test; Figures 2A and S2). Primary cis-sQTL signals were 
more enriched towards the transcription end site (median of 17.36kb downstream of the TSS) compared 
to cis-eQTLs with a median of 5.51kb downstream of the TSS (p=8.42×10-259, Wilcoxon test; Figure 
S2). These observations are consistent with those from previous analyses for isoform ratio QTLs22. Next, 
we compared the identified sGenes to those assessed in whole blood by the GTEx Consortium23 (n=670 
individuals), the largest publicly available blood sQTL dataset. Of the 3,013 sGenes discovered by 
GTEx, 89.0% of the 2,677 we also tested were found as sGenes in our analysis, in addition to 4,470 new 
sGenes (Table S7). These results demonstrate the value of quantifying de novo splicing excision events 
and the substantially larger sample size. 
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Figure 2. Genetic influences on gene expression and splicing. A) Distribution of lead variants at 
cis-eQTLs and cis-sQTLs around the TSS and gene body (normalized to the median gene length of 
24kb). B) Schematic of the trans-QTL mapping analysis approach and summary of the QTL discovery 
results. C) Circos plot of the trans-splicing of 18 sGenes by the cis-eQTL for QKI. Abbreviations: TSS, 
transcription start site; TES, transcription end site. 
 
For a given gene, to test whether corresponding cis-eQTLs and cis-sQTLs were underpinned by the 
same genetic variant, we performed colocalization analyses. This revealed 3,979 genes (of 6,252 tested) 
with colocalized signals (Methods). We found that 49.0% (n=13,490) of tested splicing events had 
sQTLs that colocalized with an eQTL for the same gene (Table S8). However, of the eQTL-colocalizing 
splicing events with multiple independent sQTL signals, 82% had additional sQTL loci that did not 
colocalize with eQTLs. Splicing events with sQTL that did not colocalize with an eQTL were located 
further downstream of the TSS (median 20.33kb downstream) compared to sQTL signals that did 
colocalize (median 12.61kb downstream; p=9.8×10-70, Wilcoxon test; Figure S3). 
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Genetic effects on distal gene expression and splicing. Next, we investigated the distal (trans) 
regulatory effect of genetic variants, defined as >5Mb from the TSS/splicing event. Given the extreme 
multiple-testing burden for genome-wide trans-QTL analyses, we focused on the 53,457 conditionally 
independent lead cis-eSNPs, as these provide a potential mechanism through which a cis-acting variant 
can also affect genes in trans. 
 
We identified 2,058 trans-eGenes significantly associated with cis-eQTLs at the Bonferroni-corrected 
threshold of p<5×10-11 (Figure 2B; Tables S1, S2 and S9). These trans-eQTLs were cis-eQTLs for 2,498 
cis-eGenes, and were in trans associated with a median number of 3 trans-eGenes (range: 1–284). We 
found that some of them were associated with a large number of trans-eGenes, such as PLAG1 (n=284 
genes), HYMAI (n=284) and FUCA2 (n=267). Cis-eGenes with a concurrent trans-association were 
significantly enriched for 32 gene ontology (GO) terms, compared to all cis-eGenes. Most of the terms 
related to transcription regulation and immune response, with “metal ion binding” showing the strongest 
enrichment (p=2.6×10-30; Table S10). To further explore these transcriptional regulation mechanisms, 
we annotated the genes using the Human Transcription Factors database24. We found a significant 
enrichment in sequence-specific transcription factors, representing 14.3% of all cis-eGenes with a trans-
association (357/2,498, p=1.83×10-38; Methods). We investigated protein domain annotations for the 
observed transcription factors and detected a significant enrichment for the C2H2 zinc finger domain 
(p=9.74×10-9 after Bonferroni multiple testing correction), specifically with the Krüppel-associated box 
(KRAB) domain (p=3.04×10-10; Figure S4). For example, the PLAG1 gene, which is an important 
regulator of the human hematopoietic stem cell dormancy and self-renewal25, codes for a protein with a 
C2H2 zinc finger domain. 
 
To uncover genetic expression effects impacting distal downstream transcript splicing, we performed a 
targeted trans-analysis using the same 53,457 conditionally independent lead cis-eSNPs as in the trans-
eQTL analysis. The analysis identified significant trans-associations for 644 splicing events (209 trans-
sGenes) at the Bonferroni-corrected threshold of p<8.36×10-12. This comprised 758 unique trans-sSNPs, 
corresponding to 566 cis-eGenes (Figure 2B; Tables S1 and S11). Of the 644 splicing events regulated 
in trans, 240 (in 91 genes) were not observed to be regulated in cis, increasing the total number of 
splicing events with QTLs. We observed 11 cis-eGenes that were implicated by their cis-eQTLs in the 
regulation of more than 10 sGenes in trans. For example, we observed that the cis-eQTL for the RNA-
binding splice factor QKI associated with 18 sGenes in trans (the most of any eGene; Figure 2C). Across 
all tissues in GTEx, there were only 29 trans-sQTL associations, of which only two were present in 
whole blood, i.e., the trans-splicing of FYB1 via the QKI cis-eQTL, and trans-splicing of ABHD3 for 
which they did not detect an associated cis-effect for the trans-sSNP.23 Here, we replicated both of these 
previous trans-sGene observations. For ABHD3, we demonstrate in addition that this trans-sSNP is also 
a cis-eSNP for the splicing factor TFIP11 and its antisense lncRNA TFIP11-DT, potentially regulating 
the splicing of this gene in trans. Cis-eGenes of trans-sSNPs were significantly enriched for 10 GO 
terms, including “nucleosome assembly” (p=2.78×10-6) and “RNA polymerase II activity (p=1.40×10-5) 
(Table S10). 
 
Assessment of shared genetic etiology across molecular traits. We next compared transcriptional 
QTLs to the other -omic trait QTLs derived from subsets of participants from the INTERVAL study. 
These data include plasma protein QTLs from the Olink Target (“Olink-pQTLs”) and SomaScan panels 
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(“SomaScan-pQTLs”), as well as metabolite QTLs from the Metabolon (“Metabolon-mQTLs”) and 
Nightingale Health (“Nightingale-mQTLs”) platforms. 
 
To determine whether genetic signals at a given locus across -omic layers reflecting shared genetic or 
distinct causal variants, we performed statistical colocalization analyses (Methods). This analysis 
revealed colocalization between either a cis-eQTL or -sQTL and cis-QTL for 120 Olink-measured 
proteins (65.9% of analyzed proteins), 404 SomaScan-measured proteins (63.7%), 224 Nightingale-
measured metabolites (99.1%) and 495 Metabolon-measured metabolites (81.5%) (Figure 3A; Tables 
S12–S15). We found colocalized signals across all assessed post-transcriptional molecular phenotypes 
for 1,229 cis-eGenes and 649 sGenes (1,516 unique genes). For Olink- and SomaScan-measured 
proteins, genetic effect directions were more consistent (p=5.4×10-10, Fisher’s exact test) for colocalizing 
eQTL–pQTL pairs (78.9% with consistent effect directions) than non-colocalizing pairs (59.0%). The 
uncoupling of eQTLs and pQTLs has previously been observed26 and could be due, for example, to post-
transcriptional or post-translational mechanisms. Next, we created a network to explore and visualize 
the interconnectedness among colocalized transcriptional and molecular phenotypes (Figure 3B), 
linking each phenotype by their colocalizations. For example, we found 7 splicing events in the OAS1 
gene with cis-sQTLs that colocalized with both the cis-eQTLs for this gene and the OAS1 pQTLs. 
 
