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Highlights 
 

§ Data-driven non-negaAve matrix factorizaAon (NMF) idenAfied 24 canonical pa#erns of 
spaAal covariance of cerebral glucose metabolism.  The training data comprised healthy 
older parAcipants (CDR = 0 without amyloidosis) cross-secAonally drawn from ADNI.   

 
§ In healthy parAcipants, mean SUVRs for specific pa#erns in precuneus, lateral parietal 

cortex, and subcorAcal areas including superficial white ma#er and striatum, 
demonstrated increasing glucose metabolism with advancing age.   
 

§ In asymptoma+c par+cipants with amyloidosis, glucose metabolism increased compared 
to those who were asymptoma+c without amyloid, parAcularly in medial prefrontal 
cortex, frontoparietal cortex, occipital white, and posterior cerebellar regions. 
 

§ In symptoma+c par+cipants with amyloidosis, insular cortex, medial frontal cortex, and 
prefrontal cortex demonstrated the most severe losses of glucose metabolism with 
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increasing CDR.  Lateral parietal and posterior superior temporal corAces retained 
glucose metabolism even for CDR > 0.5.  

 
§ NMF models of glucose metabolism are consistent with models arising from principal 

components, or eigenbrains, while adding addiAonal regional interpretability. 
 

§ NMF pa#erns correlated with regions catalogued in Neurosynth.  Following correcAons 
for spaAal autocorrelaAons, NMF pa#erns revealed meta-analyAc idenAficaAons of 
pa#erns with Neurosynth topics of fear/reward, a#enAon, memory, language, and 
movement with motor planning.  Pa#erns varied with degrees of cogniAve impairment. 
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Abstract 
 
In disorders of cogniAve impairment, such as Alzheimer’s disease, neurodegeneraAon is the 
final common pathway of disease progression.  ModulaAng, reversing, or prevenAng disease 
progression is a clinical imperaAve most likely to succeed following accurate and explanatory 
understanding of neurodegeneraAon, requiring enhanced consistency with quanAtaAve 
measurements and expanded interpretability of complex data.  The on-going study of 
neurodegeneraAon has robustly demonstrated the advantages of accumulaAng large amounts 
of clinical data that include neuroimaging, moAving mulA-center studies such as the Alzheimer’s 
Disease Neuroimaging IniAaAve (ADNI).  DemonstraAve advantages also arise from highly 
mulAvariate analysis methods, and this work reports advances provided by non-negaAve matrix 
factorizaAon (NMF).  NMF revealed pa#erns of covariance for glucose metabolism, esAmated by 
positron emission tomography of [18F]fluorodeoxyglucose, in 243 healthy normal parAcipants of 
ADNI.  Pa#erns for glucose metabolism provided cross-secAonal inferences for 860 total 
parAcipants of ADNI with and without cerebral amyloidosis and clinical demenAa raAngs (CDR) 
ranging 0-3.  Pa#erns for glucose metabolism were disAnct in number and topography from 
pa#erns idenAfied in previous studies of structural MRI.  They were also disAnct from well-
establish topographies of resAng-state neuronal networks mapped by funcAonal magneAc 
resonance imaging.  Pa#erns for glucose metabolism idenAfied significant topographical 
landmarks relaAng age, sex, APOE e4 alleles, amyloidosis, CDR, and neurodegeneraAon.  
Pa#erns involving insular and orbitofrontal corAces, as well as midline regions of frontal and 
parietal lobes demonstrated the greatest neurodegeneraAon with progressive Alzheimer’s 
demenAa.  A single pa#ern for the lateral parietal and posterior superior temporal corAces 
demonstrated preserved glucose metabolism for all diagnosAc groups, including Alzheimer’s 
demenAa.  Pa#erns correlated significantly with topical terms from the Neurosynth plajorm, 
thereby providing semanAc representaAons for pa#erns such as a#enAon, memory, language, 
fear/reward, movement and motor planning.  In summary, NMF is a data-driven, principled, 
supervised staAsAcal learning method that provides interpretable pa#erns of 
neurodegeneraAon.  These pa#erns can help inform the understanding and treatment of 
Alzheimer’s disease. 
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Introduc/on 
 
Over the lifespan, the human brain undergoes organizaAonal development into young 
adulthood, then conAnues organizaAonal processes with increasing variability into late 
adulthood.  Alzheimer’s disease may be regarded as a disease of microscale proteinopathies 
and macroscale alteraAons of brain networks1.  By progressive neurodegeneraAon processes, 
funcAonal connecAvity networks degrade, and cogniAve funcAons deteriorate.  The types of 
networks that fail determine characterisAc demenAa phenotypes, generaAng variability of 
presentaAons, even with the presence of indisAnguishable proteinopathies.  Nevertheless, 
phenotypes can associate with specific lesions to brain networks and subnetworks2.  
NeurodegeneraAon is a state-trajectory with varieAes of cogniAve and disease outcomes.  
Typical Alzheimer’s disease has pathophysiology leading to a progressive amnesAc syndrome 
involving the default mode network3, but atypical Alzheimer’s pathophysiology can involve non-
memory systems such as language, vision, and execuAve systems4,5. 
 
This work follows prior computaAonal models demonstraAng that data from Alzheimer’s 
disease can yield predicAve features in amyloid data, tau data, and the final common pathway 
of neurodegeneraAon6.  IntegraAve computaAonal models for clinical symptoms, degeneraAve 
brain anatomy in [18F]fluorodeoxyglucose positron emission tomography (FDG PET), and refined 
consideraAons of funcAonal brain networks have previously by reported2.  IntegraAve 
computaAonal models for Alzheimer’s disease should incorporate “large-scale ensembles of 
coordinated neuronal acAvity” and “large-scale network topologies”1,2.  These are moAvated by 
prior results for the default mode network and failing of interacAons with other brain network 
hubs3,7,8.  Disease and neurodegeneraAon are disrupAons of funcAonal networks, but other 
complex characterisAcs necessarily contribute:  molecular processes, microscale misfolding of 
proteins, mesoscale funcAonal operaAons.   
 
