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 2 

Abstract 24 

Prenatal exposure to environmental contaminants is a significant health concern because it has the 25 

potential to interfere with host metabolism, leading to adverse health effects in early childhood 26 

and later in life. Growing evidence suggests that genetic and environmental factors, as well as their 27 

interactions, play a significant role in the development of autoimmune diseases. In this study, we 28 

hypothesized that prenatal exposure to environmental contaminants impacts cord serum 29 

metabolome and contributes to the development of autoimmune diseases. We selected cord serum 30 

samples from All Babies in Southeast Sweden (ABIS) general population cohort, from infants who 31 

later developed one or more autoimmune-mediated and inflammatory diseases: celiac disease 32 

(CD), Crohn's disease (IBD), hypothyroidism (HT), juvenile idiopathic arthritis (JIA), and type 1 33 

diabetes (T1D) (all cases, N = 62), along with matched controls (N = 268). Using integrated 34 

exposomics and metabolomics mass spectrometry (MS) based platforms, we determined the levels 35 

of contaminants and metabolites. Differences in exposure levels were found between the controls 36 

and those who later developed various diseases. High contaminant exposure levels were associated 37 

with changes in metabolome, including amino acids and free fatty acids. Specifically, we identified 38 

marked associations between metabolite levels and exposure levels of deoxynivalenol (DON), 39 

bisphenol S (BPS), and specific per- and polyfluorinated substances (PFAS). Our study suggests 40 

that prenatal exposure to specific environmental contaminants alters the cord serum metabolomes, 41 

which, in turn, might increase the risk of various immune-mediated disease later in life. 42 

 43 

Keywords: autoimmune disease; environmental contaminants; exposome; lipidomics; 44 
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Introduction 47 

Exposure to environmental contaminants contributes to the global burden of many chronic diseases 48 

(Chew et al. 2023; Cui et al. 2016; Diseases and Injuries 2020; Landrigan et al. 2016; Shaffer et 49 

al. 2019). Over the past few decades, the prevalence of autoimmune diseases increased in both 50 

developed and developing countries, resulting in a high disease burden (Berhan et al. 2011; 51 

Carstensen et al. 2020; Eaton et al. 2007; Harjutsalo et al. 2013; Patterson et al. 2009). 52 

Autoimmune diseases are often manifested in early childhood and are also common among the 53 

pregnant mothers (Eaton et al. 2007; Tincani et al. 2016). They are chronic, impact child growth 54 

and development and require long-term management and care (Rosenblum et al. 2012; Wilson et 55 

al. 2016). Many studies suggest that a combination of genetic predisposition, environmental and 56 

maternal factors as well as their interactions play a significant role in the etiology of autoimmune 57 

diseases (Ellis et al. 2014; Oresic et al. 2013; Oresic et al. 2008; Rewers and Ludvigsson 2016; 58 

Sen et al. 2019; Sen et al. 2020; Sinisalu et al. 2020; Virolainen et al. 2023). 59 

Exposure of humans to environmental chemicals begins already during the "sensitive window" of 60 

human early development, including the prenatal stage (Buhimschi and Buhimschi 2012; 61 

Karthikeyan et al. 2021; Landrigan and Goldman 2011; Robinson and Vrijheid 2015). Prenatal 62 

exposure to PFAS and other contaminants have been associated with abnormal metabolism and 63 

later progression to autoimmune diseases such as T1D (McGlinchey et al. 2020), CD (Sen et al. 64 

2019; Sinisalu et al. 2020), IBD (Filimoniuk et al. 2020) later. PFAS exposure, for instance, alters 65 

the levels of phospholipids and contributes to the risk of T1D (McGlinchey et al. 2020). Although 66 

most autoimmune diseases share common pathogenicity and genetic risk factors (Ilonen et al. 67 

2016; Sen et al. 2019), their underlying pathogenic mechanisms are poorly understood. Beside 68 

exposure to environmental chemicals, perinatal factors such as low birth weight (Katsarou et al. 69 

2017), the gut microbiome (Belteky et al. 2023; Khan and Wang 2019; Kindgren et al. 2023; Kostic 70 

et al. 2015; Vatanen et al. 2018; Weis 2018) and maternal diet (Johnson et al. 2021; Johnson et al. 71 

2019; Virtanen et al. 2012) are also attributed to the progression of autoimmune diseases. 72 
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Given the potential impact of exposure to environmental contaminants and the role of maternal 73 

factors in the progression of autoimmune diseases (Hyotylainen et al. 2023), it is important to 74 

characterize the prenatal and early-life exposome to better understand the pathogenesis of 75 

autoimmune diseases. Herein, we hypothesized that exposure to environmental contaminants 76 

impacts cord serum metabolome, which may contribute to the development of one or more 77 

autoimmune diseases in the general population cohort (All Babies In Southeast Sweden, ABIS) 78 

(Ludvigsson et al. 2001; Nygren et al. 2015). We quantified levels of contaminants and metabolite 79 

profiles from cord serum collected at birth, using integrated exposomics and metabolomics 80 

approaches. We investigated (i) the levels of exposure and significant differences between controls 81 

and cases, (ii) associations of contaminant exposure with cord serum metabolic profiles, and (iii) 82 

the impact of contaminant exposure levels on cord serum metabolic profiles.  83 

Materials and methods 84 

Study design 85 

ABIS, a general population cohort consists of 17000 children born 1st of Oct 1997- 1st of Oct 1999, 86 

followed prospectively with regular follow-ups. ABIS is connected to the Swedish National 87 

