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ABSTRACT 

Background: A bronchodilator response (BDR) can be assessed in preschool-aged children 

using spirometry, respiratory oscillometry, the interrupter technique, and specific airway 

resistance, yet a systematic comparison of BDR thresholds across studies has not been 

completed. 

Methods: A systematic review was performed on all studies up to May 2023 measuring a 

bronchodilator effect in children 2-6 years old using one of these techniques (PROSPERO 

CRD42021264659). Studies were identified using MEDLINE, Cochrane, EMBASE, CINAHL via 

EBSCO, Web of Science databases, and reference lists of relevant manuscripts. 

Results: Of 1224 screened studies, 43 were included. Over 85% were from predominantly 

Caucasian populations, and only 22 studies (51.2%) calculated a BDR cut-off based on a 

healthy control group. Sample sizes ranged from 25-916. Only two studies (4.6%) adhered to 

formal recommendations for study design: at least 300 subjects, randomised for placebo 

response testing in healthy children, and incorporated within-session and between-session 

test repeatability. A relative BDR was most consistently reported by the included studies 

(95%) but varied widely across all techniques. A variety of statistical methods were used to 

define a BDR. The highest BDR feasibility was reported with oscillometry techniques in this 

age group. 

Conclusion: A BDR in 2-6-year-olds cannot be defined based on the reviewed literature due 

to inconsistent methodology and cut-off calculations. Precise and feasible evaluation of lung 

function in young children is crucial for early detection and intervention of airway diseases. 

A standardised approach is required to develop robust BDR thresholds. 
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INTRODUCTION 

Respiratory function testing enables the study of breathing mechanics and identifying 

airway and lung diseases. A positive bronchodilator response (BDR) is a key criterion used to 

diagnose and manage asthma, where a significant reversal of airflow limitation is 

demonstrated following acute treatment with a bronchodilator agent. However, there is no 

universally accepted definition of bronchodilator responsiveness in young children. Existing 

research on the diagnostic and prognostic value of BDR testing has produced conflicting 

results
1,2

. 

One challenge with young children is the variable feasibility of available lung function 

techniques in ambulatory care
3
. Spirometry, which requires forced exhalation manoeuvres 

to achieve flow limitation, is often challenging for preschool-aged children to perform. 

Other techniques, such as oscillometry, specific airway resistance, and the interrupter 

technique, which can be performed during tidal breathing, offer greater feasibility for this 

age group but have varying clinical utility
4
. The clinical utility of bronchodilator testing 

depends on a low, within-session coefficient of repeatability (CRintra) between pre-

bronchodilator (preBD) and post-bronchodilator (postBD) testing. 

Before defining a significant change following bronchodilators, several characteristics of the 

pulmonary function test must be known
5
. First, the within-subject, within-session variation 

of the test, referred to as the coefficient of variability (CV), must be known for pre-

bronchodilator and post-bronchodilator testing. Second, the within-subject CV for pre-

placebo (prePL) and post-placebo (postPL) testing in healthy subjects provides information 

on the short-term repeatability of the technique. Lastly, the within-subject between-session 

coefficient of repeatability (CRinter) of BDR testing should be measured in age-matched 
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subjects with and without disease. A clinically significant BDR should be greater than the 

within-session CV, greater than the test measurement error (i.e., beyond the 95% limits of 

agreement from placebo testing), and specific to the population (or condition) being 

tested
3,6

. 

There are several ways to express a BDR. Reporting the absolute difference between preBD 

and postBD measurements (i.e., absolute BDR) favours taller children and may be influenced 

by large variations in preBD values
7,8

. An absolute BDR may be appropriate if the Bland-

Altman mean-difference plot demonstrates that the measurement variability is independent 

of the mean
7
, as shown for spirometry in adults

9
. Reporting the relative BDR, calculated as a 

percentage change from the initial test (i.e., percentage of preBD), is better suited when the 

difference between postBD and preBD is proportional to the preBD value
10

. A relative BDR is 

less affected by the preBD values than an absolute BDR. If predictive values are available, 

reporting a BDR as a percentage of predicted or change in z-score eliminates the 

dependence on age, stature, and preBD values
6
.   

Each lung function modality assesses different mechanical properties of the respiratory 

system. Spirometry assesses lung volume changes over time but depends on maintaining 

expiratory flow limitation until residual volume. The interrupter technique estimates 

alveolar pressure using a single-compartment model that assumes an equilibrium with 

mouth opening pressure. The specific airway resistance (sRaw) is estimated from tidal 

volume changes and gas flow. These three measures are based on a single-compartment 

model of respiratory mechanics to provide information about the resistive properties, 

predominantly airway resistance. Oscillometry uses linear dynamic system theory to model 

pressure, volume, and flow as functions over time during tidal breathing. Within 
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oscillometry are several heterogeneous techniques that use pulses of square waves 

(impulse oscillometry), single-frequency sinusoidal waves (intra-breath oscillometry), or 

multiple frequencies of sinusoidal waves (spectral oscillometry).  

Therefore, the definition of a BDR will vary depending on the lung function technique, 

disease process, and population being assessed. One method for defining a positive BDR is 

using the <5
th

 percentile or >95
th

 percentile of the response of healthy subjects to an 

inhaled bronchodilator
6,11

. Another approach is to account for the within-subject between-

test repeatability in healthy subjects for the desired outcome variable where the  

BDR cut-off is calculated as the mean within-subject sample variance + (1.96 * within-

subject sample standard deviation)
1
.  