OrganizaAonal features of the brain can be informed by previously established methodologies.  
CogniAve ontologies such as percepAon, emoAon, memory, social cogniAon, language, 
execuAve funcAon, and their neuroanatomical localizaAon have been described, and ontological 
correspondences can be constructed with tools such as Neurosynth9,10.  EvoluAonary expansion 
in early development has previously been observed through structural magneAc resonance 
imaging (MRI), corAcal thickness esAmaAons with FreeSurfer11, and idenAficaAon of pa#erns of 
covariance (PoC) using non-negaAve matrix factorizaAon (NMF)12.  NMF manages data 
complexity using mulAvariate bases, or pa#erns of covariance.   NMF is disAnguishable from 
principle components analysis (PCA) and independent component analysis (ICA);  NMF pa#erns 
are sparse and compact, with interpretable parts13.  This work demonstrates that NMF for FDG 
PET produces pa#erns of covariance disAnct from those seen in structural NMF and funcAonal 
connecAvity.  These features unique to FDG PET are likely to reflect the underlying modality as 
NMF itself remains hypothesis free, depending only on data, the numerical regularizaAons 
provided by nonnegaAvity, and linear factorizaAon.  FDG PET is an accepted biomarker for 
neurodegeneraAon14.  Thereby, NMF can indicate regions specific for regional parts-based 
features that exhibit loss of glucose metabolism on FDG PET, thereby indicaAng 
neurodegeneraAon. 
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In all, lower-dimensional models suitable for characterizing Alzheimer’s disease are sought for 
their interpretability, and NMF can provide such models. 
 
Results 
 
This study of parAcipants in ADNI had cross-secAonal design, selecAng the earliest available 
clinical data and neuroimaging following parAcipant enrollments.  All data from ADNI had 
registry-confirmed exam and imaging dates between 2005 Dec 15 and 2020 Mar 4.  PoC for FDG 
derived from 243 parAcipants without cerebral amyloidosis and CDR=0, aged 56 – 95 (mean 
73.5 ± std 6.5), 48.3% with female sex, 0 – 2 APOE e4 alleles (mean 0.19 ± std 0.43).  Analyses of 
neurodegeneraAon as esAmated by FDG used four addiAonal diagnosAc cohorts, defined by 
CDR and presence or absence of amyloidosis, and detailed further in Table 1.  Strategies for 
analyses depended on availability of FDG with contemporaneous T1-weighted MRI, which 
provided for spaAal normalizaAons.  Analyses also required availability of FreeSurfer-derived 
regions of interest (ROI) from pons and cerebellar vermis, as well as meta-ROIs15, for 
consistency of standardized uptake value raAos (SUVR) with exisAng reports drawn from ADNI.  
SeparaAon of diagnosAc cohorts required PET with amyloid-targeAng tracers and CDR.  Figure 1 
illustrates addiAonal details of data inclusion and exclusion.   
 
 
Table 1. Census of par1cipants from ADNI. T1w scans and pons-vermis reference regions within 1 year separa1on are more 
informa1ve for inferences.  Author JJL made detailed visual inspec1ons of registra1on quality of CDR=0 and amy- cases, 
excluding two FDG session for poor registra1on with the MNI150 atlas.  The first available FDG session for each study par1cipant 
provided cross-sec1onal inferences.  Analyses of covariances used data with complete CDR, amyloid status, age, sex, APOE e4 
data, and valid paRern-weighted averages of imaging.  Descrip1ve sta1s1cs (mean ± std. dev.) for age, sex, and ApoE4 inform 1st 
FDG scans.   

Groups CDR = 0, amy- CDR = 0, amy+ CDR=0.5, amy+ CDR > 0.5, amy+ 
no. FDG with cross-sectionally 

complete covariates 
243 106 402 109 

Age range (years at enrollment) 56 – 95 60 – 91 55 – 92 56 – 96 
Age (years at enrollment) 73.5 ± 6.5 75.8 ± 6.3 74.3 ± 7.4 75.4 ± 8.1 

Female (%) 48.3 62.3 44.8 52.4 

No. ApoE4 range (alleles) 0 – 2 0 – 2 0 – 2 0 – 2 
No. ApoE4 (alleles) 0.19 ± 0.43 0.53 ± 0.57 0.84 ± 0.70 0.95 ± 0.66 
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Figure 1.  Inclusion an exclusion of data for analyses. 

 
 
NMF Iden/fies Metabolic Networks 
 
Analysis of reconstrucAon error and split-half reproducibility provided model selecAon.  The 
gradient of reconstrucAon error reached plateaus at 11, 18 and 24 pa#erns.  AddiAonal 
improvement in the gradient beyond 24 raised concerns for overfitng.  Split-half reproducibility 
with 49 independent anAclustering splits favored 2, 12, and 24 pa#erns.  The distribuAons of 
anAclustered adjusted Rand index are shown in Figure 2.   Local maxima were discernable by 
distribuAon medians denoted by dashes. 
 