Diagnosis Register which give information about diagnosis of autoimmune disease. Stool samples 88 

were collected from ca 1800 individuals at 1 year of age, and microbiome studies have been 89 

performed (Belteky et al. 2023; Hyotylainen et al. 2023). The present study includes subjects 90 

(N=62) from this group who later developed one or more autoimmune and inflammatory diseases 91 

such as cCeliac disease (CD), Crohns disease (IBD), hypothyroidism (HT), juvenile idiopathic 92 

arthritis (JIA) and type1 diabetes (T1D) along with their matching controls (N=268). The cord 93 

blood samples collected during birth were subjected to metabolomics analysis. Fig. 1 summarizes 94 

the study design and integrated workflow.  95 

This study was performed in accordance with the Declaration of Helsinki. The ABIS study was 96 

approved by the Research Ethics Committees of the Faculty of Health Sciences at Linköping 97 
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University, Sweden, 1997/96287 and 2003/03-092 and the Medical Faculty of Lund University, 98 

Sweden (DNR 99227, DNR 99321). All participating parents gave their informed consent to 99 

participate in ABIS after oral, written and video information. ABIS connection to national register 100 

approved by the Research Ethics Committees of the Faculty of Health Sciences at Linköping 101 

University, Sweden, DNR 05-513, and 2018/380-32. 102 

Analysis of metabolome and environmental contaminants 103 

A total of 360 cord blood samples were randomized and analyzed as described below. Shortly, two 104 

methods were applied for separate extraction of lipids and polar/semipolar metabolites and the 105 

extracts were then analyzed using an ultra-high-performance liquid chromatography quadrupole 106 

time-of-flight mass spectrometry (UHPLC-QTOFMS) as described previously (Hyotylainen et al. 107 

2023) and the data were processed using MZmine 2.53 (Pluskal et al. 2010). Quantification was 108 

performed using calibration curves and the identification was done with a custom data base, with 109 

identification levels 1 and 2 (Metabolomics Standards Initiative). Quality control was performed 110 

by analyzing pooled quality control samples. In addition, extracted blank samples, standards 111 

compounds, and reference plasma (NIST SRM 1950); purchased from the National Institute of 112 

Standards and Technology at the US Department of Commerce (Washington, DC, USA))  were 113 

analyzed as part of the quality control procedure. 114 

Analysis of molecular lipids 115 

10 µl of serum was mixed with 10 µl 0.9% NaCl and extracted with 120 µl of CHCl3: MeOH (2:1, 116 

v/v) solvent mixture containing internal standard mixture (c = 2.5 µg/ml; 1,2-diheptadecanoyl-sn-117 

glycero-3-phosphoethanolamine (PE(17:0/17:0)), N-heptadecanoyl-D-erythro-118 

sphingosylphosphorylcholine (SM(d18:1/17:0)), N-heptadecanoyl-D-erythro-sphingosine 119 

(Cer(d18:1/17:0)), 1,2-diheptadecanoyl-sn-glycero-3-phosphocholine (PC(17:0/17:0)), 1-120 

heptadecanoyl-2-hydroxy-sn-glycero-3-phosphocholine (LPC(17:0)) and 1-palmitoyl-d31-2-121 

oleoyl-sn-glycero-3-phosphocholine (PC(16:0/d31/18:1)) and, triheptadecanoylglycerol 122 
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(TG(17:0/17:0/17:0)). The samples were vortexed and let stand on the ice for 30 min before 123 

centrifugation (9400 rcf, 3 min). 60 µl of the lower layer of was collected and diluted with 60 µl 124 

of CHCl3: MeOH. The samples were kept at -80 ˚C until analysis.  125 

Samples were analyzed by UHPLC-QTOFMS (Agilent Technologies; Santa Clara, CA, USA). 126 

The analysis was carried out on an ACQUITY UPLC BEH C18 column (2.1 mm × 100 mm, 127 

particle size 1.7 μm) by Waters (Milford, USA). he eluent system consisted of (A) 10 mM NH4Ac 128 

in H2O and 0.1% formic acid and (B) 10 mM NH4Ac in ACN: IPA (1:1) and 0.1% formic acid. 129 

The gradient was as follows: 0-2 min, 35% solvent B; 2-7 min, 80% solvent B; 7-14 min 100% 130 

solvent B. The flow rate was 0.4 ml/min.  131 

The following steps were applied in data processing with MZmine 2.53: (i) Mass detection with a 132 

noise level of 1000, (ii) Chromatogram builder with a minimum time span of 0.08 min, minimum 133 

height of 1000 and a m/z tolerance of 0.006 m/z or 10.0 ppm, (iii) Chromatogram deconvolution 134 

using the local minimum search algorithm with a 70% chromatographic threshold, 0.05 min 135 

minimum RT range, 5% minimum relative height, 1200 minimum absolute height, a minimum 136 

ration of peak top/edge of 1.2 and a peak duration range of 0.08–5.0, (iv), Isotopic peak grouper 137 

with a m/z tolerance of 5.0 ppm, RT tolerance of 0.05 min, maximum charge of 2 and with the 138 

most intense isotope set as the representative isotope, (v) Join aligner with a m/z tolerance of 0.009 139 

or 10.0 ppm and a weight for of 2, a RT tolerance of 0.15 min and a weight of 1 and with no 140 

requirement of charge state or ID and no comparison of isotope pattern, (vi) Peak list row filter 141 

with a minimum of 10% of the samples (vii) Gap filling using the same RT and m/z range gap 142 

filler algorithm with an m/z tolerance of 0.009 m/z or 11.0 ppm, (vii) Identification of lipids using 143 

a custom database search with an m/z tolerance of 0.008 m/z or 8.0 ppm and a RT tolerance of 144 