To investigate the potential mechanisms by which genetic variants impact protein levels through 
splicing, we annotated the protein domains affected by splicing events. We observed that nearly half of 
splicing events that colocalized with pQTLs (41.0%, 401 out of 977) excised annotated protein-coding 
sequences. Splicing has been shown to modulate circulating protein levels through changes in secretion 
by the inclusion or exclusion of transmembrane domains.27 This is exemplified by a splicing event that 
removes exon 6 of the FAS gene, a cell surface receptor for the FAS-ligand (FASL) cytokine. The 
resulting protein lacking a transmembrane domain is secreted28 and competitively inhibits FASL 
binding, leading to decreased apoptosis. We identified both cis-eQTLs for FAS and cis-sQTLs for this 
splicing event but these signals were distinct and did not colocalize (max. posterior probability=0.02), 
and cis-sQTLs for excision of the transmembrane domain strongly colocalized with the pQTL (posterior 
probability=1.00). Similarly, the interleukin-6 and interleukin-7 receptors (IL6R and IL7R, respectively) 
have previously been reported to produce secreted isoforms through the excision of transmembrane 
domains.29,30 Here, we show that the pQTLs for IL6R and IL7R colocalized with cis-sQTLs excising 
these transmembrane domain-encoding exons, in the absence of cis-eQTL colocalization (Figure 3B). 
This observation emphasizes the role of transcript splicing as a mechanism independent of total 
transcript abundance through which genetic variation can modify downstream molecular phenotypes. 
Further, we observed a pQTL colocalizing with an sQTL for the excision of a transmembrane domain 
in the encoding mRNA in 69 proteins, with 60.2% of these independent sQTL signals (n=100/166) not 
colocalizing with eQTLs for the same gene (Table S16). For example, this is observed in alpha-1 
antitrypsin encoded by SERPINA1, and apolipoprotein L1 encoded by APOL1. 
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Figure 3. Colocalization analyses of cis-eQTL and cis-sQTL with other molecular phenotypes. A) 
Barplot of the percentage of -omics traits with a colocalized association signal with a cis-eQTL or/and a 
cis-sQTL. B) Network graph of all pairwise colocalization results. Highlighted examples on the right-
hand side include OAS1, IL6R, and WARS1. 
 
To maximize statistical power for colocalization, we extended our analyses to the largest available 
SomaScan- and Olink-pQTL datasets provided by deCODE8 (n=35,559 individuals, n=4,719 proteins) 
and the UK Biobank Pharma Proteomics Project12 (UKB-PPP; n=54,306 individuals, n=2,941 proteins), 
respectively. Focusing on the significant pQTLs overlapping our derived eQTLs and sQTLs, we 
performed colocalization analysis on 1,608 Olink- and 1,410 SomaScan-measured proteins with our 
transcriptional phenotypes. This increased the discovery of pQTL-eQTL/sQTL colocalizations from 120 
to 1,203 Olink-measured proteins, and from 404 to 984 SomaScan-measured proteins. Additionally, we 
observed a substantial overlap of eGenes and splicing events with QTLs colocalizing between our 
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internal and the larger external pQTL cohorts. In UKB-PPP, we replicated 95.1% and 79.3% of eQTLs 
and sQTLs colocalizations respectively, and in deCODE, 87.0% and 80.3% of eQTLs and sQTLs, 
respectively. These results are summarized in Tables S12-14, and are available to explore in our online 
resource. 
 
Mapping causal transcriptional events on downstream molecular phenotypes through mediation 
analysis. To assess causality of the transcriptional phenotypes on downstream molecular phenotypes, 
we performed mediation analyses focusing on colocalizing molecular traits assayed in the INTERVAL 
study (Figure 4A; Methods). The expression of 143 cis-eGenes significantly mediated the effect of 413 
cis-eSNPs on 202 downstream molecular phenotypes, including 101 SomaScan-measured proteins, 54 
Olink-measured proteins, 39 Nightingale-measured metabolites, and 8 Metabolon-measured 
metabolites. In total, this comprised 525 significant eQTL mediation models (variant-gene-molecular 
phenotype triplets) (Figure 4B). Similarly, we observed 106 splicing event phenotypes in 47 sGenes that 
significantly mediated the effect of 152 cis-sSNPs on 50 downstream molecular phenotypes, including 
32 SomaScan-measured proteins, 16 Olink-measured proteins, 1 Nightingale-measured and 1 
Metabolon-measured metabolite. In total, this comprised 241 significant sQTL mediation models 
(Tables S17 and S18; Methods). 
 

 
 
Figure 4. Mediation analyses of molecular phenotypes with transcriptional QTLs. A) Schematic of 
the tested mediation model, for which eQTL and sQTL phenotypes mediate the relationship between 
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genomic variants and levels of molecular phenotypes. B) Total number of detected molecular 
phenotypes mediated by sQTLs and eQTLs. C) Colocalization of sQTLs excising the transmembrane 
domains of the interleukin receptors IL6R and IL17RA, and mediation with plasma protein quantities. D) 
Schematic of the splicing events excising transmembrane domains of the interleukin receptors IL6R and 
IL17RA. 
 
Previous reports have defined the effect of the missense SNP rs2228145 on IL6R ectodomain shedding 
by ADAM10/17 metalloproteinases, as the variant alters one of their cleavage sites.31,32 In line with this 
finding, we observed the previously mentioned IL6R transmembrane splicing event mediating a minority 
of the effect of a SNP tagging this missense variant (rs12126142; r2>0.99; D’>0.99) on Olink-measured 
plasma protein abundance (4.67%, p=1.12×10-4) (Figures 4C and 4D). This suggests a potential dual 
action of the sSNP or tagged variants on removing this domain and, hence, creating a soluble isoform 
by both splicing and proteolytic pathways. Conversely, the colocalized signal (lead cis-sSNP 
rs34495746) between splicing of the transmembrane domain of IL17RA and levels of its plasma protein 
was found to have a majority of the effect mediated by transcript splicing (90.41%, p=1.14×10-43; Figure 
4C). Consistent with this observation, neither the lead SNP nor any strong tagging SNPs (r2>0.8) were 
missense variants. 
 
Deconvoluting mechanisms of GWAS disease loci with transcriptional and molecular phenotypes. 
Molecular QTLs can provide insights into the mechanisms underlying genetic variants that influence 
disease risk.33 We performed colocalization analyses with genetic association signals for 20 disease 
phenotypes from the FinnGen project (release 9)34. We prioritized these 20 phenotypes based on their 
relevance to the circulatory system and available sample size (i.e., ≥1,000 cases; Table S19). 
 
We observed colocalization of disease associated signals with 649 cis-eGenes and 365 cis-sGenes (1,035 
splicing events) across all tested traits (Tables S20 and S21). Many of these independent signals 
(136/981 for cis-eQTLs, 304/1589 for cis-sQTLs) also colocalized with the previously tested pQTLs 
and mQTLs, revealing the regulatory pathways underlying the complex trait-associated variants. For 
example, a cis-sQTL for transmembrane domain splicing of the interleukin-7 receptor (IL7R) 
colocalized with an association locus for dermatitis and eczema, as well as a pQTL for IL7R in UKB-
PPP (Figure 5A). This analysis implicates soluble isoforms of IL7R generated by alternative splicing in 
this condition. The alternative allele of rs6897932 (T) is associated with decreased excision of the IL7R 
transmembrane domain, lower levels of IL7R in plasma and reduced risk of dermatitis and eczema. This 
allele has been previously shown to associate with decreased lymphocyte count35 and decreased risk of 
multiple sclerosis36, suggesting consistent therapeutic implications. 
 
Tryptophanyl-tRNA synthetase 1 (encoded by WARS1) exists in both secreted and intracellular forms37, 
with downstream impacts on vascular permeability38. Here, we found a cis-sQTL for excision of exon 
10 of WARS1 (encoding a portion of the tRNA synthetase protein domain), which colocalized with both 
the WARS1 pQTLs and risk for hypertension in FinnGen (Figure 5A). The alternative allele of rs724391 
(C) is associated with decreased excision of exon 10, higher plasma protein levels of WARS1, and 
increased risk of hypertension. 
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Figure 5. Multi-trait colocalization of cis-eQTLs and cis-sQTLs with molecular phenotypes and 
health outcomes. A) Putative pathways and directions of effect of sQTL signals for IL7R and WARS1 
associated with plasma protein quantity, dermatitis and eczema, and hypertension, respectively. B) 
Gene-level summary of colocalization of cis-eQTL and cis-sQTL with COVID-19 HGI summary statistics. 
C) Example of a multi-trait colocalization for COVID-19 in OAS1, with GWAS summary statistics, cis-
pQTL, -eQTL, and -sQTL. 
 