ExaminaAon of models with 2, 12, and 24 pa#erns suggested hierarchical organizaAon for some 
pa#erns.  Two pa#erns supported separaAon into corAcal regions that indicated intrinsic and 
extrinsic large-scale funcAonal networks, originally noted in FDG PET16.  Intrinsic networks 
match default mode and frontoparietal funcAonality observed in resAng-state funcAonal 
magneAc resonance imaging (fMRI)17.  Extrinsic networks match the complementary resAng-
state networks, including somatomotor sensory, visual, auditory and a#enAon networks18.  This 
dichotomy has been replicated by alternaAve methods including esAmates of myelinaAon made 
from comparisons of T1 and T2 weighAng19 and construcAon of generalized coordinates 
delineaAng the separaAon of primary motor and sensory corAces from heteromodal associaAon 
corAces20.  The dichotomy has also been replicated in NMF studies of corAcal thickness and 
evoluAonary expansion12, which associated pa#erns of the highest evoluAonary areal expansion 
with topographies reproducibly idenAfied with the default mode and frontoparietal control 
funcAonal networks. Pa#erns of lower evoluAonary areal expansion associated with 
topographies idenAfied with visual cortex, somato-motor-sensory areas, auditory cortex, limbic 
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structures, the insula with areas associated with the ventral a#enAon funcAonal network, and 
the dorsal a#enAon network.  The model of 12 pa#erns revealed further parcellaAons of 
intrinsic and extrinsic funcAonal networks, but not according to familiar topographies.  Notably, 
the default mode network segregated into disAnct regions for the orbitofrontal and medial 
temporal poles, the medial prefrontal and limbic areas with striatum, and the lateral parietal 
areas with large confluences of the lateral frontal lobes.  The centrum semiovale formed an 
independent pa#ern.  The cerebellum and midbrain also formed an independent pa#er.  
Twenty-four pa#erns reproduced all pa#erns of the 12-pa#ern model, while introducing 
addiAonal segregaAons, many of which corresponded to known corAcal surface topographies 
and subcorAcal segmentaAons. 
 
For the 24-pa#ern model, enumeraAon of pa#ern anatomy & correspondence with Brodmann 
areas (BA) are below.  While NMF does not impose any ordering to its pa#erns of 
decomposiAon, disAnct from the ordering of explained variance produced by principle 
component analysis (PCA), we imposed ordering of 24 enumerated pa#erns according to the 
pa#ern-averaged quanAty of FDG scaled as SUVR.  Thereby, pa#ern 1 had highest FDG SUVR, 
indicaAng maximal glucose metabolism, while pa#ern 24 had the least FDG SUVR.   

 
 

 
Figure 2.  Split-sample reproducibility with an1clustering algorithms.  49 repe11ons of an1clustering produced distribu1ons of 
adjusted Rand index for each proposed model of NMF paRerns of covariance:  2 - 40.  Local peaks of adjusted Rand index 
included 2, 12, and 24. 
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Figure 3.  PaRerns of covariance determined by model selec1on had peak selec1on objec1ves for 24 paRerns, but 12 and 2 
paRerns provided local peaks of selec1on objec1ve.  Twelve paRerns provided coarser grained paRerns that nevertheless 
replicated paRerns from the 24-paRern model.  Two paRerns provided regional segrega1on into analogs of the intrinsic (default 
mode and frontoparietal) and extrinsic (somatomotor sensory, auditory, visual) large-scale func1onal networks.  The 2-paRern 
model is represented on a smoothed cor1cal surface for clarity of topographies. 

 
Pattern 1:  maximal FDG SUVR ranged across the lateral left hemisphere, encompassing lateral 
frontal areas, lateral parietal areas, and superior temporal areas.  SUVR also encompassed 
middle frontal and inferior frontal gyri (BA45, BA44), inferior somato-motor-sensory regions 
(BA43), and extended along the supramarginal and angular gyri (BA40, BA39).  SUVR also 
extended into posterior aspects of the superior temporal gyrus (BA22, BA42, BA41).  Moderate 
SUVR localized to the lateral aspect of the right premotor cortex at its intersection with the 
middle frontal gyrus (BA6).  Moderate SUVR also localized to the precuneus (medial BA7), 
without involving the superior parietal lobule.  Minimal SUVR localized to the right putamen. 
 
Pattern 2:  maximal SUVR was bilateral, symmetric, and encompassed insular cortices (BA13), 
opercular parts of the inferior frontal gyri (BA45, BA44), and postcentral regions (BA43). 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted November 11, 2023. ; https://doi.org/10.1101/2023.11.10.23298396doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.10.23298396


Moderate SUVR involved the medial prefrontal cortices (BA10, BA11).  Moderate SUVR also 
localized to the caudate heads and anteromedial thalamus.   
 
Pattern 3:  maximal SUVR was bilateral, symmetric, and predominantly ranged across the 
medial surfaces of the frontal and parietal lobes, including the dorsolateral prefrontal cortices 
(BA9), frontal eye fields (BA8), premotor and supplementary motor cortices (BA6), primary 
somato-motor-sensory cortices (BA1-BA4), somatosensory association cortices (BA5), and 
precuneus (medial BA7).  Tapering SUVR reached the superior margins of the dorsal cingulate 
cortices (BA24, BA31).  Minimal SUVR localized to anterior and dorsal thalamus.  
 
Pattern 4:  maximal SUVR was bilateral, symmetric, and covered the temporal poles (BA38), 
extending into inferior temporal gyri (BA20, BA37).  Moderate SUVR included entorhinal cortex 
(BA34, BA28), amygdala, and hippocampal structures (BA35).   
Minimal SUVR localized to orbital inferior frontal gyri (BA47/12). 
 
Pattern 5:  maximal SUVR was bilateral, symmetric, and specifically localized to the grey-white 
junctional regions of the cerebellum.  Moderate SUVR extended into the midbrain.   
 
Pattern 6:  maximal SUVR was bilateral, symmetric, and ranged along dorsolateral surfaces 
posterior to the precentral gyrus, including primary motor (BA4), somato-sensory (BA1-BA3), 
and somato-sensory association cortices (BA5), extending into the superior parietal lobule 
(BA7).  Parietal SUVR localized dorsal to the intraparietal sulcus and lateral to precuneus.  
Minimal SUVR localized to the left insula (BA13).   
 