0.25 min. Identification of lipids was based on an in-house librarybased on LC-MS/MS data on 145 

retention time and mass spectra. The identification was done with a custom data base, with 146 

identification levels 1 and 2, i.e., based on authentic standard compounds (level 1) or based on 147 

MS/MS identification (level 2). 148 
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Quantification of lipids was performed using a 7-point internal calibration curve (0.1-5 µg/mL) 149 

using the following lipid-class specific authentic standards: using 1-hexadecyl-2-(9Z-150 

octadecenoyl)-sn-glycero-3-phosphocholine (PC(16:0e/18:1(9Z))), 1-(1Z-octadecenyl)-2-(9Z-151 

octadecenoyl)-sn-glycero-3-phosphocholine (PC(18:0p/18:1(9Z))), 1-stearoyl-2-hydroxy-sn-152 

glycero-3-phosphocholine (LPC(18:0)), 1-oleoyl-2-hydroxy-sn-glycero-3-phosphocholine 153 

(LPC(18:1)), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (PE(16:0/18:1)), 1-(1Z-154 

octadecenyl)-2-docosahexaenoyl-sn-glycero-3-phosphocholine (PC(18:0p/22:6)) and 1-stearoyl-155 

2-linoleoyl-sn-glycerol (DG(18:0/18:2)), 1-(9Z-octadecenoyl)-sn-glycero-3-156 

phosphoethanolamine (LPE(18:1)), N-(9Z-octadecenoyl)-sphinganine (Cer(d18:0/18:1(9Z))), 1-157 

hexadecyl-2-(9Z-octadecenoyl)-sn-glycero-3-phosphoethanolamine (PE(16:0/18:1)) from Avanti 158 

Polar Lipids, 1-Palmitoyl-2-Hydroxy-sn-Glycero-3-Phosphatidylcholine (LPC(16:0)), 1,2,3 159 

trihexadecanoalglycerol (TG(16:0/16:0/16:0)), 1,2,3-trioctadecanoylglycerol (TG(18:0/18:0/18:)) 160 

and 3β-hydroxy-5-cholestene-3-stearate (ChoE(18:0)), 3β-Hydroxy-5-cholestene-3-linoleate 161 

(ChoE(18:2)) from Larodan, were prepared to the following concentration levels: 100, 500, 1000, 162 

1500, 2000 and 2500 ng/mL (in CHCl3:MeOH, 2:1, v/v) including 1250 ng/mL of each internal 163 

standard. 164 

Analysis of polar metabolites 165 

40 µl of serum sample was mixed with 90 µl of cold MeOH/H2O (1:1, v/v) containing the internal 166 

standard mixture (Valine-d8, Glutamic acid-d5, Succinic acid-d4, Heptadecanoic acid, Lactic acid-167 

d3, Citric acid-d4. 3-Hydroxybutyric acid-d4, Arginine-d7, Tryptophan-d5, Glutamine-d5, each at 168 

at c= 1 µgmL-1 and 1-D4-CA,1-D4-CDCA,1-D4-CDCA,1-D4-GCA,1-D4-GCDCA,1-D4-169 

GLCA,1-D4-GUDCA,1-D4-LCA,1-D4-TCA, 1-D4-UDCA, each at 0.2 1 µgmL-1) for protein 170 

precipitation. The tube was vortexed and ultrasonicated for 3 min, followed by centrifugation 171 

(10000 rpm, 5 min). After centrifuging, 90 µl of the upper layer of the solution was transferred to 172 

the LC vial and evaporated under the nitrogen gas to the dryness. After drying, the sample was 173 

reconstituted into 60 µl of MeOH: H2O (70:30).  174 
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Analyses were performed on an Agilent 1290 Infinity LC system coupled with 6545 QTOFMS 175 

interfaced with a dual jet stream electrospray (dual ESI) ion source (Agilent Technologies; Santa 176 

Clara, CA, USA) was used for the analysis. Aliquots of 10 μL of samples were injected into the 177 

Acquity UPLC BEH C18 2.1 mm × 100 mm, 1.7-μm column (Waters Corporation, Wexford, 178 

Ireland), fitted with a C18 precolumn (Waters Corporation, Wexford, Ireland). The mobile phases 179 

consisted of (A) 2 mM NH4Ac in H2O: MeOH (7:3) and (B) 2 mM NH4Ac in MeOH. The flow 180 

rate was set at 0.4 mLmin-1 with the elution gradient as follows:  0-1.5 min, mobile phase B was 181 

increased from 5% to 30%; 1.5-4.5 min, mobile phase B increased to 70%; 4.5-7.5 min, mobile 182 

phase B increased to 100% and held for 5.5 min. A post-time of 5 min was used to regain the initial 183 

conditions for the next analysis. The total run time per sample was 20 min. The dual ESI ionization 184 

source was settings were as follows: capillary voltage was 4.5 kV, nozzle voltage 1500 V, N2 185 

pressure in the nebulized was 21 psi and the N2 flow rate and temperature as sheath gas was 11 186 