Transcriptional mechanisms underlying COVID-19 susceptibility and severity. The large majority 
of whole-blood RNA is derived from circulating immune cells. Given the importance of the host immune 
response in COVID-19, we conducted colocalization analyses of the identified eQTLs and sQTLs with 
genetic loci associated with COVID-19 susceptibility and severity available from the pan-biobank 
COVID-19 Host Genetics Initiative39. We found colocalized signals with COVID-19 loci for 67 cis-
eGenes and 42 cis-sGenes (91 splicing events; Tables S22 and S23; Figure 5B), of which 17 overlapped. 
 
Previous analyses have identified genetic variants that impact splicing of OAS1.40,41 These variants have 
subsequently been implicated in influencing COVID-19 severity.41 Consistent with these data, we 
observed colocalization of an eQTL and sQTLs for 7 splicing events at the OAS1 locus with COVID-
19 (Figure 5C). Adjusting for OAS1 gene expression levels did not ablate the sQTL signals (p<1×10-16), 
suggesting the presence of multiple independent transcriptional mechanisms at this locus. In addition, 
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we found colocalization for these eQTLs and sQTLs with the OAS1 pQTL, suggesting that genetic 
variants mediate disease risk through transcriptional changes impacting soluble protein levels. 
 
Further, the GWAS signals for COVID-19 susceptibility and severity at the IFNAR2 locus (encoding 
the interferon alpha/beta receptor 2) colocalized with a cis-eQTL, and cis-sQTLs associated with 10 
splicing events in this gene. This included a splicing event excising exons 8 and 9, encoding the IFNAR2 
transmembrane domain. Rare mutations in exon 9 of this gene leading to loss of function (stop-gain) 
have been previously reported to increase the risk of severe COVID-19 infection.42 While IFNAR2 was 
not measured by the proteomic assays, isoforms of IFNAR2 lacking the transmembrane domain are 
known to generate a soluble protein isoform,43 and significantly higher quantities of soluble IFNAR2 
have been observed in the serum of patients with severe COVID-19.44 However, the role of splicing in 
this gene on disease severity has not been previously reported. Notably, the colocalizing IFNAR2 eQTLs 
are also trans-sQTLs for five splicing events in IFI27, four of which do not have an association in cis. 
Our results provide evidence for a mechanism whereby common variants regulating splicing of IFNAR2 
could be contributing to disease severity through impacts on protein solubility. 
 
 
Discussion 
 
Non-protein-coding genetic variants play an important role in the genetics of complex traits, with 90% 
of common-trait heritability attributed to this class of variants.45 To define the biological mechanisms 
through which these variants act, additional molecular data and integrative analyses are required. 
Genome-wide, multi-layered molecular QTL data can help elucidate the functional impact of trait-
associated variants and their regulatory networks that underpin complex disease biology. To this end, 
we discovered eQTLs for 17,233 genes and sQTLs for 29,514 splicing phenotypes in 6,853 genes in 
peripheral blood through RNA-sequencing of 4,732 individuals. Then, we combined these data with 
mQTL and pQTL data in the same participants of the INTERVAL study to map the genetic basis for 
disease phenotypes. All generated data are accessible to the scientific community via the INTERVAL 
QTL portal (https://IntervalRNA.org.uk) and the cognate OmicsPred portal46 
(https://www.omicspred.org/). 
 
In comparison to eQTLs, the genetic determinants of splicing have been less thoroughly explored; in 
particular, how they impact on downstream molecular phenotypes and disease risk. Our data support 
previous findings that splicing QTLs are major contributors to complex traits.47 Through mapping 
sQTLs alongside eQTLs, we identified additional independent mechanisms by which genetic variants 
can influence mRNA and protein levels. For example, 98 splicing events that colocalized with pQTLs 
(such as IL6R and IL7R) excised protein-coding sequences encoding transmembrane domains. Many of 
these pQTLs did not colocalize with eQTLs, suggesting that the sQTLs provide the pivotal mechanistic 
insight, given that genetic effects on splicing are more highly shared between tissues than genetic effects 
on expression23. Furthermore, by identifying and utilizing de novo excision events from the RNA-seq 
data, we increased the resolution beyond established transcript annotations. 
 
Using the multi-omic data in the INTERVAL study, we systematically performed mediation analyses to 
evaluate causality in the context of colocalized genetic association signals with molecular traits. In total, 
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we observed 222 molecular phenotypes significantly mediated by gene expression or splicing, providing 
an additional layer of evidence to delineate functional mechanisms. For instance, we found that an sQTL 
excising the extracellular domain of CD33 mediated the majority of the effect of the sSNP on CD33 
soluble protein levels. Mediation analyses are important to define the mode-of-action of the genetic 
effects underlying association loci identified in GWAS, as well as the magnitude and direction of their 
relative effects on downstream phenotypes. 
 
Our study has limitations. First, statistical power was limited to map genome-wide eQTLs and sQTLs 
in trans. As trans-QTLs are challenging to replicate and distinguish from cell type heterogeneity in bulk 
RNA-seq studies,9 we prioritized the identified conditionally independent lead eSNPs for our trans-QTL 
analyses to prioritize the mechanism of upregulated gene expression modifying the expression and 
splicing of downstream genes. Large-scale meta-analyses of trans-QTL datasets will be required to 
create a resource of replicated associations, such as that being prepared by the eQTLGen Consortium 
(https://www.eqtlgen.org/). Second, our analyses comprised proteins quantified in plasma, rather than 
intracellular proteins. Thus, the interpretation of the effects of gene expression and splicing QTLs on 
proteins may be due to impacts on both quantity and solubility, and other regulatory mechanisms may 
not be captured. Third, the intrinsic properties of the different molecular data types can create challenges 
in interpretation. For example, there is considerable correlation structure between metabolite levels.48 
As such, we found that the majority of mQTLs (96%) colocalized with either a cis-eQTL or cis-sQTL. 
Conversely, mQTLs showed mediation by cis-eQTL or cis-sQTLs less frequently than pQTLs (i.e., 
6.8% vs 32.6% for mQTLs and pQTLs, respectively). Lastly, our cohort comprised individuals of 
European ancestry. More work is needed to establish the translatability of our findings to other 
ancestries. 
 
Previous studies showed that local regulation of gene expression is largely shared across tissues,49 and 
that larger, well-powered eQTL studies in a surrogate tissue may identify more trait-colocalizing eQTLs 
than smaller studies in the target tissue.50 Hence, these results provide a scientific rationale for the 
generation of increasingly large-scale QTL data in easily accessible tissues, such as peripheral blood. In 
our study, we further demonstrate the value of such a dataset when integrating data from multiple 
molecular phenotypes in the same individuals and linking these to external health outcomes to help 
address the variant-to-function challenge (e.g., through statistical colocalization and mediation 
analyses). Similar application to population biobanks is warranted and with the emerging availability of 
concomitant molecular data at the single-cell level across a wide range of tissues, single-cell-QTL 
mapping at population scale will become feasible. Such data will enable us to dissect gene regulatory 
networks at much greater resolution across specific cell types and dynamic processes.51,52 Our genetic 
discoveries are publicly available in an open-access and interactive resource at 
https://IntervalRNA.org.uk. 
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Materials and Methods 
 
Study participants. The INTERVAL study is a prospective cohort study of approximately 50,000 
participants nested within a randomized trial of varying blood donation intervals.15,16 Between 2012 and 
2014, blood donors aged 18 years and older were recruited at 25 centers of England’s National Health 
Service Blood and Transplant (NHSBT). All participants gave informed consent before joining the study 
and the National Research Ethics Service approved this study (11/EE/0538). Participants were generally 
in good health as blood donation criteria exclude individuals with a history of major diseases (e.g. 
myocardial infarction, stroke, cancer, HIV, and hepatitis B or C) and who have had a recent illness or 
infection. Participants completed an online questionnaire comprising questions on demographic 
characteristics (e.g. age, sex, ethnicity), lifestyle (e.g. alcohol and tobacco consumption), self-reported 
height and weight, diet and use of medications. 
 