This systematic review explored the feasibility of BDR testing, the methods of BDR testing 

and reporting, and the derivation of BDR cut-off values across the following lung function 

techniques that have the most potential as safe, practical, and useful for testing in children 

2-6 years old: spirometry, impulse oscillometry (IOS), intra-breath oscillometry (IB-OSC), 

spectral oscillometry (SPEC-OSC), interrupter technique, and specific airway resistance 

(sRaw). 

 

METHODS 

Search strategy 

Following PRISMA guidelines, studies were identified from MEDLINE, Cochrane Central 

Register of Controlled Trials, EMBASE, the Cumulative Index to Nursing and Allied Health 

Literature (CINAHL) via EBSCO, Web of Science, and hand-searching reference lists of papers 

included in the review. The search text had bronchodilator response in children/paediatric 
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population, using either spirometry, oscillometry (including forced oscillation technique, 

impulse oscillometry, within-breath oscillometry, and intra-breath oscillometry), interrupter 

technique, or specific airways resistance. The final searches from each database were 

performed in May 2023. Conference abstracts, reviews, editorials, and commentaries were 

not included due to the limited data available for assessment. Details of the entire search 

strategy are included in Table S1. 

Eligibility criteria 

Included studies contained (1) a study population of children between 2-6 years old; (2) lung 

function involving spirometry, respiratory oscillometry, sRaw, or the interrupter technique; 

(3) a healthy control group; (4) use of a short-acting beta-2-agonist (SABA) administered by 

a metered dose inhaler and spacer; and (5) measurement of a bronchodilator response. 

Studies were excluded if they included (1) a study population with no separate results 

provided for participants 2-6 years old; (2) a nebuliser-administered bronchodilator; (3) the 

bronchodilator was not a SABA; (4) or full-text manuscript was not available in English.  

Study selection and data extraction 

Title and abstract screening, duplicate removal, full-text reviews, and data extraction from 

database searches were performed using Covidence systematic review software (Veritas 

Health Innovation, Melbourne, Australia). The authors (MDW, KC, and TB) reviewed the 

search references and identified potential inclusion studies based on titles, abstracts, and 

bibliographies. Three authors (MDW, KC, and TB) acquired and independently reviewed full-

text studies meeting inclusion criteria. Two authors (MDW and KC) extracted data 

independently from all included studies. The data extracted from each study was the first 
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author, publication year, study type, country, sample size (disease and control groups), 

population age, and lung function apparatus. Extraction of specific lung function outcomes 

preBD and postBD are outlined in Table S2. BDR data extracted included the feasibility, 

bronchodilator drug, bronchodilator dose, bronchodilator delivery method, the time 

between preBD and postBD testing, and whether pre-placebo (prePL) and post-placebo 

(postPL) testing was performed. 

Study quality assessment 

The Joanna Briggs Institute (JBI) critical appraisal checklist for studies reporting prevalence 

data was used to assess studies included in the final review
12

. 

Data analyses 

The feasibility of BDR testing was calculated by dividing the number of children with a 

successful BDR test by the number of children who attempted BDR testing and expressed as 

a percentage. No meta-analysis was planned due to the anticipated heterogeneity in BDR 

methodology and reporting for each lung function technique. Reported BDR cut-offs were 

summarised in terms of an absolute change (BDRABS), a percentage of the initial test 

(BDR%INIT), a percentage of the predicted value (BDR%PRED), and z-score change (BDRZ). 

 

RESULTS 

Our search conducted in May 2023 identified 2078 potential studies. After 854 duplicates 

were removed, 284 studies remained following title and abstract screening. The full-text 

review identified 242 studies for exclusion (Figure 1). Forty-three studies that met the pre-

defined criteria were included for data extraction
1,8,13–53

. 
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Study characteristics 

The demographics and descriptions of the 43 included studies are summarised in Table 1. 

Over 85% of the studies (n=37) were conducted in predominantly Caucasian populations. A 

large majority (81.4%) of the included studies consisted of cross-sectional study design, 

followed by cohort (9.3%) and case-control (9.3%). Of the included studies, 23 (53.5%) were 

published within the last ten years (2013-2023), and 20 (46.5%) were published >10 years 

ago. Thirty-one studies (72.1%) measured a BDR in healthy children (Table 1). Many studies 

utilised multiple lung function modalities, with fifteen studies (34.9%) using IOS, thirteen 

(30.2%) using spirometry, eleven (25.6%) using SPEC-OSC, ten (23.3%) using the interrupter 

technique, six (14%) using sRaw and one (2.3%) with IB-OSC. Details of the lung function 

equipment, bronchodilator testing methods and feasibility of bronchodilator response are 

summarised for each technique in the supplement (Tables S3-S7). 

Quality Assessment 

Twenty-nine studies (67.4%) included a healthy cohort, but only six (14%) had a healthy 

sample size of more than 300 children (Table S8). Only twenty-four studies (55.8%) 

proposed a BDR cut-off and included detailed methodology of BDR testing (e.g., 

bronchodilator dose, the time between preBD and postBD testing, and type of spacer used) 

(Table S8). Only nine studies (20.9%) controlled for the short-term repeatability of the lung 

function measurement with placebo response testing (Table S8). There were 24 studies 

(55.8%) explicitly stating how they derived a BDR cut-off from their sample. 

Feasibility of bronchodilator response testing by technique 
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The feasibility of bronchodilator response testing in preschool-aged children, including the 

bronchodilator drug type, drug dosage, sample size, and time between preBD and postBD 

measurements, is summarised in the supplementary tables. The highest median feasibility 

was reported for IOS and SPEC-OSC and the lowest for spirometry (Figure 2). In direct 

comparison within the same study, SPEC-OSC was more feasible in preschoolers (93%) than 

sRaw (68%)
27

.  