Lmin-1 and 379 °C, respectively. In order to obtain accurate mass spectra in MS scan, the m/z 187 

range was set to 100-1700 in negative ion mode. MassHunter B.06.01 software (Agilent 188 

Technologies; Santa Clara, CA, USA) was used for all data acquisition. 189 

MS data processing was performed using same parameters as in lipidomic analysis. 190 

Quantitation was done using 6-point calibration (PFOA c= 3.75-120 ng/mL, bile acids c= 20-640 191 

ng/mL, polar metabolites c=0.1 to 80 μg/mL). Quantification of other bile acids was done using 192 

the following compounds: chenodeoxycholic acid (CDCA), cholic acid (CA), deoxycholic acid 193 

(DCA), glycochenodeoxycholic acid (GCDCA), glycocholic acid (GCA), glycodehydrocholic 194 

acid (GDCA), glycodeoxycholic acid (GDCA), glycohyocholic acid (GHCA), 195 

glycohyodeoxycholic acid (GHDCA), glycolitocholic acid (GLCA), glycoursodeoxycholic acid 196 

(GUDCA), hyocholic acid (HCA), hyodeoxycholic acid (HDCA), litocholic acid (LCA), alpha-197 

muricholic acid (αMCA), tauro-alpha-muricholic acid (T-α-MCA), tauro-beta-muricholic acid(T-198 

β-MCA), taurochenodeoxycholic acid (TCDCA), taurocholic acid (TCA), taurodehydrocholic 199 

acid (THCA), taurodeoxycholic acid (TDCA), taurohyodeoxycholic acid (THDCA), 200 
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taurolitocholic acid (TLCA), tauro-omega-muricholic acid (TωMCA) and tauroursodeoxycholic 201 

acid (TDCA) and polar metabolites was done using alanine, citric acid, fumaric acid, glutamic 202 

acid, glycine, lactic acid, malic acid, 2-hydroxybutyric acid, 3-hydroxybutyric acid, linoleic acid, 203 

oleic acid, palmitic acid, stearic acid, cholesterol, fructose, glutamine, indole-3-propionic acid, 204 

isoleucine, leucine, proline, succinic acid, valine, asparagine, aspartic acid, arachidonic acid, 205 

glycerol-3-phosphate, lysine, methionine, ornithine, phenylalanine, serine and threonine.  206 

QC/QA 207 

Quality control was accomplished both for lipidomics, polar metabolites and PFAS analysis by 208 

including blanks, pure standard samples, extracted standard samples, pooled quality control 209 

samples and standard reference plasma samples (NIST SRM 1950). The pooled sample were 210 

prepared by taking an aliqout (10 µl) of each extract, separately for lipidomic and polar metabolite 211 

methods, then pooling them, and aliquoting the pool into separate vials. In lipidomic and 212 

metabolomic analyses, lipids that had >30% RSD in the pooled QC samples (an equal aliquot of 213 

each sample pooled together) or that were present at high concentrations in the extracted blank 214 

samples (ratio between samples to blanks < 5) were excluded from the data analyses. 215 

Statistical analysis 216 

Data pre-processing and clustering 217 

In this study, all data analyses were conducted using the R statistical programming language 218 

(version 4.1.2) (https://www.r-project.org/). The exposure datasets were pre-processed by log2 219 

transformation and scaling to zero mean and unit variance (auto-scaled). For contaminant exposure 220 

analyses, individual contaminant and cluster-level analyses were performed. To cluster the 221 

contaminant data, we utilized the ‘mclust’ R package (version 5.4.10) for model-based clustering, 222 

selecting the model type and the number of clusters based on the highest Bayesian Information 223 

Criterion (BIC). To better understand the impact of exposure, we also incorporated lipidomics and 224 
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 10 

metabolomics data from our previous study (Hyotylainen et al. 2023), which included eight lipid 225 

clusters (LCs) and twelve polar metabolite clusters (PCs), along with their individual features.  226 

Demographic data and covariates 227 

In terms of demographic data and covariates, the median age at the time of diagnosis for subjects 228 

who later developed autoimmune diseases was 15 years. We obtained information on birthweight, 229 

maternal age, gestational age, and BMI from the questionnaire. Additionally, we utilized 230 

birthweight and gestational age to calculate birthweight for gestational age (BWGA) Z-score, 231 

utilizing internationally validated infant growth charts developed by Fenton (Chou et al. 2020; 232 

Fenton and Kim 2013).  233 

Correlation and partial correlation analysis 234 

Pairwise Spearman's correlation between contaminants, lipid clusters (LCs), Polar metabolite 235 

clusters (PCs) and demographic variables (Z-score, Maternal age, BMI) was calculated and 236 

visualized using ‘corrplot’ R package (version 0.92). Two correlation plots were generated 237 

separately for control and cases. The correlation between variables visualised in the form of a 238 

matrix plot refers to positive and negative correlations and the strength of the association is referred 239 

to by the size of the dot or filled circles. 240 

The Debiased Sparse Partial Correlation algorithm (DSPC) (Basu et al. 2017) was used to estimate 241 

partial correlation networks and visualized in the form of a chord diagram using ‘circlize’, R 242 

package (version 0.4.15) with edge ranges between ±0.14 to 1.0 and showing only correlations 243 

across contaminants, LCs, PCs and demographic variables. 244 

Univariate statistical analysis 245 

To understand the impact of contaminant exposure levels on cord serum metabolome, the subjects 246 

were assigned to four quartiles based on the exposure levels. A two-way analysis of variance 247 