Pattern 7:  maximal SUVR was bilateral, symmetric, and covered the rostral frontal lobes, 
including anterior prefrontal (BA10), orbitofrontal (BA11), orbital inferior frontal (BA47/12), and 
dorsolateral prefrontal cortical (BA46) areas.  SUVR extended onto the medial surfaces of the 
anterior prefrontal and orbitofrontal cortices.  Minimal SUVR localized to striatum and ventral 
thalamus. 
 
Pattern 8:  maximal SUVR was bilateral, symmetric, and covered dorsal frontal and parietal 
areas, including dorsomedial and dorsolateral portions of dorsolateral prefrontal cortex (BA9), 
frontal eye field (BA8), supplementary motor area (BA6), and primary motor cortex (BA4).  
SUVR tapered into superior portions of the extrastriate cortex for visual association (BA19). 
 
Pattern 9:  maximual SUVR was bilateral, symmetric, and covered contiguous cortical surfaces 
of the dorsal cerebrum.  The inferior margin of SUVR enclosed superior aspects of middle 
frontal gyri and superior lateral frontal gyri (lateral aspects of BA9, BA8, BA6), and superior 
parietal lobules.  SUVR was absent throughout medial cortical surfaces. Minimal SUVR 
localized to striatum and dorsolateral thalamus.   
 
Pattern 10:  maximal SUVR ranged across the right lateral hemisphere, ranging from the 
triangular part of the inferior frontal gyrus (BA45), to the pars opercularis (BA44), the subcentral 
area (BA43), the supramarginal gyrus (BA40), and the angular gyrus (BA39).  Tapering SUVR 
minimally localizes to posterior aspects of primary auditory cortex (BA41).  
 
Pattern 11:  maximal SUVR was bilateral, symmetric, and localized to regions of the straight and 
transverse venous sinuses.   
 
Pattern 12:  maximal SUVR was bilateral, symmetric, and encompassed large, contiguous 
surfaces of the cerebrum and cerebellum along their anterior, lateral and posterior aspects.  The 
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superior margin of SUVR enclosed the frontal poles and inferior aspects of the middle frontal 
gyri, extending caudally to also enclose the inferior parietal lobules as well as the parieto-
occipital junction.  Notably, the inferior margin of SUVR excluded subgenual cortex (BA25), 
entorhinal and perirhinal cortices (BA34, BA35, BA28).  SUVR was minimal along medial 
cortical surfaces, with some localization to dorsal aspects of the cingulate cortex (BA31).  
Minimal SUVR also localized to patches within striatum and posteromedial thalamus. 
 
Pattern 13:  maximal SUVR was bilateral, symmetric, and ranged over medial aspects of 
orbitofrontal cortex (BA11) and medial prefrontal cortex (BA10) with extensions into adjacent 
deep white matter.  Maximal SUVR also localized to large regions incorporating striatum, 
thalamus, and midbrain.  
 
Pattern 14:  maximal SUVR was bilateral, symmetric, and ranged over cerebellar cortex inferior 
to locations of the transverse venous sinuses.  Minimal SUVR localized to patches along the 
lateral aspects of the inferior temporal gyri and along orbitofrontal areas.   
 
Pattern 15:  maximal SUVR was midline, encompassing the walls of the quadrigeminal cistern 
and interpeduncular cistern.  Moderate SUVR encompassed the anterior midbrain and the walls 
of the third ventricle.  
 
Pattern 16:  maximal SUVR favored the right hemisphere with moderate SUVR symmetrically 
localized in the left hemisphere.  Maximal SUVR ranged along the inferior parietal lobule, over 
the angular gyrus (BA39) and into posterior aspects of the superior temporal gyri (BA22, BA41, 
BA42).  Minimal SUVR localized to posterior surfaces of the precuneus, bilaterally (BA7). 
 
Pattern 17:  maximal SUVR was largely midline, encompassing primary and secondary visual 
cortices (BA17, BA18).  Minimal SUVR localized to patches of the left superior temporal gyrus.   
 
Pattern 18:  maximal SUVR was bilateral and symmetric, ranging over the grey-white junction 
and deeper centrum semiovale underneath primary, secondary, and association visual cortices 
(BA17-BA19).   Minimal SUVR extended into deep white matter along the medial surfaces of the 
lateral ventricles, and also extended into the deep white matter beneath the left posterior-
superior temporal gyri and beneath the left marginal gyrus.   
 
Pattern 19:  maximal SUVR was midline, ranging over the posterior cingulate cortext (BA31) 
and precuneus (medial BA7).  Minimal SUVR localized to the angular gyri, striatum, and 
thalamus bilaterally (BA 39). 
 
Pattern 20:  maximal SUVR favored the right superior temporal gyrus (BA22, BA41, BA42) and 
right supramarginal gyrus (BA40).  Moderate SUVR localized to the left superior temporal gyrus 
(BA22) and left supramarginal gyrus (BA40). 
 
Pattern 21 (1):  maximal SUVR extended throughout the centrum semiovale, internal capsule, 
and globus pallidus, but did not involve hippocampal structures.  Minimal SUVR localized to 
anteromedial thalamus and cerebellar white matter.  
 
Pattern 22:  maximal SUVR was bilateral, symmetric, and ranged over the superior parietal 
lobule (BA7).  Minimal SUVR localized to the posterior thalamus and scattered patches of deep 
white matter.   
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Pattern 23:  maximal SUVR was bilateral, symmetric, and ranged confluently over the orbital 
frontal cortices (BA11), extending into medial prefrontal areas (BA10).  Minimal SUVR extended 
into insular cortex bilaterally (BA16).     
 
Pattern 24:  maximal SUVR was bilateral, symmetric, and ranged over all cingulate cortices 
(BA31 – BA33, BA23, BA24), extending into corpus callosum and adjacent white matter.  
Moderate SUVR localized symmetrically into striatum, thalamus, and white matter tracts deep 
within temporal and parietal lobes. 
 