Blood collection. Blood samples were collected from all INTERVAL participants at baseline and also 
from ~60% of participants approximately 24 months after baseline. For a subset of ~5,000 participants 
at the 24-month time point, an aliquot of 3 ml of whole blood was collected in Tempus Blood RNA 
Tubes (ThermoFisher Scientific), following the manufacturer’s instructions, and then transferred at 
ambient temperature to the UK Biocentre (Stockport, UK). Samples were stored at -80°C until use. 
 
RNA extraction. RNA extraction was performed by QIAGEN Genomic Services using QIAGEN’s 
proprietary silica technology. The quality control of the extracted RNA was performed by 
spectrophotometric measurement on an Infinite 200 Microplate Reader (Tecan). RNA Integrity Number 
(RIN) values were determined using a TapeStation 4200 system (Agilent), following the manufacturer’s 
protocol. Samples with a concentration <20 ng/μl and a RIN value <4 were excluded from further 
analyses. 
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Automated RNA-seq library preparation. Samples were quantified with a QuantiFluor RNA System 
(Promega) using a Mosquito LV liquid handling platform (SPT Labtech), Bravo automation system 
(Agilent) and FLUOstar Omega plate reader (BMG Labtech), and then cherry-picked to 200 ng in 50 μl 
(= 4 ng/μl) using a liquid handling platform (Tecan Freedom EVO). Next, mRNA was isolated using a 
NEBNext Poly(A) mRNA Magnetic Isolation Module (NEB) and then re-suspended in nuclease-free 
water. Globin depletion was performed using a KAPA RiboErase Globin Kit (Roche). RNA library 
preparation was done using a NEBNext Ultra II DNA Library Prep Kit for Illumina (NEB) on a Bravo 
NGS workstation automation system (Agilent). PCR was performed using a KapaHiFi HotStart 
ReadyMix (Roche) and unique dual-indexed tag barcodes on a Bravo NGS workstation automation 
system (Agilent). We applied the following PCR programme: 45 sec at 98°C, 14 cycles of 15 sec at 
98°C, 30 sec at 65°C and 30 sec at 72°C, followed by 60 sec at 72°C. Using a Zephyr liquid handling 
platform (PerkinElmer), PCR products were purified using AMPure XP SPRI beads (Agencourt) at a 
0.8:1 bead:sample ratio and then eluted in 20 μl of Elution Buffer (QIAGEN). RNA-seq libraries were 
quantified with an AccuClear Ultra High Sensitivity dsDNA Quantitation Kit (Biotium) using a 
Mosquito LV liquid handling platform (SPT Labtech), Bravo automation system (Agilent) and 
FLUOstar Omega plate reader (BMG Labtech). Then, libraries were pooled up to 95-plex in equimolar 
amounts on a Biomek NX-8 liquid handling platform (Beckman Coulter), quantified using a High 
Sensitivity DNA Kit on a 2100 Bioanalyzer (Agilent), and then normalized to 2.8 nM prior to 
sequencing. 
 
RNA sequencing and data pre-processing. Samples were sequenced using 75 bp paired-end 
sequencing reads (reverse stranded) on a NovaSeq 6000 system (S4 flow cell, Xp workflow; Illumina). 
The sequencing data were de-plexed into separate CRAM files for each library in a lane. Adapters that 
had been hard-clipped prior to alignment were reinserted as soft-clipped post alignment, and duplicated 
fragments were marked in the CRAM files. The data pre-processing, including sequence QC, and STAR 
and alignments was performed with the Nextflow pipeline publicly available at https://github.com/wtsi-
hgi/nextflow-pipelines/blob/rna_seq_interval_5591/pipelines/rna_seq.nf, including the specific aligner 
parameters. We assessed the sequence data quality using FastQC v0.11.8. Samples mismatched between 
RNA-seq and genotyping data within the cohort were identified using QTLtools MBV v1.253. Reads 
were aligned to the GRCh38 human reference genome (Ensembl GTF annotation v99) using STAR 
v2.7.3a54. The STAR index was built against GRCh38 Ensembl GTF v99 using the option -
sjdbOverhang 75. STAR was run in a two-pass setup with standard ENCODE options to increase 
mapping accuracy: (i) a first alignment step of all samples was used to discover novel splice junctions; 
(ii) splice junctions of all samples from the first step were collected and merged into a single list; (iii) a 
second step realigned all samples using the merged splice junctions list as input. We used featureCounts 
v2.0.055 to obtain a count matrix. 
 
Gene expression quantification. The raw gene-level count data contained N=60,676 genes across 
N=4,778 individuals with 2.03–95.55 million uniquely mapped reads (median: ~24 million). Sequencing 
was performed across 15 batches.  
 
Quality control of gene expression data. We filtered samples of poor quality by removing samples 
with a read depth below 10 million uniquely mapped reads. A relatedness matrix was obtained using the 
PLINK v1.956 -make-rel ‘square’ command on pruned genotype data, and a cut-off threshold of 0.1 was 
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used to define related individuals. For each pair of related individuals, one individual was arbitrarily 
removed. After quality control, a total of N=46 samples were removed. After the sample QC, we filtered 
lowly expressed genes by retaining genes with >0.5 counts per million (CPM) in ≥1% of the samples, 
in line with the filter applied by the eQTLGen consortium9. In our dataset, a CPM value of 0.5 roughly 
equates to having 5 counts in a sample with the lowest read depth (10 million uniquely mapped reads) 
or 47 counts in a sample with the highest read depth (94 million reads). We further excluded globin 
genes, rRNA genes, and pseudogenes. After quality control, the final gene expression dataset included 
19,173 autosomal genes (13,874 of which are protein-coding) across a total of 4,732 individuals. 
 
Normalization of gene expression data. Prior to the eQTL analysis, the count data was normalized 
using trimmed mean of M-values (TMM)57 implemented in the R package edgeR v3.24.3. The TMM-
normalized values were further converted into fragments per kilobase of transcript per million mapped 
reads (FPKM) values (log2-transformed) to take gene length into account. Next, for each gene, the 
normalized log2-FPKM values across samples were transformed via the ranked-based inverse normal 
transformation function "rntransform" implemented in the R package GenABEL v1.8-058. Inverse 
normal transformation was applied to ensure the expression values followed a normal distribution. 
 
Splicing data generation. Splice junctions were extracted from aligned RNA-seq bams for the 4,732 
individuals using regtools v0.5.259 junctions extract (parameters: “-s 1 -m 50”). Introns represented by 
extracted splice junctions were then clustered into groups based on overlapping start or end sites, with 
the Leafcutter pipeline v0.2.960 (leafcutter_cluster_regtools.py, parameters: “-m 100 -M 50 -l 100000 -
p 0.01”). Clustered introns were then prepared for sQTL analysis with Leafcutter 
prepare_phenotype_table.py to convert intron counts to normalized ratios and compute 10 splicing PCs. 
Introns were matched to regions of Ensembl v99 genes and protein domains annotated using a custom 
pipeline (described in Data Availability). Total observed introns (n=956,722) were filtered to those that 
were autosomal, overlapping an expressed gene body, with CPM>0.5 in at least 24 individuals, and 
sufficient variance (minimum 2 filtered splice event phenotypes per cluster), resulting in 111,937 filtered 
splicing event phenotypes, in 11,016 genes (see Figure S5 for a summary of splicing event QC). 
 