(ANOVA) test was performed followed by post-hoc Tukey’s test by using quartiles (Q1 to Q4) 248 
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and subjects (cases and control) as factor variables. ANOVA test helps to identify any significant 249 

changes in the lipid or metabolite clusters and post-hoc Tukey’s test helps to identify the specific 250 

quartiles between which significant changes are observed.  251 

Regression and classification analysis 252 

Predictive logistic ridge regression (LRR) was performed to investigate the impact of individual 253 

contaminants on the stratification of autoimmune cases and controls. We have adapted the L2 254 

regularization strategy to avoid multicollinearity among highly correlated predictors. Regularized 255 

regression modelling was performed using the ‘glmnet’ package in R (version 4.1-4). The hyper-256 

parameter λminimum was determined by 10-fold cross-validation using the ‘cv.glmnet’ function from 257 

‘glmnet’. The models were adjusted for Z-score, Maternal age and BMI. The accuracy of 258 

prediction was determined by AUCs, where the mean AUC of the model was estimated by 259 

bootstrapping, by resampling the exposure dataset into training (80%) and testing (20%) 10,000 260 

times. All LRR models with a threshold of AUC > 0.60 were considered. Downsampling was 261 

performed to address the class imbalance problem (cases, n=62, controls, n >62). The ‘caret’ 262 

package (version 4.1.3) was used for the partition of data and the best models (based on mean 263 

AUCs) were assessed using Receiver Operating Characterisitic (ROC) curves using the ‘ROCR’ 264 

package. Additionally, we have performed a stepwise recursive feature elimination scheme to 265 

identify the minimum number of predictors that are needed to maximize the outcome. 266 

To investigate the effect of contaminant exposure on the cord blood metabolome, we employed 267 

linear regression with L2 regularization (LR), using individual contaminant concentrations as 268 

predictors and the concentrations of significantly altered cord blood lipid or polar metabolites (and 269 

their cluster) as the response variable. The hyper-parameter λminimum, which corresponds to the 270 

minimum cross-validation error, was selected through 10-fold cross-validation. We partitioned the 271 

data and performed resampling (10,000 iterations) as described earlier. The mean R square was 272 

used to estimate the accuracy of prediction and the significant impact of contaminant exposure on 273 

the cord blood metabolome. 274 
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Additionally, we determined the ranks of the predictors using LR and LRR modelling. For the 275 

LRR models, the ranks of the predictors were estimated based on the unit absolute differences in 276 

the odds ratio, while for the LR models, the ranks were based on the ridge coefficients normalized 277 

with the maximum value. 278 

Pathway analysis 279 

Pathway enrichment analysis comparing cases versus controls for Deoxynivalenol (DON) impact 280 

polar metabolites was performed using the MetaboAnalyst 5.0 web platform with the Functional 281 

Analysis (MS Peaks) module (Pang et al. 2022). The input data for the pathway analysis consisted 282 

of complete high-resolution LC-MS spectral peak data obtained in negative ionization mode with 283 

a mass tolerance of 10 ppm. Linear regression analysis was performed to estimate the association 284 

between DON and polar metabolites while adjusting for Z-score, Maternal age, and BMI. The 285 

whole input peak list with FDR-corrected p-values and T-score was used for the pathway analysis. 286 

Overrepresented pathways were estimated against the background human scale metabolic model 287 

MNF (from MetaboAnalyst Mummichog package) and Kyoto Encyclopedia of Genes and 288 

Genomes (KEGG) pathways for Homo sapiens to determine the relative significance of the 289 

identified pathways (Li et al. 2020). The MetaboAnalyst 5.0 metabolomics pathway analysis 290 

(MetPA) tool(Xia and Wishart 2010) was used to calculate the Pathway Impact Scores (Chong et 291 

al. 2018; Pang et al. 2022). 292 

Results 293 

Metabolomic analysis of the cord blood 294 

Fig. 1 summarizes the integration of exposomics and metabolomics workflows in the ABIS cohort. 295 

Cord serum samples were analyzed for a total of 545 lipids and 3417 polar metabolites, which 296 

were further grouped into 8 lipid clusters and 12 polar metabolite clusters, respectively. We 297 

previously found significant associations between the metabolite clusters and demographic 298 
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variables or clinical parameters such as gestational age, maternal age, and birth weight 299 

(Hyotylainen et al. 2023). To account for these associations, we used the Z-score as calculated 300 

from birth weight, gestational age, and maternal BMI as covariates in our analysis.  301 

Levels of contaminants in the cord blood 302 

A total of 20 contaminants, including several PFAS compounds, were detected in cord blood 303 

samples from both control and case groups (Table S1). Differences (p<0.05) in concentration 304 

levels between control and case groups were observed for Perfluorooctanoic acid Branched 2, 305 

Environmental Contaminant 1, Perfluorooctanoic acid Linear 1, Perfluorooctanoic acid Linear 2 306 

and Methylparaben (Fig. 2). At the individual disease level, Environmental Contaminant 1, 307 

Perfluorooctanoic acid Linear 2 and Perfluorooctanoic acid Branched 2 showed differences 308 

(p<0.05) in concentration levels between control and individual disease groups (Fig. S1). The 309 

contaminants were reduced to four clusters (CC1-CC4) consisting of eight contaminants, including 310 

Bisphenol S, Deoxynivalenol, Monobutyl phthalate, and a-Zearalanol in CC1; Ethylparaben, 311 