Pa@erns of Covariance for Metabolism Are Dis/nct from Other Known Networks 
 
Pa#ern 1, expressing the greatest glucose metabolism, was lev-hemisphere dominant, and 
revealed topography encompassing the corAcal areas commonly ascribed to language funcAons 
by historical lesion studies, by neurosurgical funcAonal studies, and by task as well as resAng  
fMRI.  Pa#ern 1, however, encompassed more than Broca’s or Wernicke’s areas, and more than 
ventral a#enAon network topography from resAng fMRI, notably including also bilateral 
precuneus.  Pa#ern 2 symmetrically revealed the anatomy of the insular cortex and opercular 
cortex, and indicated associaAons with medial prefrontal cortex, an associaAon previously not 
observed in other neuroimaging studies.  Pa#ern 3 symmetrically revealed an expansive 
topography of medial corAcal regions of import for cogniAon and behavior, involving lower 
extremity motor funcAon with numerous associaAon areas, including dorsolateral prefrontal 
cortex and precuneus.  Pa#ern 4, encompassing entorhinal corAces, amygdala, and hippocampi, 
has drawn much scruAny in demenAa research for its known roles in memory and mood 
regulaAon, but pa#ern 4 is notably segregated from the larger topography ascribed to the 
default mode of large-scale funcAonality.  Pa#ern 4, in union with the orbital frontal topography 
of pa#ern 23, which demonstrated much lower aggregate glucose metabolism, reproduced one 
of the pa#erns of the 12-pa#ern model (Figure 3).  Similar correspondences between models 
with varying spaAal coarse-graining indicate the reproducibility of NMF PoC and support the 
hierarchical organizaAon of brain funcAon21 that has been observed elsewhere22–24.  Pa#erns 5, 
11, 14, and 15 segregate the cerebellum, known to have detailed connecAvity to the canonical 
resAng-state networks, but these NMF PoCs have not indicated similar topographies in FDG PET, 
likely reflecAng the limitaAons of resoluAon of ADNI PET processing, but notable for assignment 
of three cerebellar pa#erns.  At present, there are no criteria for over-fitng that can exclude 
the separaAons of pa#erns 5, 11, 14, and 15.  While some pa#erns likely captured variability in 
extra-axial cerebrospinal fluid or atrophy, pa#erns 9 and 12, gross misregistraAon was excluded 
by detailed examinaAon and visualizaAon of spaAally normalized imaging.  Pa#ern 21 idenAfied 
the centrum semiovale with striatum, not previously idenAfied in neuroimaging studies, to our 
best knowledge.  Remaining pa#erns have analogs in large-scale funcAonal studies, but these 
remaining pa#erns from NMF are more compact and conAguous than those familiar from fMRI.   
 
Effects of Age, Sex, APOE e4 

 
Age and sex were previously found significant for structural PoC by NMF in adolescent brain 
development12.  GAMs for PoCs used FDG ~ s(age, k=20, interac+on=sex) + sex + APOEe4 + 
cohort, following Wilkinson’s notaAon and denoAng thin-plate regression splines with s, number 
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of spline knots with k,  and represenAng diagnosAc cohorts with cohort.  Categorical cohorts 
described contrasts compared to cogniAvely normal parAcipants with CDR=0 and without 
amyloidosis.  PoC SUVR decreased with age for CDR=0 without amyloidosis, but increased with 
age for pa#erns 16, 21, and for males with pa#ern 22, as shown in Figure 4.  PoC SUVR 
decreased with age for CDR=0 with amyloidosis, but increased with age for females with pa#ern 
16, for pa#ern 21, for males with pa#ern 22, and for females with pa#ern 23.  PoC SUVR 
decreased with age for CDR=0.5 with amyloidosis, but increased with age for females with 
pa#ern 21 and females with pa#ern 22.  Some male PoC had trajectories with age that were 
convex (PoC increased then diminished with age).  PoC SUVR decreased with age for CDR>0.5 
with amyloidosis, but increased with age for pa#erns 1 – 3, 6, 7, 11, 13, 16, 21, 22, and for 
females pa#ern 17, as shown in Figure 5.  For the cogniAvely impaired cohort, Increasing 
glucose metabolism with age may indicate counter-regulatory acAviAes in the presence of 
disease, but the role of glucose metabolism for the progression of demenAa is also possible 25,26 
 
 

 
Figure 4.  Generalized addi1ve model of mul1variate regression of paRerns of covariance.  FDG (SUVR) ~ s(age, interac1on=sex) 
+ sex + apoe4 + cohort.  The cohort with CDR=0 and no amyloidosis is shown.  Confidence intervals are modulated by APOE e4.  
FDG (SUVR) increases with age for P16, P21, and P22. 
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Figure 5.  Generalized addi1ve model of mul1variate regression of paRerns of covariance.  FDG (SUVR) ~ s(age, interac1on=sex) 
+ sex + apoe4 + cohort.  The cohort with CDR=0 and no amyloidosis is shown.  Confidence intervals are modulated by APOE e4.  
FDG (SUVR) increases with age for P1 – P3, P6, P7, P11, P13, P16, P21, P22, and for females paRern P17.  Symptoma1c cohorts 
revealed increasing nonlineari1es of FDG (SUVR) with age.   