One study used terbutaline (2.3%), and the remainder used albuterol (11.6%) or salbutamol 

(86%). Doses of SABA varied between 200-600 mcg, and the time between preBD and 

postBD testing ranged between 10-20 minutes (Tables S3-S7). 

Defining a bronchodilator response 

Twenty-two studies (51.2%) calculated a BDR cut-off based on a healthy control group 

(Table 2)
1,8,15,19,20,25,28,30–32,35,38–40,43,45,47–52

. BDR%INIT was reported by all studies except 

Malmberg et al. 2003 for IOS outcomes and Nielsen et al. 2001 for sRaw (Figure 3). Four 

studies reported BDR%PRED
30,35,39,40

, and two reported BDRZ
30,39

. Only five studies deriving 

BDR cut-offs incorporated placebo testing of healthy subjects to account for the within-

subject intrasession repeatability of the test
1,15,30,40,43

. The remaining 21 studies applied a 

BDR cut-off derived from published reference data to their study population. Results within 

individual techniques are discussed below. 

Spirometry 

Of thirteen studies using spirometry, six (46.2%) incorporated a healthy control group and 

two (15.4%) included randomised placebo response testing (Table 2)
1,15,19,32,45,47

. Two 

studies used the within-subject between-test repeatability to define a BDR as the forced 
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expiratory volume in one second (FEV1) +13.3-14% and forced expiratory volume in 0.75 

seconds (FEV0.75) +13.5-14%. Three studies used receiver operating characteristic (ROC) 

curve analysis to define a BDR; one applied a distribution-based cut-off using >95
th

 

percentile of the change in each variable in healthy children, and one study used an 

arbitrary cut-off of FEV1 +12%. All spirometry studies reported BDR%INIT, with none reporting 

BDRABS or BDR%PRED.   

Impulse oscillometry 

Nine of fifteen (60%) studies using IOS included a healthy control group, with three 

incorporating placebo testing and all using the Jaeger MasterScreen IOS equipment (Table 

2)
25,28,30,31,35,38,40,47,49

. The BDR%INIT cut-off for R5 ranged from -15.6% to -40% and X5 from 

+20 to +42%. The only study in this review to report a BDRZ was by Knihtila and colleagues, 

who reported cut-offs for R5-20 and AX
30

. 

Spectral oscillometry 

Seven of eleven (63.6%) SPEC-OSC studies incorporated a healthy control group (Table 

2)
8,20,43,48,50–52

. Of these studies, only Oostveen et al. 2010 included randomised, placebo 

response testing
43

. Four studies defined a BDR cut-off of >5
th

 percentile for resistance 

outcomes (R4, R6, R8, R10) and >95
th

 percentile in reactance outcomes (X6, X8, X10, AX). 

The BDR definitions used by Starczewska-Dymek and colleagues 
50,51

 were based on those 

developed by Calogero and colleagues
54

, who used a distribution-based cut-off of <5
th

 and 

>95
th

 percentile change following bronchodilator in healthy children. Udomittipong et al. 

defined a BDR using the within-subject between-test repeatability 
55

. All seven studies with 

healthy controls reported BDR%INIT, and five reported both BDRABS and BDR%INIT.
8,20,43,48,50–52
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Interrupter technique 

Two of the ten studies using the interrupter technique included a healthy control group 

(Table 2).  Mele et al. defined a BDR cut-off as the <5
th

 percentile of change following 

salbutamol in 60 healthy children and reported BDRABS, BDR%INIT, BDR%PRED, and BDRZ
39

. 

Nielson et al. defined a BDR cut-off from 92 children as 2.5 intrasubject standard deviation 

units (SDw) and reported BDRABS, BDR%INIT, and BDR%PRED
40

. 

sRaw 

Two out of six sRaw studies included a healthy control group (Table 2)
40,51

. Only Nielson et 

al. 2001 derived a BDRABS cut-off from their study data for sRaw as a change of three SDw 

and BDR%PRED as -25%
40

. 

 

DISCUSSION 

The interest in and clinical utility of alternatives to spirometry for preschoolers is becoming 

more evident. Our review has revealed the need for greater standardisation of, and more 

consistency in, how a BDR assessment is conducted, defined, and reported across the 

literature. It is crucial to have a precise and feasible evaluation of lung function during 

preschool to enable early detection and intervention for airway disease, monitor 

longitudinal growth, and adjust for lung function evolution over this period
3
. Standardising 

BDR measurements across different techniques is a critical first step towards achieving this 

goal. 

The highest feasibility was found with impulse and spectral oscillometry (Table 2). This is not 

surprising as oscillometry measures respiratory impedance during tidal breathing and 
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requires no voluntary breathing manoeuvres. Spirometry had the lowest feasibility, 

reflecting the difficulty that preschoolers have generating sufficient force to achieve and 

maintain expiratory flow limitation to the point of residual volume. Only 41% of healthy 

children under four years old can produce an acceptable FEV1; most have a ratio of FEV1 to 

forced vital capacity (FVC) of greater than 90% due to the smaller lung volumes relative to 

airway calibre
56

. The use of preschool-relevant spirometry outcomes like the forced 

expiratory volume in 0.5 seconds (FEV0.5) and FEV0.75 would improve feasibility but have yet 

to be incorporated in the latest European Respiratory Society (ERS) and American Thoracic 

Society (ATS) technical standards due to a lack of systematic studies with these outcomes
6
.  

Five studies did not specify whether a spacer delivered the bronchodilator. Although no 

significant differences were reported regarding spacer manufacturer, size, or use of 

facemasks versus mouthpieces for measuring a BDR using spirometry
57,58

, this has not been 

assessed for other lung function techniques in preschool-aged children. It is recommended 

that the spacer apparatus be specified for all studies. 