Methylparaben, and Propylparaben in CC2; Perfluorohexanesulfonic acid (PFHxS) and  312 

Perfluorohexanesulfonic acid Branched (PFHxSBr) in CC3; and seven PFAS and their fragments 313 

as part of CC4 (Table S1). 314 

Exposure level of contaminants as a predictor for immune-mediated diseases 315 

We employed predictive logistic ridge regression (LRR) models to stratify controls and cases 316 

based on their contaminant concentrations. The models were fitted using all predictors or by using 317 

the stepwise recursive feature elimination (RFE) method. The mean area under the curve (AUC) 318 

values for the models were 0.65 (95% CI 0.63-0.67) when using all predictors and 0.67 (95% CI 319 

0.66-0.68) when using the stepwise RFE method (Fig. S2). Our results showed that the 320 

contaminant concentration levels have a modest potential to differentiate controls from 321 

autoimmune diseases, as indicated by the mean AUC values (Fig. S2). The ranks of individual 322 
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contaminants (predictors) for separating controls and cases were estimated based on the unit 323 

absolute difference in odds ratios (Fig. S2A). 324 

Associations between contaminants and cord serum metabolic profiles 325 

We found significant associations between contaminants and cord serum metabolic profiles (Fig. 326 

3). Specifically, more associations were observed between PFAS exposures and metabolic profiles 327 

in cases than in controls. Maternal age was positively associated with metabolite cluster PC1 in 328 

cases but not in controls (Fig. 3). We also performed partial correlation network analysis to identify 329 

non-spurious associations and Fig. 4 shows the marked associations between contaminants and 330 

cord serum metabolic profiles along with demographic variables. In the case group (Fig. 4B), the 331 

covariates Z-score, maternal age, and BMI showed a stronger association with exposure and cord 332 

serum metabolic profiles compared to the control group (Fig. 4A). The mycotoxins including 333 

deoxynivalenol were found to be associated with PC2 (phosphatidylcholines) and PC10 334 

(unknowns), while a-zearalanol was associated with PC1 (lysophosphatidylcholines, 335 

sphingomyelins, and ceramides) (Fig. 4). 336 

Impact of contaminant exposure on cord serum metabolites associated with immune-337 

mediated diseases 338 

The samples were stratified into quartiles based on their level of exposure to contaminants, and 339 

the impact of exposure on metabolite levels was assessed at both individual contaminant levels 340 

and cluster levels (CC1-CC4) (Tables S2-S5). The polar metabolite clusters displayed more 341 

significant mean differences between the highest (Q4) and lowest (Q1) quartiles, as shown in 342 

Table S4-S5. In CC1, significant mean differences between Q4 and Q1 were observed for LC3, 343 

LC4, and LC7 at the lipid cluster level (Table S3). In CC3, which includes 344 

perfluorohexanesulfonic acid (PFHxS) and branched (PFHxSBr), significant mean differences 345 

between the highest and lowest quartiles were observed for LC5 and LC6 (Table S3 and Fig. 5H). 346 
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Linear ridge regression (LR) was performed to determine the quantitative effect of contaminant 347 

concentration levels on cord serum metabolic profiles. The results showed that polar metabolites 348 

in cord serum were more highly impacted by contaminant exposure than lipid levels. Specifically, 349 

six polar metabolite clusters, PC2 (R2 = 0.72), PC6 (R2 = 0.53), PC4 (R2 = 0.52), PC1 (R2 = 0.48), 350 

PC10 (R2 = 0.48), and PC11 (R2 = 0.32), showed significant associations with exposure levels 351 

(Fig. 5 and Fig. S3). At the individual metabolite level, amino acids such as tryptophan (Fig. 5C), 352 

Serine of PC2, and 3-Chlorothieno [2,3-b]thiophene-2-carbonyl chloride of PC11 showed a 353 

significant impact (Fig. 5F). According to the ranks of the predictors (contaminants), 354 

deoxynivalenol (DON) and Bisphenol S were the top linear predictors of cord serum metabolites 355 

and clusters PC2 and PC11 (Fig. 5A-F).  356 

Although the contaminants from clusters CC1 and CC3 showed a significant association between 357 

quartiles (Q4 vs. Q1) and lipid cluster levels LC3, LC4, LC5, LC6, and LC7, their strength of 358 

association based on LR models was comparatively weaker (Fig. 5G-I and Fig. S3). For example, 359 

the lipid cluster LC6, which mainly comprises triglycerides containing monounsaturated fatty acid 360 

(MUFA) and polyunsaturated fatty acids (PUFA), showed a weaker association (R2 = 0.04) with 361 

contaminant exposures (Fig. 5G-I). 362 

Pathway analysis of deoxynivalenol exposure 363 

Metabolic pathway enrichment analysis was performed to evaluate the impact of DON on polar 364 

metabolites in both control and case groups separately. DON was found to be the top predictor that 365 

impacted polar metabolite clusters PC2, PC4, PC10, and PC11, as shown in Fig. 5 and Fig. S3. 366 

Both Mummichog and GeneSet Enrichment Analysis (GSEA) algorithms were utilized using 367 

MetaboAnalyst 5.0 (Li et al. 2020; Pang et al. 2022). Based on the pathways identified by the 368 

impact of DON exposure, both control and case groups showed common and specific metabolic 369 

pathways, as presented in Tables S6-S9.  370 
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The MFN pathway map revealed that DON exposure was associated with ‘Tyrosine and 371 