DNA extraction, genotyping and imputation. In brief, DNA extracted from buffy coat samples 
collected from INTERVAL participants at the study baseline was used to assay approximately 830,000 
variants on the Affymetrix Axiom UK Biobank genotyping array.61 Genotyping and sample QC were 
performed as previously described.61 Prior to imputation, additional variant filtering steps were 
performed to establish a high-quality imputation scaffold including 654,966 autosomal, non-
monomorphic, bi-allelic variants with Hardy-Weinberg Equilibrium (HWE) p>5×10-6, with a call rate 
of >99% across the INTERVAL genotyping batches in which a variant passed QC, and a global call rate 
of >75% across all INTERVAL genotyping batches. Next, variants were phased using SHAPEIT3 and 
imputed using a combined 1000 Genomes Phase 3-UK10K reference panel. Imputation was performed 
via the Sanger Imputation Server (https://imputation.sanger.ac.uk) and resulted in 87,696,888 imputed 
variants. For the present analysis, imputed genotypes were lifted over to reference build GRCh38 using 
CrossMap v0.3.462 and the Ensembl chain file provided with the package. Imputed genotypes were hard-
called with PLINK v2.00a2-32-bit56 using the default parameters. Prior to analysis, the dataset was 
restricted to individuals with RNA-seq, and filtered to remove genetic variants with HWE exact test 
p<1×10-6, genotype missingness >0.05, or MAF <0.5%. 
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Identification of sample swaps and cross-contamination. The Match Bam to VCF (MBV) method 
from QTLTools53 was used to identify sample mix-ups and cross-contamination. MBV directly 
compares each aligned RNA-seq BAM file to all the genotypes in the VCF file and computes the 
proportion of concordant heterozygous and homozygous sites. To reduce computation time, we only 
focused on chromosome 1. Based on the concordance (close to 100%) between the genotype data and 
RNA-seq samples, we identified and corrected for 10 pairs of mislabeled samples. We removed 7 RNA-
seq samples that did not show a clear high concordance (highest was <50%) with any particular genotype 
sample – either due to cross-contamination or the actual matching genotypes were not available. In 
addition, principal component (PC) analysis was performed to determine whether the 10 pairs of samples 
were mislabeled in the technical covariate file. We linked PC3 with RIN values to confirm that RIN and 
other related technical covariates were recorded after the swap occurred. Hence, we corrected the sample 
IDs for the 10 pairs of mislabeled samples in both the count data and technical covariate file. We linked 
PC4 with sex information to confirm that sex and other biological covariates we recorded before the 
swap and did not require correction for mislabeling. 
 
PEER factor analysis. We used the probabilistic estimation of expression residuals (PEER) method63, 
implemented in the R package peer v.1.0 (downloaded from https://github.com/PMBio/peer), to detect 
and correct eQTL mapping for latent batch effects and other unknown confounders. PEER factors were 
estimated while accounting for age, sex, BMI, and 19 blood cell traits (Table S24) as known 
confounders. PEER was run for 50 factors, converging at 148 iterations. For inclusion in the eQTL 
analysis, we selected the number of PEER factors based on two criteria: (i) discovery of the largest 
number of cis-eGenes and (ii) additional gain in cis-eGenes with incremental increase in PEER factors 
(Figure S6). We found that the relationship between the increase in number of discovered cis-eGenes 
and incremental increase in PEER factors is similar to that observed in the GTEx whole-blood dataset23. 
Therefore, we included 35 PEER factors in our eQTL analysis, consistent with GTEx. 
 
Mapping of eQTLs and sQTLs. Expression QTLs and splicing QTLs were called using tensorQTL 
v1.0.664. The covariates integrated in the regression model are listed and described in Table S24 and 
S25. In brief, these included (1) demographic variables such as age at blood sampling, sex, and BMI at 
baseline (since it was not collected at time of blood sampling), (2) technical variables such as RIN, read 
depth, and season of blood sampling, (3) 10 genotype PCs and 35 PEER factors (for eQTLs) or 10 
splicing PCs (for sQTLs) and (4) 19 different blood cell traits. For the cis-eQTL analysis, variants were 
defined as being in cis with a gene if they were located within a window of ±1Mb from the TSS. For the 
sQTL analysis, the window was set to ±500kb from the center of the splicing event to balance primary 
and secondary sQTL discovery. Feature annotation, including TSS position, was obtained from Ensembl 
v99 (January 2020). For both cis-eQTL and cis-sQTL analyses, multiple testing correction was applied 
in tensorQTL as follows: (1) for each gene (or splicing event), the adjusted lowest p-value was estimated 
using a beta distribution approximation from a permutation procedure (10,000 permutations)65; (2) 
Benjamini-Hochberg FDR correction was applied to the beta-approximated p-values across genes (or 
splicing events) and the FDR q-value threshold was set to 5%. For each significant gene (or splicing 
event), a nominal p-value threshold was estimated to identify significant SNPs. Conditional analysis 
was performed for each cis-eGene (or splicing event phenotype with a cis-sQTL) using GCTA-COJO 
v1.94.0beta (January 2022)66,67. The program took as input the gene cis-eQTL (or cis-sQTL) summary 
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statistics, the INTERVAL imputed genotype data for cis-variants and the p-value threshold used to 
identify the cis-eGene (or splicing QTL). A trans-eQTL analysis was performed on the list of lead SNPs 
from cis-eGenes independent signals. The trans-regions were defined as genomic regions outside of the 
±5Mb window from the TSS. The Bonferroni multiple-testing correction method (i.e., p=0.05/number 
of tested trans-associations) was applied to identify significant trans-associations. 
 
Validation of cis-eQTL and cis-sQTL results. Results from the cis-eQTL analysis were compared to 
the results obtained in the eQTLGen study9, which are available at https://www.eqtlgen.org/cis-
eqtls.html. In our comparison, we explored the percentage of overlap of cis-eGenes and the effect 
direction of genetic associations. For the overlap of cis-eGenes, we focused on the list of 15,722 genes 
that were tested in both INTERVAL and eQTLGen. For the comparison of effect directions, we 
computed the correlation of Z-scores for SNPs that were the most significant in INTERVAL for each 
gene and that were also tested in eQTLGen. Results from sQTL analysis were compared in the same 
way to sGenes discovered in GTEx whole blood sQTLs (version 8)23, which are available at 
https://gtexportal.org/home/datasets. 
 
Enrichment analyses. Enrichment analyses were performed using a one-sided Fisher’s exact test, on 
QTL results annotated with GO terms68 (downloaded in May 2022) and the Human Transcription 
Factors database24. We tested for enrichment within cis-eGenes with a trans-association with gene 
expression or splicing using significant cis-eGenes as background. 
 
Colocalization analysis. Colocalization analysis was performed using the results of conditional analysis 
from GCTA-COJO66,67 and the R package coloc v5.1.0.169 on pairwise independent QTL signals 
following the pwCoCo methodology70. The colocalization analysis window was the entire cis-window, 
i.e., ±1Mb for eQTLs and ±500kb for sQTLs. Prior probabilities were kept as the default values, i.e., 
p1=1×10-4, p2=1×10-4, p12=1×10-5. Colocalized results were defined with the thresholds PP3+PP4>=0.9 
and PP4/PP3>=3, PP3 and PP4 being the posterior probabilities of hypotheses 3 and 4 as outlined 
previously69. For colocalization analysis with external omics data, summary statistics were downloaded 
from each study (Table S26 for the description of the different -omics studies). A previous study 
performed simulations showing that the impact of complete sample overlap on colocalization results 
was negligible with large sample sizes.71 Prior to colocalization analysis, (1) proteins were annotated 
using the R package biomaRt v2.46.3 to obtain corresponding genes in Ensembl v99 (January 2020); 
(2) significant pQTLs and mQTL were filtered. For pQTLs, p-value thresholds per feature were defined 
by a two-step multiple testing correction72,73. For mQTLs, we used a Bonferroni-adjusted p-value 
threshold of p<5×10-8, corrected for the number of metabolites analyzed. 
 
Mediation analysis. Mediation analyses were conducted using the natural effects model implemented 
in the R package medflex v0.6-774. In the models, we defined (1) the independent lead eQTL (or sQTL) 
SNP (coded as 0, 1 and 2) as the independent (exposure) variable, (2) the gene expression level (or 
splicing event phenotype) as the mediator and (3) the molecular trait as the dependent (outcome) 
variable. Gene expression (or splicing event phenotype) residuals were computed after adjusting for the 
same covariates as we used for eQTL/sQTL mapping, while molecular traits were adjusted for covariates 
described by each study (Table S26). For all mediation analyses, samples with missing genotype or 
molecular data were removed. Standard errors were computed based on the robust sandwich estimator. 
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Significant direct, indirect and total effects were identified after Bonferroni multiple-testing correction 
between each molecular phenotype assay. 
 