 
Pa@erns of Covariance Indicate Neurodegenera/on 
 
Figure 6 shows plots of GAM coefficients relaAng diagnosAc cohorts to the asymptomaAc cohort 
without amyloidosis (CDR=0, amy-).  GAM coefficients contrasAng CDR=0, amy+ against CDR=0, 
amy- exhibited posiAvity, b CDR=0,amy+ > 0, for pa#erns 1, 8, 9, and 18 – 20, indicaAng increases of 
glucose metabolism for asymptomaAc amyloidosis.  However, the contrasts were not significant 
for our computed GAMs at the significance level of 0.05.  Nevertheless, this posiAve constrast of 
glucose metabolism is consistent with observaAons of persistently youthful measures of aerobic 
glycolysis esAmated from [15O]carbon-monoxide, [15O]oxygen, [15O]water, and FDG26.  GAM 
coefficients contrasAng CDR>0.5, amy+ against CDR=0, amy-, the contrasts for the severest 
cogniAve impairments, were most negaAve for pa#erns 3, 2, and 7, illustrated in Figure 7.   
Remarkably, for all constrasAng GAM coefficients for cohorts, pa#ern 16 was largely preserved, 
also illustrated in Figure 7.   
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Figure 6.  Generalized addi1ve model of mul1variate regression of paRerns of covariance.  FDG (SUVR) ~ s(age, interac1on=sex) 
+ sex + apoe4 + cohort.  Regression coefficients for diagnos1c cohorts (CDR=0, amy+; CDR=0.5, amy+; CDR>0.5, amy+).  The zero 
value for coefficients is indicated in gray.  Coefficients describe varia1ons of cohorts away from asymptoma1c individuals 
without amyloidosis (CDR=0, amy-).  Asterisks indicate p-values for coefficients of CDR=0.5, amy+, following Benjamini-Hochberg 
adjustments for false discovery rate:  p < 0.05 ~ *, p < 0.01 ~ **, p < 0.001 ~ ***.   For asymptoma1c individuals with amyloidosis 
(CDR=0, amy+), only paRern 18 was significant with p < 0.05.  For moderately and severely symptoma1c individual with 
amyloidosis (CDR>0.5, amy+), all paRerns were significant to p < 0.001. 
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Figure 7.  PaRerns of covariance illustrated with GAM mul1variate regression coefficients for the cogni1vely normal cohort 
(CDR=0, amy-) and severely cogni1vely impaired cohort (CDR>0.5, amy+).  PaRerns 7, 2, and 3 corresponded to the greatest loss 
of glucose metabolism, and inferred neurodegenera1on with progression of disease.  PaRern 16 retained glucose metabolism 
even for the severely cogni1vely impaired.  All coefficients had p-values < 0.0001. 
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Predic/ve Pa@erns of Neurodegenera/on Correspond to Cogni/ve Domains 
 
Figure 7 clarifies that neurodegeneraAon corresponds to losses of glucose metabolism along the 
corAcal midline, within the lateral sulcus, insula, medial prefrontal cortex, and the frontal pole.  
These corAcal regions, idenAfied as PoC 3, 2, and 7, have larger coefficients in mulAvariate 
generalize linear modeling (GLM) associaAng them to dependent variable for Alzheimer’s 
demenAa, especially CDR, CDR-SOB, and metrics of tau.  MulAvariate GLM results are 
summarized in Figure 8.  Most PoCs had sex dependence, as anAcipated from exisAng literature 
on cogniAve impairment and glucose metabolism27.   In mulAvariate GLM, APOE e2 was also 
broadly dependent upon PoC.   
 
Remarkably, neurodegeneraAon and glucose metabolism were preserved in the right angular 
gyrus, supramarginal gyrus, and posterior aspects of the superior and middle temporal gyri, 
especially posterior to Heschl’s gyrus, PoC 16, shown in Figure 7.   
 
UAlizing spin-tesAng of inflated corAcal surface28 and correcAons of volumetric auto-
correlaAons29, we mapped PoCs of glucose metabolism to topical terms from the Neurosynth 
plajorm9,30,31.  This provided commonly semanAc decodings comparable to encodings made for 
fMRI20,32 and previous studies of FDG PET2.  These mappings for 104 topic terms previously 
curated for staAsAcal independence28 are illustrated in Figure 9.  A graph of PoC with significant 
correlaAons with topic terms is shown in Figure 10. 
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Figure 8.  Mul1variate generalized linear model for paRerns of covariance and dependent variables relevant for Alzheimer's 
demen1a.  FDGAD are SUVR in Alzheimer’s disease signature regions.  MMSE is the Mini-Mental State Examina1on.  CDR-SOB is 
Clinical Demen1a Ra1ng Scale Sum of Boxes.  Tau-PET are SUVR from PET with  tau-binding tracers.  Tau-PET (Braak1, Braak34, 
Braak56) are staging scores from post-mortem neurofibrillary tangle es1mates.  Hippo Vol is hippocampal volume.  CDR is 
Clinical Demen1a Ra1ng Scale.  Amyloid-PET are SUVR from PET with amyloid-binding tracers.  E4+ indicates carriage of APOE 
e4 alleles.  E4+ indicates carriage of APOE e2 alleles.   
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Figure 9.  Pearson correla1ons of paRerns of covariance with Neurosynth topical terms selected by spin-tes1ng (Alexander-Bloch 
et al.  2018).  The NMF model with 16 components is illustrated.  Significant correla1ons were iden1fied by correc1on of 
volumetric spa1al autocorrela1ons using the framework of Brainsmash (Burt et al., 2020). 
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Figure 10.  PaRerns of covariance are embedded in graphs of significantly connected topical terms from Neurosynth. 