Tryptophan metabolism’ in the control group but not in cases. Also ‘Glutathione Metabolism’, 372 

‘Alanine and Aspartate Metabolism’, and ‘Glycerophospholipid metabolism’ were found to be 373 

associated with exposure to DON in cases, but not in controls (Fig. 6A and 6C; Tables S6 and 374 

S8). Similarly, based on the KEGG pathway maps, ‘Aminoacyl-tRNA biosynthesis’ and ‘Glycine, 375 

serine, and threonine metabolism’ were common among control and case groups, while several 376 

other metabolic pathways were specific to each group (Fig. 6B and 6D, Tables S7 and S9). In 377 

summary, the pathway enrichment analysis provided insights into the metabolic pathways affected 378 

by DON exposure in both control and case groups. The results highlight the differences in the 379 

impacted pathways between the two groups based on the exposure to DON. 380 

Discussion  381 

We performed integrated exposomics and metabolomics to detect the levels of exposure to 382 

contaminants and metabolite levels in cord serum. This comprehensive approach allowed us to 383 

assess the combined impact of environmental exposures and metabolic profiles on autoimmune 384 

diseases in the ABIS cohort.  In our previous study we found similarities in metabolic profiles 385 

across different autoimmune diseases at birth (Hyotylainen et al. 2023). In order to avoid class 386 

imbalance problems, here we pooled all individual diseases together. We detected 20 387 

contaminants, encompassing several PFAS compounds, Bisphenol S, and mycotoxins like 388 

Deoxynivalenol (DON), in cord blood samples from both control and case groups. Previous 389 

studies, including our own, have reported detectable levels of PFAS compounds (McGlinchey et 390 

al. 2020; Sinisalu et al. 2020), Bisphenol S exposure (Liu et al. 2017), and the presence of 391 

mycotoxins, including Deoxynivalenol (DON), in cord blood samples (Nielsen et al. 2011). These 392 

findings provide a backdrop for our investigation into the associations between these contaminants 393 

and autoimmune diseases in the ABIS cohort. We were able to demonstrate significant differences 394 

in the exposure levels of certain contaminants, such as Perfluorooctanoic acid Branched 2, 395 

Environmental Contaminant 1, Perfluorooctanoic acid Linear 1, Perfluorooctanoic acid Linear 2, 396 
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and Methylparaben, in cord blood between the control and case groups. However, it is important 397 

to note that while these differences were statistically significant, the effect sizes were relatively 398 

modest. This suggests that while contaminants do play a role in distinguishing between controls 399 

and autoimmune diseases, they are unlikely to be the sole risk factors. Various factors including 400 

genetics, environmental triggers, and lifestyle factors, and their mutual interactions, contribute to 401 

the development of autoimmune diseases (Ellis et al. 2014; Oresic et al. 2013; Oresic et al. 2008; 402 

Rewers and Ludvigsson 2016; Sen et al. 2019; Sen et al. 2020; Sinisalu et al. 2020; Vermeulen et 403 

al. 2020; Virolainen et al. 2023). 404 

Our study revealed differences in exposure and metabolite profiles between individuals who later 405 

developed autoimmune diseases and controls, particularly in relation to Z-score, mothers' age, and 406 

BMI. This suggests that there may be differences in maternal factors between the two groups even 407 

at birth. We also observed that high levels of exposure to environmental contaminants were 408 

associated with changes in amino acid and free fatty acid profiles in the cord blood metabolome. 409 

Although we previously found a significant impact on lipid profiles, particularly triacylglycerols, 410 

the strength of association is weaker compared to the effect on polar metabolites (Hyotylainen et 411 

al. 2023). Among the 20 contaminants measured in our study, DON, Bisphenol S, and some 412 

branched PFAS compounds are the primary predictors of changes in cord serum metabolic 413 

profiles. While the associations between PFAS exposure and their marked effect on metabolism 414 

leading to autoimmune diseases have been well documented in previous studies (Ehrlich et al. 415 

2023; McGlinchey et al. 2020; Rudzanova et al. 2023; Sinisalu et al. 2020), the exposure to DON 416 

and BPS and their impact on autoimmune diseases is less studied. 417 

While our study detected Bisphenol S (BPS) and not Bisphenol A (BPA), it's noteworthy that BPA, 418 

a common chemical found in plastics, has been associated with alterations in amino acid 419 

metabolism (Wang et al. 2018). BPA has been linked to changes in phenylalanine, tryptophan, 420 

tyrosine, lysine, and arginine metabolism, with a particular impact on female infants (Khan et al. 421 

2017). In the case of BPS, it was shown to have sex- and diet-dependent effects on the development 422 
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of type 1 diabetes (T1D) in non-obese diabetic (NOD) mice. Female mice exposed to BPS on a 423 

soy-based diet exhibited delayed T1D development, while males showed increased insulin 424 

resistance (Xu et al. 2019). These findings suggest that both BPA and BPS can influence 425 

metabolism and immune responses, potentially contributing to autoimmune diseases like T1D, 426 

although there is less evidence regarding the effect of BPS in humans. 427 

Deoxynivalenol (DON) exposure in pregnant women has been reported in various studies. In the 428 

UK, pregnant women from diverse backgrounds showed detectable urinary DON levels, with 429 

South Asian women having higher exposure, primarily from bread consumption (Hepworth et al. 430 