Although the choice of bronchodilator and dosing depends on the clinical question to be 

answered, it is still an assumption that a clinically significant BDR is similar with SABA doses 

between 200-600 mcg
54,58

. The time between preBD and postBD testing ranged between 

10-20 minutes, with seven studies having no mention in the methods of how long they 

waited between measurements. A minimum testing interval of 20 minutes is recommended 

for BDR testing in school-aged children using spirometry, but this has not been studied in 

preschoolers
58,59

. Our analysis highlights the need for further research comparing different 

bronchodilator protocols in identical subjects and has been echoed in a recent lung function 

standards document
6
. 
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It is also difficult to distinguish between biological or methodological effects on variability 

when dealing with small sample sizes, leading to sampling errors
60

. Quanjer et al. 

recommend sample sizes of more than 300 healthy subjects (150 females and 150 males) 

for generating spirometry reference values
60

. However, only half of the studies in this 

systematic review included a healthy control group, and only five accounted for the within-

subject intrasession repeatability of the test using paired prePL and postPL testing. Of the 

studies reviewed, only two had a sample size greater than 300, included a healthy control 

group with randomisation for placebo response testing, and derived BDR cut-offs using 

within-session and between-session repeatability
1,43

. Data pooling for a more robust 

analysis is limited by the heterogeneity between studies in BDR methodology. 

For preschool spirometry, Busi et al. and Borrego et al. accounted for the repeatability of 

testing in wheezy preschoolers and healthy controls; a preschool relative BDR of ≥12% for 

FEV0.5 and ≥11-14% for FEV0.75 may be appropriate
1,15

.  

Despite all IOS studies utilising the same equipment (Jaeger MasterScreen IOS), a wide 

range of BDR%INIT cut-offs for both R5 and X5 were reported, which may reflect 

heterogeneous methodologies to define BDR, population differences, poor reproducibility 

between laboratories, or all the above. The range of BDR%INIT cut-offs for R8 and X8 was -

20% to -43% and +60% to +67%, respectively (Table 2). Since a BDRABS will depend more on 

the preBD values, children with higher initial resistance (Rrs) or lower initial reactance (Xrs) 

will be more likely to reach a BDRABS cut-off and be diagnosed with reversible airway 

disease
54

. 

Reporting BDR%PRED or BDRZ is ideal for all lung function modalities as it is population-specific 

and independent of subject age, height, and the magnitude of the preBD value
6
. Future 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted November 24, 2023. ; https://doi.org/10.1101/2023.11.23.23298730doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.23.23298730


Page | 15 

 

studies involving preschool spirometry should incorporate BDR%PRED or BDRZ as there is 

spirometry reference data available for three years and older from the Global Lung Function 

Initiative (GLI). However, normative data are lacking for many techniques, especially for 

non-Caucasian children under six years old. Korea, Columbia, and Thailand were the only 

non-Caucasian predominant populations included in this review. There were no studies 

involving First Nations or African American children under six years old. 

Our findings have significant implications for determining the clinical relevance of lung 

function changes following bronchodilator administration. To accurately assess the minimal 

clinically important difference (MCID) of BDR for diagnostic purposes, such as identifying 

asthma, and to evaluate the impact of interventions within clinical trials and individual 

young children, it is crucial to standardise preschool BDR methodology by establishing 

consensus definitions
61

.  

For example, nearly half of all preschool-aged children worldwide experience asthma-like 

symptoms, but only 30% of those with recurrent wheezing will develop asthma beyond six 

years
62–64

. A distribution-based MCID, often defined as a change greater than the expected 

measurement error, can be calculated based on standardised response mean by taking the 

difference between preBD and postBD values and dividing by the standard deviation of the 

difference (SDdiff)
65–68

. This method relies heavily on sample sizes as SDdiff will be inversely 

proportional to the sample size. Early suggestions defining a distribution-based MCID as 

roughly equivalent to 0.5 SDdiff of the sample may only reflect the smallest detectable 

difference (SDD) for the test and may not be clinically perceivable by the clinician or 

patient
68

. Diagnosing asthma based on a positive BDR >0.5 SD in preschool wheezing may 

over-diagnose children with asthma and lead to unnecessary exposure to corticosteroids. 
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Some argue that the minimal detectable change (MDC) is a surrogate for an MCID, where 

the MDC based on the 95% confidence interval is 1.96 x √2 x SEM, where SEM is the 

standard error of the measurement and sample independent. Further studies are needed in 

children with disease (e.g., asthma) using an anchor-based MCID where the change in lung 

function is compared to the change in a clinical anchor (e.g., a patient’s reported 

symptoms). 

This review included 43 studies and covered six established and emerging lung function 

testing modalities. To our knowledge, all studies followed recommended testing guidelines 

on equipment that met ERS/ATS requirements. Our quality assessment (Table S8) revealed 

significant heterogeneity among results from studies that used different lung function 

equipment, which could not be pooled for meta-analyses, even when controlling for 

methodology and outcome variables. Dandurand et al. demonstrated this comparability 

problem by showing significant differences in measurements of high-impedance test loads 

using IOS and SPEC-OSC devices
69

. Clinical and methodological diversity made pooling lung 

function data and meta-analyses impractical even for studies of the same lung function 

modality. 