 
 
Discussion 
 
This study used advanced mulAvariate methods to make retrospecAve inferences on 
Alzheimer’s disease in ADNI, a large, mulAcenter, deeply curated, publicly accessible repository 
of clinical and neuroimaging data.  The primary study result is a collecAon of PoC that describe 
factors ascribable to regional glucose metabolism as esAmated from FDG SUVR14 using NMF12,33.  
The construcAon of PoC using NMF on a well-defined cogniAvely normal cohort was data-
driven, without a priori hypotheses concerning ADNI data34, following methods for NMF 
previously used successfully for neuroimaging inferences12,35.  This study examined the 
mulAvariate covariances of the NMF PoC with well-known variables for the progression of 
neurodegeneraAon to Alzheimer’s disease, including corAcal topography32, age, sex27, and APOE 
e4 alleles36.  PoC constructed from the cogniAvely normal cohort provided spaAally distributed 
bases for inference of cohorts with progressive CDR in the presence of cerebral amyloidosis.  
GAMs37,38 demonstrated that nonlinear dependence on age, interacAons with sex, and influence 
of APOE e4became more prominent with progressive neurodegeneraAon.  NeurodegeneraAon 
was especially sizeable for PoC encompassing insular cortex, frontal cortex and midline 
frontoparietal corAcal surfaces.  Notably, neurodegeneraAon spared lateral parietal and 
posterior superior temporal areas, even in severely symptomaAc ADNI parAcipants with 
amyloidosis.  In asymptomaAc ADNI parAcipants, PoC in selecAve areas demonstrated 
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increasing glucose metabolism in the presence of amyloidosis compared to those without 
amyloidosis, reproducing recent observaAons by Goyal et al. for aerobic glycolysis for which 
oxygen metabolism was minimally contributory26.   
 
Topography of Glucose Metabolism and Neurodegenera/on 
 
PoC were reproducible at mulAple scales (number of model pa#erns).  The degeneraAon of the 
default mode network in Alzheimer’s disease has been understood for decades3, but PoC from 
this work demonstrated that more granular topographies characterized neurodegeneraAon.  
This work on FDG PET reiterated12 four keys aspects for PoCs constructed from NMF.   First, 
higher PoC resoluAons respected boundaries of lower resoluAons, consistent with hierarchical 
organizaAons of pa#erns.  Without constraints favoring spaAal conAguity or sparsity, PoC from 
NMF decomposiAons were conAguous and sparse, supporAng small world properAes23,24.   
There were no constraints favoring spaAal posiAons or symmetries, yet PoC from NMF retained 
most neurostructural symmetries.  PoC also revealed expected asymmetries of ventral a#enAon 
or language funcAonality.  Modest asymmetries emerged in pa#ern 16, suggesAng avenues for 
future invesAgaAons of brain regions that are resilient to neurodegeneraAon.  PoC revealed 
associaAons that crossed gyral anatomy, consistent with microarchitectural and funcAonal 
priors.  However, PoC associaAons were disAnct from known atlases of structure and funcAon, 
indicaAng uniqueness of regional glucose metabolism.  PoC revealed overlapping areas, 
consistent with concurrently distributed underlying processes driving glucose metabolism.   

 
Neurosynth provided semanAc mappings in accord with previous approaches with eigenbrains2, 
and yielded novel features that may improve models of neurodegeneraAon.  Fear and reward 
semanAcs were coded by PoCs for insula, cingulate corAces, and medial prefrontal cortex.  
Memory was coded by PoCs for  inferior temporal (entorhinal), posterior cingulate, and 
precuneal areas as expected, with addiAon of secondary and associaAve visual corAces.  The 
la#er have historically associated with demenAa variants affecAng vision in younger cohorts.  
Language was coded by PoCs for lateral parietal, posterior temporal, opercular and insular 
areas, largely as expected from familiar funcAonal topographies.  Movement and motor 
planning was coded by PoCs for somato-motor-sensory cortex, premotor areas, and secondary 
motor areas, but also deeper white ma#er. 
 
Limita/ons 
 
This work is retrospecAve, using a mature dataset which has been studied from numerous 
previous scienAfic perspecAves since the first public availability of ADNI data.  While benefitng 
from breadth and depth of curaAon, public datasets can accumulate implicit biases.  However, 
we are unaware of any known biases that could affect this work.  This work makes inferences on 
cross-secAonal data corresponding to the Ame of enrollment of parAcipants in ADNI, which also 
may incur biases of selecAon and Aming.  For the date ranges chosen in this work, 1165 subjects 
accumulated 1890 imaging sessions with FDG PET, from which modest longitudinal inferences 
could be made.  Nevertheless, the mulAvariate strategy of the analyses brings forth contrasts 
among differing brain regions, reducing the influence of data collecAons made at baseline 
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epochs.  The generalizability of NMF PoC derived from FDG to external, unseen data will be 
tested in follow-up studies of replicaAon.   
 
Study Implica/ons 
 
The resulAng PoC from this study may provide important alternaAve regional criteria, disAnct 
from atlas regions, and made specific for glucose metabolism which has known 
pathophysiologic mechanisms corresponding to neurodegeneraAon.  In the pursuit of high-
dimensional datasets, specific regional PoC for neurodegeneraAon will provide raAonal means 
of dimensionality reducAon for purpose of interpretability and predicAons.  PoC results from 
this study can be reused in combinaAons with other neuroimaging data, with full use of 
computaAonal automaAons, to achieve models with greater predicAve capabiliAes. 
 
Conclusions 
 
NMF is a data-driven, principled, supervised staAsAcal learning method that provides 
interpretable pa#erns from neuroimaging.  It can indicate regions specific for parts-based 
features that exhibit loss of glucose metabolism on FDG PET, thereby indicaAng 
neurodegeneraAon.  It provides lower-dimensional models that can help inform the 
understanding and treatment of Alzheimer’s disease. 
 