Interactive QTL web-portal. To facilitate accessibility of the results, a web-portal was built to enable 
exploration of eQTL and sQTLs. Summary statistics and expression phenotypes were imported into a 
MariaDB v10.2.38 database, and code written to facilitate their retrieval in PHP v7.2.34 with jquery 
v3.5.1, and styled with Bootstrap v3.4.1. Tables are powered by DataTables v1.13.3, locus plots are 
visualized with LocusZoomJS v0.13.4, and QTL plots with plotly v2.9.0. 
 
 
Data Availability 
 
The INTERVAL study data used in this paper are available to bona fide researchers from ceu-
dataaccess@medschl.cam.ac.uk. The data access policy for the data is available at 
http://www.donorhealth-btru.nihr.ac.uk/project/bioresource. The newly generated RNA-sequencing 
data (n=4,732 INTERVAL participants) have been deposited at the European Genome-phenome 
Archive (EGA) under the accession number EGAD00001008015. The results from the genetic 
association, colocalization and mediation analyses are available at https://IntervalRNA.org.uk. All 
original code has been deposited at GitHub at https://github.com/INTERVAL-RNAseq/manuscript-
scripts. 
 
 
Supplementary Tables 
 
Table S1: Summary of eQTL and sQTL results. 
 
Table S2. List of genes for cis- and trans-eQTL analyses. Each of 19,173 genes was annotated 
whether it was tested and a significant association was found from the cis- and/or trans-eQTL mapping 
analysis. Cis-eQTL significance information was also retrieved for the eQTLGen study. Headers are: 
feature_id: gene ID from Ensembl v99; gene_name: gene name (Ensembl v99); gene_biotype: gene 
biotype (Ensembl v99); cis_eQTL_tested: indicates if the gene has been tested in cis-eQTL analysis (1 
if tested, 0 otherwise); cis_eQTL_significant: indicates if the gene is a significant cis-eGene (1 if 
significant, 0 otherwise); cis_eQTL_significant_with_trans: indicates if the cis-eGene has eSNPs or 
lead independent SNPs in trans-association with another gene; trans_eQTL_tested: indicates if the gene 
has been tested in trans-eQTL analysis (1 if tested, 0 otherwise); trans_eQTL_significant: indicates if 
the gene is a significant trans-eGene (1 if significant, 0 otherwise); cis_eQTL_tested_in_eQTLGen: 
indicates if the gene has been tested in the cis-eQTL mapping analysis from eQTLGen study (1 if tested, 
0 otherwise); cis_eQTL_significant_in_eQTLGen: indicates if the gene is a significant cis-eGene in the 
eQTLGen study (1 if significant, 0 otherwise). 
 
Table S3. Independent signals per cis-eGene after conditional analysis. This table contains 
information for the total of cis-eQTL 56,959 independent association signals. Headers are: 
phenotype_id: gene ID (Ensembl v99); gene_name: gene name (Ensembl v99); variant_id: variant ID 
(rsid or chr_pos_A1_A2); chr: chromosome; pos_b38: genomic position of the variant for the GRCh38 
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assembly; tss_distance: genomic distance between the variant and the TSS in bp for the GRCh38 
assembly; variant_id_b37: variant ID for the GRCh37 assembly; pos_b37: genomic position of the 
variant for the GRCh37 assembly; effect_allele: effect allele; other_allele: other allele; af: allele 
frequency of the effect allele; slope: effect size of the effect allele; slope_se: standard error for the effect 
size; pval_nominal: nominal p-value; bJ: effect size from a joint analysis of all the selected SNPs from 
GCTA-cojo; bJ_se: standard error of the effect size from the joint analysis; pJ: p-value from the joint 
analysis; LD_r: LD correlation between the SNP i and SNP i + 1 for the SNPs on the list; rank: rank of 
the independent association signal. 
 
Table S4. Summary of the comparison of cis-eQTL results with eQTLGen study. 
 
Table S5. List of splicing events with a cis-sQTL. This table contains annotation for each of the 29,514 
splicing events with a cis-sQTL. Headers are: phenotype_id: splicing ID 
(chr:start:end:cluster_id_strand); splice_clu: splicing cluster ID; range: genomic range of the excised 
intron; qval: FDR-adjusted nominal p-value; variant_rsid: lead variant ID; af: allele frequency of the 
effect allele of the lead variant; z_score: Z-score of the lead variant; gene_name: gene name(s) (Ensembl 
v99), “(OS)” after the gene name indicates that the splicing event is mapped on the opposite strand of 
the gene; gene_id: gene ID(s) (Ensembl v99), “(OS)” after the gene ID indicates that the splicing event 
is mapped on the opposite strand of the gene; gene_biotype: gene biotype from Ensembl v99; os: True 
if on opposite strand to annotated gene; ov_cds: spliced range overlaps a CDS region (Gencode 33); 
ov_exon: spliced range overlaps a known exon (Gencode 33); unipLocTransMemb: Spliced range 
overlaps a transmembrane domain (Uniprot); unipLocCytopl: spliced range overlaps a cytoplasmic 
domain (Uniprot); unipLocExtra: spliced range overlaps an extracellular domain (Uniprot); 
unipLocSignal: spliced range overlaps a signal peptide domain (Uniprot); unipDomain: spliced range 
overlaps any annotated protein domain (Uniprot); pfamDomain: spliced range overlaps any annotated 
protein domain (Pfam); P5_exon: spliced range matches known 5’ exon boundary (Gencode 33); 
P3_exon: spliced range matches known 3’ exon boundary (Gencode 33); P5_p3: spliced range matches 
known 5’ AND 3’ exon boundaries (Gencode 33); P5_or_p3: spliced range matches known 5’ OR 3’ 
exon boundary (Gencode 33). 
 
Table S6. Independent signals per cis-sQTL after conditional analysis. This table contains 
information for the total of cis-sQTL 47,050 independent association signals. Headers are: 
phenotype_id: splicing event ID (chr:start:end:cluster_id_strand); gene_id: gene ID(s) (Ensembl v99); 
gene_name: gene name(s) (Ensembl v99); variant_id: variant ID (rsid or chr_pos_A1_A2); chr: 
chromosome; pos_b38: genomic position of the variant for the GRCh38 assembly; tss_distance: 
genomic distance between the variant and the TSS in bp for the GRCh38 assembly; variant_id_b37: 
variant ID for the GRCh37 assembly; pos_b37: genomic position of the variant for the GRCh37 
assembly; effect_allele: effect allele; other_allele: other allele; af: allele frequency of the effect allele; 
slope: effect size of the effect allele; slope_se: standard error for the effect size; pval_nominal: nominal 
p-value; bJ: effect size from a joint analysis of all the selected SNPs from GCTA-cojo; bJ_se: standard 
error of the effect size from the joint analysis; pJ: p-value from the joint analysis; LD_r: LD correlation 
between the SNP i and SNP i + 1 for the SNPs on the list; rank: rank of the independent association 
signal. 
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Table S7. Cis- and trans-sGene overlap with GTEx (whole blood). The results from the cis- and 
trans-sQTL analyses for a total of 6,881 genes were compared to the results from the GTEx v8 in whole 
blood tissue. Headers are: sGene: gene ID (Ensembl v99); INTERVAL_cis-sQTL: TRUE if the gene 
has a cis-sQTL, FALSE otherwise; INTERVAL_trans-sQTL: TRUE if the gene has a trans-sQTL; 
GTEX_cis-sQTL: TRUE if a cis-sQTL is also found in GTEx for the gene; GTEX_trans-sQTL: TRUE 
if a trans-sQTL is also found in GTEx for the gene. 
 
Table S8. Colocalization results between cis-eQTL and cis-sQTL. Colocalized results (PP3+PP4>09 
and PP4/PP3>3) from the colocalization analysis to identify the presence of a shared causal variant 
between cis-eQTL and cis-sQTL. Headers are: chromosome: chromosome; splice: splicing event ID 
(chr:start:end:cluster_id_strand) for the cis-sQTL; gene: gene ID (Ensembl v99) for the cis-eQTL; 
gene_symbol: gene name (Ensembl v99); SNP_splice_rank: rank of the lead SNP after conditional 
analysis for the cis-sQTL (0 means that no conditional analysis was performed); SNP_splice: variant ID 
of the lead SNP after conditional analysis for the cis-sQTL (“unconditioned” means no conditional 
analysis was performed); SNP_gene_rank: rank of the lead SNP after conditional analysis for the cis-
eQTL (0 means that no conditional analysis was performed); SNP_gene: variant id of the lead SNP after 
conditional analysis for the cis-eQTL (“unconditioned” means no conditional analysis was performed); 
H0,H1,H2,H3,H4 are posterior probabilities of the hypotheses 0, 1, 2, 3 and 4. 
 