Several studies were excluded from this review as we could not separate preschool-aged 

data from larger cohort populations. Furthermore, we cannot comment on the potential 

learning effect sometimes experienced between preBD and postBD testing and 

acknowledge that this may create some bias in reported feasibility data. However, this is 

more likely to be experienced in techniques requiring specific manoeuvres (e.g., spirometry 

and sRaw), which scored lowest in overall feasibility. As previously mentioned, there was 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted November 24, 2023. ; https://doi.org/10.1101/2023.11.23.23298730doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.23.23298730


Page | 17 

 

limited ethnic variation in our review, with only six studies performed in non-Caucasian 

predominant populations. 

 

CONCLUSION 

Our review found significant inconsistencies in BDR assessment for preschool-aged children. 

This includes inconsistencies in testing methodology, cut-off determination, and BDR 

reporting. Defining a BDR in 2-6-year-old children is impossible based on available literature. 

Conventional techniques like spirometry and sRaw were less feasible for BDR testing in 

preschoolers. In contrast, tidal breathing-based techniques like oscillometry were easier to 

perform and can be incorporated more easily into clinical settings. Future research should 

aim to generate normative data, standardise BDR delivery, and consider the MCID in 

children with airway disease. The applicability of the Caucasian-derived estimate of BDR to 

diverse ethnic populations requires further clarification. 
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FIGURE CAPTIONS: 

 

Figure 1. PRISMA diagram of study selection. 

 

Figure 2. Reported feasibility for preschool bronchodilator response testing with colours 

representing individual referenced studies. The range of values is plotted in studies where 

feasibility is reported for subgroups within the overall cohort. 

 

Figure 3. Studies reporting a bronchodilator response (BDR) as a percentage of the initial 

test (BDR%INIT) for spirometry (top), impulse oscillometry (middle), and spectral oscillometry 

(bottom) with shapes corresponding to lung function variables and colours corresponding to 

referenced studies. 
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Table 1. Summary of included studies 
Study, year  

(country) 

GLI Ethnic 

Category¶ 

Lung 

function 

Study  

design  

Study population  

(setting) 

Sample size 

n (F:M) 

Healthy 

n (F:M) 

Disease 

n (F:M) 

Age Placebo 

response  

Busi, 2017 

(Argentina) 

Caucasian SPIRO Cross-

sectional 

Healthy (community) and 

wheezy (clinic) 

720 (329:391) 431 

(211:220) 

WZ 289 (118:171) 3-5 years§ Yes 

Thamrin, 2007 
(Australia) 

Caucasian SPEC-OSC Cross-
sectional 

Healthy, wheezy, asthma, 
cystic fibrosis (CF), and 
neonatal chronic lung disease 
(CNLD) (clinic and community) 

288 (138:150) 78 (42:36)  
WZ 66 (25:41) 
ASTH 56 (21:35) 
CF 39 (24:15) 
CNLD 49 (26:23) 

HL 61 (50, 62) months‡ 
WZ 61 (49, 80) months‡ 
ASTH 61 (47, 80) months‡ 
CF 60 (43, 80) months‡ 
CNLD 62 (43, 71) months‡ 

No 

Beydon, 2008 
(France) 

Caucasian RINT Cross-
sectional 

Chronic cough but no wheezing 
or asthma medications (clinic) 

38 (23:15) n/a n/a 2.8-6.4 years§ No 

Bokov, 2021 
(France) 

Caucasian IOS, RINT Cross-
sectional 

Wheezy (clinic) 139 (45:94) None WZ 139 (45:94) WZ 4.7 (0.8) years* No 

Borrego, 2013 

(Portugal) 

Caucasian SPIRO Case-control Healthy and wheezy (clinic) 65 (27:38) 22 (12:10) WZ 43 (15:28) 3-7 years§ Yes 

Bridge, 1999 (UK) Caucasian RINT Cross-
sectional 

Children with previous wheeze 
or active wheezing (clinic) 

48 (N/A) None Past WZ 32 (n/a) 
Active WZ 16 (n/a) 

Past WZ 2-5 years§ 
Active WZ 2-5 years§ 

Yes 

Bridge, 2001 (UK) Caucasian RINT Cross-
sectional 

Asymptomatic children with a 
history of respiratory symptoms 
(clinic) 

40 (n/a)  None 40 (n/a) 2.5-5.0 years§ No 

Bridge, 2005 (UK) Caucasian RINT Cross-
sectional 

Wheezy (clinic) 25 (15:10) None WZ 25 (15:10) WZ 2.5-5.6 years§ No 

Burity, 2016 

(Brazil) 

Caucasian SPIRO Cross-

sectional 

Healthy (community) 160 (76:84) 160 (76:84) None HL 3-5 years§ No 

Calogero, 2010 
(Italy) 

Caucasian SPEC-OSC Cross-
sectional 

Healthy (community) 163 (82:81) 163 (82:81) None HL 2.9-6.1 years§ No 

Cz�vek, 2016 

(Australia) 

Caucasian IB-OSC, 

SPEC-OSC 

Cross-

sectional 

Healthy (community) and 

wheezy (hospital) 

40 (n/a)  23 (n/a) WZ 17 (n/a) HL 4.29 (0.51) years* 

WZ 4.04 (0.55) years* 

No 

Da Silva Sena, 
2021 (Australia) 

Caucasian IOS Prospective 
cohort 

Previous hospitalised for 
rhinovirus bronchiolitis in 
infancy (hospital) 

139 (49:90) None Past bronchiolitis 
139 (49:90) 

47 (42,51) months† No 

Devereux, 2006 
(UK) 

Caucasian SPIRO Longitudinal 
birth cohort 

Children born to mothers in a 
birth cohort study (community) 

502 (n/a) n/a n/a 5 years No 

Dom, 2014 
(Belgium) 

Caucasian SPEC-OSC Cross-
sectional 

Healthy (birth cohort) 535 (265:270) 535 
(265:270) 