Methods 
 
***** 
 
Par/cipants and Neuroimaging 
 
ADNI data selec/on.  Data for all parAcipants were drawn directly from ADNI 
(h#ps://adni.loni.usc.edu) and the ADNI Data Package for R (The ADNI Team.  ADNIMERGE: 
Alzheimer’s Disease Neuroimaging IniAaAve, R package version 0.0.1 (2023); 
h#ps://adni.bitbucket.io/index.html).  Following filing of data use agreements, all data were 
downloaded via ADNI’s web services for data access.  FDG PET were primary data objects and 
data curaAon began with collecAon of all available FDG PET from 9/22/2005 – 1/4/2022 which 
were co-registered, averaged, standardized for image and voxel size, and transformed to 
uniform resoluAon.  For each subject with FDG PET, subsequent data gathering included:  all 
available T1-weighted (T1w) imaging, and all available dataframes for ADNIMERGE in comma-
separated-value formats.  T1w imaging provided naAve anatomy for anatomical inferences and 
for nonlinear spaAal normalizaAons.  For each FDG PET, we selected the most contemporaneous 
T1w imaging, not exceeding 365 days separaAon from FDG PET.  We curated dataframe values 
so as to ensure that all values used for inferences were contemporaneous to within 365 days.  
We gathered scalar FDG SUVR from meta-ROIs, age, MMSE, CDR-SOB, scalar tau-specific SUVR, 
Braak staging measures, hippocampal volume, CDR, sex, amyloid-specific SUVR, APOE e4, and 
APOE e2.  UlAmately, we excluded from inferences any FDG PET that lacked adequate 
contemporaneous ancillary data.   
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Image-processing pipelines.  All imaging was nonlinearly warped to the MNI152 atlas.  First, we 
ensured all imaging to be forma#ed to NIfTI using dcm2niix39.  Then, we corrected bias fields in 
T1w imaging using ANTs N4BiasFieldCorrecAon40,41.  Next, we constructed binary masks for the 
whole brain using DeepMRSeg42.  Next, we constructed nonlinear warps using, from ANTs, 
antsRegistraAonSyNQuick and antsApplyTransforms.  Next, using whole brain masks, we used 
4dfp t4_resolve (h#ps://4dfp.readthedocs.io) to obtain rigid-body co-registraAon of FDG to T1w 
images.  Next, we adjusted normalizaAons of FDG SUVR to values in FreeSurfer-determined 
pons and cerebellar vermis15.  ComposiAon of all registraAons, warpings, and their inverses, 
produced transformaAons for FDG onto the MNI152 atlas.  Finally, we applied the atlas-
registered binary mask to exclude all FDG voxels not in the brain, voxels which otherwise were 
needed for high-resoluAon warping.    

 
The final quality assurance procedure used human visualization of all FDG imaging providing for 
construction of PoC by NMF. Greatest variability appeared in the posterior cerebellum, the 
cerebral vertex in the vicinity of the sagittal sinus, and cortical thickness after nonlinear 
registration. Therefore, NMF patterns involving these regions likely represent aspects of 
nonlinear misregistration.  
 
Mul/variate Analysis of Hierarchical Covariance Structures 
 
To infer hierarchical covariance structures in ADNI parAcipants and their FDG PET, we used NMF.   
FDG PET from all parAcipants (n in number) require reshaping such that all voxels from a single 
PET session (d in number) comprise a column vector, and horizontal concatenaAon of vectors 
from all parAcipants form a data matrix, 𝑋 = [𝑥!, … , 𝑥"], 𝑥# ∈ 𝑅$, of size d x n.  All PET voxels 
are non-negaAve aver reconstrucAon of emission acAviAes.  Consequently, the sought 
approximate factorizaAon is 𝑋 ≈ 𝑊𝐻 with 𝑊 = [𝑤!, … , 𝑤%], 𝑤# ∈ 𝑅$ 	and 𝐻& =
[ℎ!, … , ℎ%], ℎ# ∈ 𝑅", with all elements of W and H also being non-negaAve.   The number of 
adjustable pa#erns 𝑘 ≪ 𝑑 and 𝑘 ≪ 𝑛, thereby providing dimensionality reducAon.  Matrix W 
provides a d-voxel representaAon for each of k pa#erns in each column.  Matrix 𝐻&  provides an 
n-parAcipant representaAon, describing the variability of the parAcipants, for each of k pa#erns 
in each column.  Our implementaAon of NMF (h#ps://github.com/asoAras/brainparts) imposes 
constraints for orthonormality, 𝑊&𝑊 = 𝐼, and for projecAon to parAcipant representaAons, 
𝐻 = 𝑊&𝑋 13,43.   
 
We ran mulAple NMF trials for 2-40 pa#erns with which we performed model selecAon to find 
the opAmal number of pa#erns consistent with our data.  Split-half reproducibility made 
principled use of anAclustering to find minimally clustered splits44, then examined the stability 
of NMF results for each of the trials of pa#erns45,46.  The opAmal number of pa#erns saAsfied 
reproducibility:  results with the highest mean adjusted Rand index (ARI) across 49 split-half 
bootstraps; and reliability:  results with the lowest deviaAon of ARI across bootstraps47,48.  ARI 
measures set similarity adjusted for chance, allowing for balanced comparisons between sets of 
pa#erns for variable numbers of pa#erns.  We also examined reconstrucAon errors as the 
Frobenius norm between data matrix, X, and the NMF decomposiAon, WH.   
 
Analysis of Pa@erns of Neurodegenera/on 
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We accounted for spaAal autocorrelaAons of volumetric FDG imaging as many features 
meaningful for the study were subcorAcal.  For this purpose, we used BrainSMASH 
(h#ps://github.com/murraylab/brainsmash)29.   
 
Es/ma/on of Metabolic and Cogni/ve Associa/ons 
 
Finding ontological correspondence between the body of known neuropsychological landmarks 
and FDG imaging features required use of the Neurosynth plajorm (h#ps://neurosynth.org)9.   
 
Data Availability 
 
h#ps://neurovault.org/collecAons/13302/ 
 
Code Availability 
 
h#ps://github.com/jjleewustledu/mladni/tree/master  
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