Table S9. Trans-eQTLs results. This table contains all significant 8,834 SNP-gene associations for the 
trans-eQTL analysis. Headers are: phenotype_id: gene ID (Ensembl v99); gene_name: gene name 
(Ensembl v99); chrpheno: chromosome location of the gene; variant_id: variant ID; chrgeno: 
chromosome location of the variant; pos_b38: genomic position of the variant in GRCh38; pos_b37: 
genomic position of the variant in GRCh37; effect_allele: effect allele; other_allele: other allele; af: 
allele frequency of the effect allele; chrpheno: chromosome location of the gene; gene_name: gene name 
from Ensembl; b: effect size of the effect allele; b_se: standard error for the effect size estimate; pval: 
p-value. 
 
Table S10. Enriched GO terms in e/sQTL results. From the enrichment analysis, 32 GO terms were 
found enriched for cis-eGenes with a trans-association with a distant gene expression, and 10 GO terms 
were found enriched for a trans-association with a distant splicing event. Headers are: Gene set: 
description of the gene set for enrichment; Gene background: description of the gene list background 
for enrichment; GO term ID: GO term ID; GO term name: GO term name; category: category of the GO 
term (biological process, molecular function or cell component); p-value: p-value of the Fisher exact 
test; FDR p-value: p-value after FDR multiple testing correction. 
 
Table S11. Trans-sQTLs results. This table contains all significant 4,093 SNP-splicing event 
associations for the trans-sQTL analysis. Headers are: phenotype_id: splicing event ID 
(chr:start:end:cluster_id_strand); gene_id: gene ID (Ensembl v99); gene_name: gene name (Ensembl 
v99); chrpheno: chromosome location of the gene; variant_id: variant ID; chrgeno: chromosome 
location of the variant; pos_b38: genomic position of the variant in GRCh38; pos_b37: genomic position 
of the variant in GRCh37; effect_allele: effect allele; other_allele: other allele; af: allele frequency of 
the effect allele; chrpheno: chromosome location of the gene; gene_name: gene name from Ensembl; b: 
effect size of the effect allele; b_se: standard error for the effect size estimate; pval: p-value. 
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Table S12. Summary of colocalization results between cis-eQTL or -sQTL with molecular traits. 
 
Table S13. Colocalized results between cis-eGenes and molecular traits. This table contains all the 
colocalized results (PP3+PP4>09 and PP4/PP3>3) from colocalization analyses between gene 
expression and proteomic and metabolomic molecular traits from INTERVAL cohort and external 
studies. Headers are: Study: name of the study cohort(s) from which the molecular trait QTL summary 
statistics were obtained; Technology: short description of the technology or platform being used to 
measure the molecular trait; chromosome: chromosome location of the cis-eQTL; gene: gene Ensembl 
ID; gene_symbol: gene name from Ensembl; phen: molecular phenotype ID (see Table S15 for more 
information); SNP_gene_rank: rank of the lead SNP after conditional analysis for the cis-eQTL (0 means 
that no conditional analysis was performed); SNP_gene: variant id of the lead SNP after conditional 
analysis for the cis-eQTL (“unconditioned” means no conditional analysis was performed); 
SNP_phen_rank: rank of the lead SNP after conditional analysis for the molecular trait (0 means that no 
conditional analysis was performed); SNP_phen: variant ID of the lead SNP after conditional analysis 
for the molecular trait (“unconditioned” means no conditional analysis was performed); H0, H1, H2, H3 
and H4 are posterior probabilities of the hypotheses 0, 1, 2, 3 and 4. 
 
Table S14. Colocalized results between cis-sQTLs and molecular traits. This table contains all the 
colocalized results (PP3+PP4>09 and PP4/PP3>3) from colocalization analyses between splice intron 
usage and proteomic and metabolomic molecular traits from INTERVAL cohort and external studies. 
Headers are: Study: name of the study cohort(s) from which the molecular trait QTL summary statistics 
were obtained; Technology: short description of the technology or platform being used to measure the 
molecular trait; chromosome: chromosome location of the cis-sQTL; splice: splicing event ID; gene: 
mapped gene Ensembl IDs; gene_symbol: mapped gene names; phen: molecular phenotype ID (see 
Table S15 for more information); SNP_splice_rank: rank of the lead SNP after conditional analysis for 
the cis-sQTL (0 means that no conditional analysis was performed); SNP_splice: variant ID of the lead 
SNP after conditional analysis for the cis-sQTL (“unconditioned” means no conditional analysis was 
performed); SNP_phen_rank: rank of the lead SNP after conditional analysis for the molecular trait (0 
means that no conditional analysis was performed); SNP_phen: variant ID of the lead SNP after 
conditional analysis for the molecular trait (“unconditioned” means no conditional analysis was 
performed); H0, H1, H2, H3 and H4 are posterior probabilities of the hypotheses 0, 1, 2, 3 and 4. 
 
Table S15. Summary of colocalized results for cis-eGenes and cis-sGenes. This table contains the 
summarised colocalization result for all cis-e/sGenes and molecular traits being analysed. Headers are : 
Study: name of the study cohort(s) from which the molecular trait QTL summary statistics were 
obtained; Technology: short description of the technology or platform being used to measure the 
molecular trait; chromosome: chromosome location of the cis-e/sQTL; gene: gene Ensembl ID; 
gene_symbol: gene name; phen_id: molecular phenotype ID; phen_desc: description of the molecular 
phenotype; colocalized_eQTL: TRUE if there is a colocalized signal (PP3+PP4>09 and PP4/PP3>3) 
with a cis-eQTL, FALSE otherwise; colocalized_sQTL: TRUE if there is a colocalized signal 
(PP3+PP4>09 and PP4/PP3>3) with a cis-sQTL, FALSE otherwise; RI: retention time/index 
information for Metabolon-measured traits; MASS: mass (g/mol) information for Metabolon-measured 
traits. 
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Table S16. pQTL colocalizing with a cis-sQTL for the excision of a transmembrane domain in the 
encoding mRNA. Colocalization results (PP3+PP4>09 and PP4/PP3>3) between proteins and splicing 
events excising a transmembrane domain in the encoding mRNA. Headers are: Study: name of the study 
cohort(s) from which the molecular trait QTL summary statistics were obtained; Technology: short 
description of the technology or platform being used to measure the molecular trait; chromosome: 
chromosome location of the cis-sQTL; splice: splicing event ID; gene: mapped gene Ensembl IDs; 
gene_symbol: mapped gene names; phen: molecular phenotype ID (see Table S15 for more 
information); SNP_splice_rank: rank of the lead SNP after conditional analysis for the cis-sQTL (0 
means that no conditional analysis was performed); SNP_splice: variant ID of the lead SNP after 
conditional analysis for the cis-sQTL (“unconditioned” means no conditional analysis was performed); 
SNP_phen_rank: rank of the lead SNP after conditional analysis for the molecular trait (0 means that no 
conditional analysis was performed); SNP_phen: variant ID of the lead SNP after conditional analysis 
for the molecular trait (“unconditioned” means no conditional analysis was performed); H0, H1, H2, H3 
and H4 are posterior probabilities of the hypotheses 0, 1, 2, 3 and 4. 
 