None HL 4.3 (0.2) years* No 

Duenas-Meza, 
2019 (Columbia) 

Other IOS Cross-
sectional 

Healthy (community) 96 (58:38) 96 (58:38) None HL 37-71 months§ No 

Friedman, 2018 
(USA) 

Caucasian SPEC-OSC Cross-
sectional 

Healthy and wheezy (clinic) 51 (31:20) 28 (19:9) WZ 23 (12:11) HL 5.2 (1.1) years* 
WZ 5.0 (1.0) years* 

No 
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Harrison, 2010 
(Australia) 

Caucasian sRaw, 
SPEC-OSC 

Cross-
sectional 

Healthy and wheezy (clinic) 83 (38:45) 24 (14:10) WZ 59 (24:35) HL 5.3 (1.2) years* 
WZ 4.8 (1.12) years* 

No 

Hellinckx, 1998 
(Belgium) 

Caucasian IOS Cross-
sectional 

Healthy and wheezy 
(community) 

281 (152:129) 247 (n/a) WZ 34 (n/a) 2.7-6.6 years§ Yes 

Jerzyńska, 2015 
(Poland) 

Caucasian sRaw, 
SPIRO 

Cross 
sectional 

Asthma-like symptoms (clinic) 142 (n/a) n/a n/a 4-6 years§ No 

Knihtilä, 2017 
(Finland) 

Caucasian IOS Cross-
sectional 

Healthy and wheezy 
(community) 

146 (62:84) 103 (50:53) WZ 43 (12:31) HL 2.1-7 years§ 
WZ 3.7-7.9 years§ 

Yes 

Konstantinou, 
2019 (Greece) 

Caucasian IOS Cohort Healthy and wheezy (clinic) 89 (46:43) 46 (26:20) WZ 43 (20:23) HL 5 (0.7) years* 
WZ 5 (0.5) years* 

No 

Lee, 2020 (Korea) Northeast 
Asian 

SPIRO Cross-
sectional 

Healthy and asthma 
(community) 

916 (446:470) 880 
(431:449) 

ASTH 36 (15:21) HL 58.4 (12.6) months* 
ASTH 61.9 (11.2) months* 

No 

Leiria-Pinto, 2020 
(Portugal) 

Caucasian IOS, SPIRO Cross-
sectional 

Healthy (community) and 
wheezy (clinic) 

121 (53:68) 14 (7:7) WZ 107 (46:61) HL 4.3 (3.6,5.1)† 
WZ 5.1 (4.4,5.5)† 

No 

Lezana, 2017 
(Chile) 

Caucasian IOS Case control Wheezy (clinic) 108 (52:56) None WZ 108 (52:56) WZ 2-6 years§ No 

Malmberg, 2003 
(Finland) 

Caucasian IOS Cross-
sectional 

Healthy, asthma, and chronic 
cough (clinic) 

158 (72:86) 62 (32:30) ASTH 50 (20:30) 
Chronic cough 46 
(20:26) 

HL 4.1-7 years§ 
ASTH 3.8-7.4 years§ 
Chronic cough 4.2-7.5 years§ 

No 

Mauger-Hamel, 
2020 (France) 

Caucasian sRaw, RINT Cross-
sectional 

Wheezy children (clinic) 130 (55:75) None WZ 130 (55:75) 4.9 (0.63) years* No 

McKenzie, 2000 
(UK) 

Caucasian RINT Cross-
sectional 

Healthy, wheezy, and recurrent 
cough (clinic) 

203 (92:110) 63 (33:30) WZ 82 (31:51)  
Recurrent cough 58 

(29:29) 

HL 3.8 (0.72) years* 
WZ 3.6 (0.86) years* 

Recurrent cough 3.7 (0.90) years* 

No 

Medeiros, 2020 
(Brazil) 

Caucasian IOS Cross-
sectional 

Healthy and wheezy 
(community) 

76 (45:31) 21 (10:11) WZ 55 (35:20) HL 4.95 (0.89) years* 
WZ 4.31 (0.97) years* 

No 

Mele, 2010 (Italy) Caucasian RINT Cross-

sectional 

Healthy and wheezy 

(asymptomatic and 
symptomatic) 

180 (76:104) 60 (23:37) WZ asymptomatic 

60 (24:36) 
WZ symptomatic 
60 (29:31) 

HL 5.4 (1.0) years* 

WZ asymptomatic 4.4 (0.8) years* 
WZ symptomatic 4.4 (0.7) years* 

No 

Nielsen, 2001 
(Denmark) 

Caucasian IOS, sRaw, 
RINT 

Cross-
sectional 

Healthy (community) and 
wheezy (clinic) 

92 (44:48)  37 (19:18) WZ 55 (25:30) HL 2.5-5.9 years§ 
WZ 2.3-5.9 years§ 

Yes 

Oh, 2013 (Korea) Northeast 
Asian 

IOS Cross-
sectional 

Healthy, early onset-wheeze, 
late-onset wheeze (community) 

372 (188:184) 282 
(144:138) 

Early-onset WZ 23 
(10:13)  
Late-onset WZ 67 

(34:33) 

HL 5.5 (0.7) years* 
Early-onset WZ 5.4 (0.7) years* 
Late-onset WZ 5.6 (0.7) years* 

No 

Olaguíbel, 2005 
(Spain) 

Caucasian IOS, sRaw, 
SPIRO 

Cross 
sectional 

Wheezy (clinic) 36 (11:25)  None WZ 36 (11:25) WZ 3-6 years§ Yes 

Oostveen, 2010 

(Belgium) 

Caucasian SPEC-OSC Cohort Healthy and wheezy (birth 

cohort) 

325 (152:173) 144 (73:71) WZ 181 (79:102)  HL 4.4 (0.2) years* 

WZ 4.4 (0.2) years* 

Yes 

Pao, 2004 (UK) Caucasian RINT Cross-
sectional 

Wheezy children (clinic) 39 (18:21) None WZ 39 (18:21) WZ 2-5 years§ No 
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Passerini, 2014 
(Chile) 

Caucasian SPIRO Case-control Healthy and wheezy (clinic) 96 (54:42) 32 (19:13) WZ 64 (35:29) HL 3-5.6 years§ 
WZ 3-5.9 years§ 

No 

Sarria, 2014 
(USA) 

Caucasian SPIRO Case-control Infants with eczema (clinic) 74 (n/a) n/a n/a 4 years No 

Shin, 2012 
(Korea) 

Northeast 
Asian 

IOS, SPIRO Cross-
sectional 

Healthy (community) and 
wheezy (clinic) 

59 (31:28) 29 (15:14) WZ 30 (16:14) HL 4.6 (0.3) years* 
WZ 4.6 (0.4) years* 

No 

Simpson, 2012 

(Australia) 

Caucasian SPEC-OSC Cross-

sectional 

Healthy, asthma, cystic fibrosis 

(CF), and chronic neonatal lung 
disease (CNLD) (clinic) 

288 (138:150)  78 (42:36)  

WZ 66 (25:41) 
ASTH 56 (21:35) 
CF 39 (24:15)  

CNLD 49 (26:23)  

HL 4.90 (95% CI 4.8, 5.0) years 

WZ 5.25 (95% CI 5.0, 5.5) years 
ASTH 5.28 (95% CI 5.0, 5.6) 
years 

CF 5.04 (95% CI 4.7, 5.4) years 
CNLD 4.83 (95% CI 4.6, 5.1) 
years 

No 

Song, 2008 
(Korea) 

Northeast 
Asian 

IOS, SPIRO Cross-
sectional 

Healthy and wheezy (clinic) 132 (49:83) 55 (20:35) WZ 77 (29:48) HL 5.1 (95% CI 4.9 to 5.3) years 
WZ 4.9 (95% CI 4.7 to 5.1) years 

No 

Starczewska-
Dymek, 2018 

(Poland) 

Caucasian SPEC-OSC Cross-
sectional 

Healthy, controlled asthma, 
and uncontrolled asthma 

(clinic) 

151 (79:72) 45 (25:20) Controlled ASTH 53 
(28:25) 

Uncontrolled ASTH 
53 (26:27) 

HL 3.9 (1.2) years* 
Controlled ASTH 4.2 (1.3) years* 

Uncontrolled ASTH 4.8 (2.1) 
years* 

No 

Starczewska-
Dymek, 2021 
(Poland) 

Caucasian sRaw, 
SPEC-OSC 

Cross 
sectional 

Healthy and wheezy (clinic) 154 (76:78) 52 (27:25) WZ 102 (49:53) 2-6 years§ No 

Udomittipong, 

2020 (Thailand) 

Southeast 

Asian 

SPEC-OSC Cross-

sectional 

Healthy (community) 111 (60:51) 111 (60:51) None HL 5.2 (1.1) years* No 

Vilozni, 2005 

(Israel) 

Caucasian SPIRO Cross-

sectional 

Healthy and wheezy 

(community) 

265 (121:144)  109 (59:50) WZ 156 (62:94) 2 - 6.5 years§ No 

Abbreviations: 
* Mean (SD); † median (quartile-1, quartile-3); ‡ median (10th, 90th percentile); § range; ¶ taken from American Thoracic Society Standardization of Spirometry 2019 update. 
ASTH, asthma; CF, cystic fibrosis; HL, healthy; IB-OSC, intra-breath oscillometry; GLI, Global Lung Function Initiative; IOS, impulse oscillometry; CNLD, neonatal chronic lung disease; n/a, unavailable or 

unspecified; RINT, interrupter technique; SPEC-OSC, spectral oscillometry; SPIRO, spirometry; sRaw, specific airway resistance; WZ, wheeze. 
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Table 2. Bronchodilator response cut-offs in studies with a healthy control group.  
Study, year Lung 

function 
BDR definition Sample 

size 
Placebo  Variable Reported BDR cut-off 

      BDRABS BDR%INIT BDR%PRED BDRZ 

Duenas-Meza, 
2019 

IOS Distribution cut-off (<5th percentile of change following salbutamol 
inhalation in healthy children) 

96 No  R5  -28.36%   

Hellinckx, 1998 IOS Outside the 95% confidence interval 281 Yes R5  -40%   

Knihtilä, 2017 IOS Distribution cut-off (<5th percentile of change following salbutamol 
inhalation in healthy children) and Bland-Altman limits of agreement 

146 Yes (Randomised) R5-20 
R5-20% 
AX 

-0.23 kPa/L/s 
-22.37 kPa/L/s 
-2.14 kPa/L 

-110% 
-106% 
-75% 

-153% 
-139% 
-137% 

-2.76 
-2.20 
-3.07 

Konstantinou, 
2019 

IOS ROC curve analysis  89 No R5  -20.5%   

Malmberg, 2003 IOS  ROC curve analysis 158 No R5 
X5 

> 0.3 SD 
< -1.5 SD 

 -21.2% 
-55.3% 

 

Medeiros, 2020 IOS Cut-off derived from another reference (Marotta et al. 2003) 76 No  R5 
X5 

 -20% 
+20% 

  