Table S17. Mediation results with gene expression as mediator. This table contains all results from 
mediation analysis with gene expression as mediator (a total of 15,114 mediation models). Headers are: 
Technology: short description of the technology or platform being used to measure the molecular trait; 
chromosome: chromosome location of the cis-eQTL; gene; gene Ensembl ID; gene_name: gene name; 
gene_biotype: gene biotype from Ensembl; phen_id: molecular phenotype ID; variant: variant ID; 
nsamples: number of samples for the mediation analysis; correlation: Pearson correlation coefficient 
between the gene expression and the molecular phenotype; DE_est: direct effect estimate; DE_se: 
standard error of the direct effect estimate; DE_z: direct effect Z-score; DE_p: direct effect p-value; 
ME_est: mediated effect estimate; ME_se: standard error of the mediated effect estimate; ME_z: 
mediated effect Z-score; ME_p: mediated effect p-value; TE_est: total effect estimate; TE_se: standard 
error of the total effect estimate; TE_z: total effect Z-score; TE_p: total effect p-value; prop_med_est: 
proportion of the mediated effect over the total effect; Bonferroni_threshold: significance threshold after 
Bonferroni multiple testing correction; ME_significant: TRUE if the mediated effect is significant, 
FALSE otherwise. 
 
Table S18. Mediation results with splicing as mediator. This table contains all results from mediation 
analysis with splicing as mediator (a total of 11,445 mediation models). Headers are: Technology: short 
description of the technology or platform being used to measure the molecular trait; chromosome: 
chromosome location of the cis-sQTL; splice: splicing event ID; gene; mapped gene Ensembl IDs; 
gene_name: mapped gene names; phen_id: molecular phenotype ID; variant: variant ID; nsamples: 
number of samples for the mediation analysis; DE_est: direct effect estimate; DE_se: standard error of 
the direct effect estimate; DE_z: direct effect Z-score; DE_p: direct effect p-value; ME_est: mediated 
effect estimate; ME_se: standard error of the mediated effect estimate; ME_z: mediated effect Z-score; 
ME_p: mediated effect p-value; TE_est: total effect estimate; TE_se: standard error of the total effect 
estimate; TE_z: total effect Z-score; TE_p: total effect p-value; prop_med_est: proportion of the 
mediated effect over the total effect; Bonferroni_threshold: significance threshold after Bonferroni 
multiple testing correction; ME_significant: TRUE if the mediated effect is significant, FALSE 
otherwise. 
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Table S19. List of FinnGen traits being analyzed. This table contains the list of 20 phenotypes from 
FinnGen. Headers are: phenocode: short name of the phenotype; name: long name of the phenotype; 
category: phenotype category; num_cases: number of cases; num_controls: number of controls; 
path_https: https link for data access. 
 
Table S20. Colocalization results between cis-eQTLs and FinnGen traits. This table contains all 
colocalized results (PP3+PP4>09 and PP4/PP3>3) from colocalization analyses between gene 
expression and 20 FinnGen traits. Headers are: chromosome: chromosome location of the cis-eQTL; 
gene: gene Ensembl ID; gene_symbol: gene name from Ensembl; phen: FinnGen phenotype; 
SNP_gene_rank: rank of the lead SNP after conditional analysis for the cis-eQTL (0 means that no 
conditional analysis was performed); SNP_gene: variant id of the lead SNP after conditional analysis 
for the cis-eQTL (“unconditioned” means no conditional analysis was performed); SNP_phen_rank: 
rank of the lead SNP after conditional analysis for the FinnGen phenotype (0 means that no conditional 
analysis was performed); SNP_phen: variant ID of the lead SNP after conditional analysis for the 
FinnGen phenotype (“unconditioned” means no conditional analysis was performed); H0, H1, H2, H3 
and H4 are posterior probabilities of the hypotheses 0, 1, 2, 3 and 4. 
 
Table S21. Colocalization results between cis-sQTLs and FinnGen traits. This table contains all the 
colocalized results (PP3+PP4>09 and PP4/PP3>3) from colocalization analyses between splice intron 
usage and 20 FinnGen traits. Headers are: chromosome: chromosome location of the cis-sQTL; splice: 
splicing event ID; gene: mapped gene Ensembl ID; gene_symbol: mapped gene name; phen: FinnGen 
phenotype; SNP_splice_rank: rank of the lead SNP after conditional analysis for the cis-sQTL (0 means 
that no conditional analysis was performed); SNP_splice: variant ID of the lead SNP after conditional 
analysis for the cis-sQTL (“unconditioned” means no conditional analysis was performed); 
SNP_phen_rank: rank of the lead SNP after conditional analysis for the FinnGen phenotype (0 means 
that no conditional analysis was performed); SNP_phen: variant ID of the lead SNP after conditional 
analysis for the FinnGen phenotype (“unconditioned” means no conditional analysis was performed); 
H0, H1, H2, H3 and H4 are posterior probabilities of the hypotheses 0, 1, 2, 3 and 4. 
 
Table S22. Colocalization results between cis-eQTLs and COVID-19 loci. This table contains all 
colocalized results (PP3+PP4>09 and PP4/PP3>3) from colocalization analyses between gene 
expression and 4 COVID-19 phenotypes. Headers are: chromosome: chromosome location of the cis-
eQTL; gene: gene Ensembl ID; gene_symbol: gene name from Ensembl; phen: COVID-19 phenotype 
(A2, very severe respiratory confirmed COVID-19 patients versus population; B1, hospitalized versus 
non-hospitalized COVID-19 patients; and B2, hospitalized COVID-19 patients versus population); 
SNP_gene_rank: rank of the lead SNP after conditional analysis for the cis-eQTL (0 means that no 
conditional analysis was performed); SNP_gene: variant id of the lead SNP after conditional analysis 
for the cis-eQTL (“unconditioned” means no conditional analysis was performed); SNP_phen_rank: 
rank of the lead SNP after conditional analysis for the COVID-19 phenotype (0 means that no 
conditional analysis was performed); SNP_phen: variant ID of the lead SNP after conditional analysis 
for the COVID-19 phenotype (“unconditioned” means no conditional analysis was performed); H0, H1, 
H2, H3 and H4 are posterior probabilities of the hypotheses 0, 1, 2, 3 and 4. 
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Table S23. Colocalization results between cis-sQTLs and COVID-19 loci. This table contains all the 
colocalized results (PP3+PP4>09 and PP4/PP3>3) from colocalization analyses between splice intron 
usage and 4 COVID-19 phenotypes. Headers are: chromosome: chromosome location of the cis-sQTL; 
splice: splicing event ID; gene: mapped gene Ensembl ID; gene_symbol: mapped gene name; phen: 
COVID-19 phenotype (A2, very severe respiratory confirmed COVID-19 patients versus population; 
B1, hospitalized versus non-hospitalized COVID-19 patients; and B2, hospitalized COVID-19 patients 
versus population); SNP_splice_rank: rank of the lead SNP after conditional analysis for the cis-sQTL 
(0 means that no conditional analysis was performed); SNP_splice: variant ID of the lead SNP after 
conditional analysis for the cis-sQTL (“unconditioned” means no conditional analysis was performed); 
SNP_phen_rank: rank of the lead SNP after conditional analysis for the COVID-19 phenotype (0 means 
that no conditional analysis was performed); SNP_phen: variant ID of the lead SNP after conditional 
analysis for the COVID-19 phenotype (“unconditioned” means no conditional analysis was performed); 
H0, H1, H2, H3 and H4 are posterior probabilities of the hypotheses 0, 1, 2, 3 and 4. 
 
Table S24. List of included covariates for the different analyses. This table contains the list of all 
covariates for PEER factor computation, eQTL and sQTL analyses. 
 
Table S25. Covariate description in the INTERVAL cohort with RNA-seq data. For quantitative 
covariates, the columns “Mean”, “Median”, “Min”, “Max” are the mean, median, minimum and 
maximum values as distribution descriptors. For categorical covariate, “Categories information” is a 
short description of the variable modalities.  
 
Table S26. List of summary statistics for colocalization analyses. Headers are: PMID: Pubmed ID; 
Trait category: indicates if the trait is a proteomic or metabolomic molecular trait or a disease trait; 
Technology: short description of the technology or platform being used to measure the molecular trait; 
Population study: cohort names for each study; Sample size for QTL analysis/GWAS: sample sizes for 
each study; Number of features: number of selected analyzed traits for each study; Sample overlap with 
RNA-seq data for mediation analysis: number of individuals overlapping with the RNA-seq if a 
mediation analysis was also conducted in addition to the colocalization analysis (only available for 
INTERVAL molecular traits); Data availability: link to the publicly available summary statistics, or 
mode of obtention if non publicly available. 
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