Nielsen, 2001 IOS R5: 1.0 SDw 
X5: 1.5 SDw 

92 Yes (Randomised) R5 
X5 

-0.39 kPa/L/s -28% 
+42% 

-29%  

Shin, 2012 IOS ROC curve analysis 59 No R5  -15.6%   

Song, 2008 IOS Bland-Altman limits of agreement 132 No R5  -20%   
Nielsen, 2001 sRaw  sRaw: 3 SDw units 92 Yes (Randomised) sRaw 3 SDw  -25%  

Starczewska-
Dymek, 2021 

sRaw Arbitrary cut-off 154 No  sRaw  -25%   

Mele, 2010 RINT Distribution cut-off (<5th percentile of change following salbutamol 
inhalation in healthy children) 

180 No Rint -0.26 kPa/L/s -32% -33% -1.25 

Nielsen, 2001 RINT Rint: 2.5 SDw 92 Yes (Randomised) Rint -0.13 kPa/L/s -9.7% -12.8%  

Calogero, 2010 SPEC-
OSC 

Distribution cut-off (<5th percentile for R8 and >95th percentile for X8) 163 No  R8 
X8 

-3.16 hPa/L/s 
+2.25 hPa/L/s 

-34% 
+61% 

  

Oostveen, 2010 SPEC-
OSC 

Distribution cut-off (<5th percentile for R4 and AX) 325 Yes (Randomised) R4 
R6 
R8 
AX 

-5.5 hPa/L/s 
 
 
-31 hPa/L 

-43% 
-41% 
-43% 
-81% 

  

Simpson, 2012 SPEC-
OSC 

Distribution cut-off (>95th upper centile in healthy children)  288 No R8 
X8 
A8 

 -37% 
+67% 
+61% 

  

Starczewska-
Dymek, 2018 

SPEC-
OSC 

Derived from Calogero et al. 2013 (distribution cut-off of the 5th and 
95th percentile in healthy children) 

151 No  R8 -2.79 
cmH2O/L/s 

-32%   

Starczewska-
Dymek, 2021 

SPEC-
OSC 

Derived from Calogero et al. 2013 (distribution cut-off of the 5th and 
95th percentile in healthy children) 

154 No  R8 -2.79 
cmH2O/L/s 

-32%   
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Thamrin, 2007 SPEC-
OSC 

Bland-Altman limits of agreement using the BDR%INIT 
 

288 No R6 
R8 
R10 
X6 
X8 
X10 

 -42% 
-37% 
-39% 
+61% 
+67% 
+63% 

  

Udomittipong, 
2020 

SPEC-
OSC 

Bland-Altman limits of agreement 111 No  R6 
R8 
R10 
X6 
X8 
X10 

-1.13 hPa/L/s 
-0.92 hPa/L/s 
-0.94 hPa/L/s 
+0.45 hPa/L/s 
+0.45 hPa/L/s 
+0.41 hPa/L/s 

-23% 
-20% 
-20% 
+36% 
+60% 
+43% 

  

Borrego, 2013 SPIRO Bland-Altman limits of agreement 65 Yes (Randomised) FEV1 
FEV0.75 
FEF25-75 

 +14% 
+14% 
+33% 

  

Burity, 2016 SPIRO Distribution cut-off (>95th percentile of the change in each variable) 160 No FEV1 
FEV0.75 
FEV0.5 
FEF25-75 

 +13% 
+18% 
+20% 
+61% 

  

Busi, 2017 SPIRO Method 1. Bland-Altman limits of agreement 720 Yes (Randomised) FEV1 
FVC 
FEV0.75 
FEV0.5 

 +14.2% 
+13.3% 
+13.5% 
+14.6% 

  

Method 2. ROC curve analysis 720 Yes (Randomised) FEV1 
FVC 
FEV0.75 
FEV0.5 

 +7% 
+5% 
+11% 
+12% 

  

Lee, 2020 SPIRO Spirometry 12% increase in FEV1 (adult definition) 916 No  FEV1  +12%   

Passerini, 2014 SPIRO ROC curve analysis 96 No  FEV1 
FEV0.5 
FEF25-75 

 +10% 
+11% 
+25% 

  

Shin, 2012 SPIRO ROC curve analysis 59 No FEV1  +5.3%   

Abbreviations: AHR, airway hyperreactivity; AX, area between zero line and reactance spectrum below resonant frequency; BDR, bronchodilator response; BDRABS, absolute BDR; BDR%INIT, relative BDR; 

BDR%PRED, BDR as a change in percentage of predicted; BDRZ, BDR as a change in z-score; CI, confidence interval; FEF25-75, forced mid-expiratory flow; FEV0.5, forced expiratory volume in 0.5 seconds; 

FEV0.75, forced expiratory volume in 0.75 seconds; FEV1, forced expiratory volume in 1 second; FVC, forced vital capacity; IB-OSC, intra-breath oscillometry; IOS, impulse oscillometry; n/a, unavailable or 

unspecified; R5, resistance at 5 Hz (IOS); R5-20, the absolute difference in resistance at 5 Hz and 20 Hz (IOS); R5-20%, the relative difference in resistance at 5 Hz and 20 Hz (IOS); R6, resistance at 6 Hz; R8, 

resistance at 8 Hz; R10, resistance at 10 Hz; ROC, receiver operating characteristic; RINT, interrupter technique; SPEC-OSC, spectral oscillometry; SPIRO, spirometry; X6, reactance at 6 Hz; X8, reactance at 8 Hz, 
X10, reactance at 10 Hz; X5, reactance at 5 Hz (IOS); sRaw, specific airway resistance; Rint, interrupter resistance; SD, standard deviations; SDw, intrasubject standard deviation units. 
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