2012). Similarly, in Norway, DON, a common mycotoxin in cereals, was found in various cereal-431 

based foods, potentially affecting the immune system, particularly in infants and young children 432 

(Sundheim et al. 2017). In pregnant Egyptian women, DON co-occurred with other mycotoxins, 433 

raising concerns about maternal and fetal health (Piekkola et al. 2012).   434 

These findings emphasize the importance of assessing DON exposure in pregnant women and its 435 

potential health implications. DON exposure, prevalent in grains, adversely affects the immune 436 

system in both humans and animals and has been linked to alterations in gut microbiota (Liao et 437 

al. 2018). This immunotoxicity induced by DON involves mechanisms such as MAPK activation, 438 

ER stress, and mitochondrial signaling pathways (Liao et al. 2018).  439 

To delve deeper into the potential mechanisms underlying these associations, we conducted 440 

pathway analysis of DON exposure on polar metabolites within both control and case groups. This 441 

analysis revealed that DON had distinct impacts on metabolic pathways in these groups. In the 442 

control group, DON exposure was associated with alterations in 'Tyrosine and Tryptophan 443 

metabolism,' indicating potential effects on amino acid pathways. Conversely, the case group 444 

showed associations between DON exposure and 'Glutathione Metabolism,' 'Alanine and 445 

Aspartate Metabolism,' and 'Glycerophospholipid metabolism,' suggesting disruptions in 446 

antioxidant defense systems and lipid metabolism. These findings align with previous research 447 

indicating that DON can induce oxidative stress by reducing antioxidant enzyme activity and 448 
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enhancing lipid peroxidation (Mishra et al. 2014). The marked association between DON and 449 

phosphatidylcholines in our study suggests a potential link between mycotoxin exposure and 450 

alterations in lipid metabolism, particularly in the context of phosphatidylcholines. This finding is 451 

noteworthy, as specific phosphatidylcholines were previously identified as persistently down-452 

regulated in children who later progressed to islet autoimmunity (Johnson et al. 2019) and clinical 453 

type 1 diabetes (T1D) (Oresic et al. 2008). Thus, the oxidative stress response and its impact on 454 

lipid metabolism, triggered by DON exposure, may play a pivotal role in the pathogenesis of 455 

autoimmune diseases, warranting further investigation. 456 

These differential effects of DON exposure on metabolic pathways between control and case 457 

groups highlight the intricate relationship between environmental exposures, metabolism, and 458 

immune dysregulation in the context of autoimmune diseases. While our study contributes to our 459 

understanding of the metabolic consequences of DON exposure, it's essential to consider these 460 

findings within the broader context of various factors, including genetics, environmental triggers, 461 

and lifestyle factors, which collectively contribute to the development of autoimmune diseases. 462 

Understanding these effects is crucial when assessing DON exposure during pregnancy and its 463 

potential health consequences. In this study, the median age of diagnosis of autoimmune diseases 464 

was higher compared to previous studies in genetically high-risk cohorts (Oresic et al. 2013; Oresic 465 

et al. 2008; Sen et al. 2019). Despite some common metabolic patterns (Hyotylainen et al. 2023), 466 

there were differences and limitations to consider. One important limitation of our study was the 467 

small sample size within each disease group, which restricted our analysis. Another limitation of 468 

our study was the lack of maternal exposure and longitudinal exposure data at different time points 469 

between birth and the onset of autoimmune diseases, which could explain their age-dependent 470 

progression. 471 

Our previous studies in T1D (McGlinchey et al. 2020) and CD (Sinisalu et al. 2020) cohorts have 472 

mainly focus on the associations of PFAS exposure with the disease risk. Here we detected the 473 

levels of other contaminants such as Bisphenol S and some mycotoxins including DON and a-474 
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Zearalanol, which potentially show the differences in exposures. Mycotoxins are common 475 

contaminants of cereals and grains, and exposure to them is also associated with autoimmune 476 

disorders (Gayathri et al. 2018; Kraft et al. 2021; Liao et al. 2018; Rotter et al. 1996). This 477 

emphasizes the need for caution and control over mycotoxin exposure, particularly during 478 

pregnancy and critical developmental stages. 479 

Altogether, our results show that high prenatal exposure to environmental contaminants associated 480 

with altered cord serum metabolite levels and may result in the progression of autoimmune 481 

diseases in the ABIS cohort. Other factors such as Z-score, maternal age and BMI are associated 482 

with contaminant exposure levels.  Mechanistic studies are required to elucidate pathways of 483 

disease progression upon exposure.  484 
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Figure captions 722 

Fig. 1. Summary of our work, which aimed to investigate how prenatal exposure to 723 

environmental contaminants alters the cord serum metabolome in the ABIS cohort. We used 724 

metabolomics to determine the levels of exposure to environmental contaminants and metabolites 725 

in the cord blood. Our work involved three main stages. Firstly, we examined the levels of 726 

exposure and significant differences between control (N = 268) and cases (N = 62). Secondly, we 727 

studied the associations of contaminant exposure with cord serum metabolic profiles. Finally, we 728 

investigated the impact of contaminant exposure on cord serum metabolites. Overall, our work 729 

sheds light on the effects of environmental contaminants on the cord serum metabolome, which 730 

may have implications for the future progression of autoimmune diseases. 731 

Fig. 2. Box plots that illustrate the levels of selected contaminants in control and cases. The 732 

violin plots (A-F) on top of the box plots depict the distribution of the selected contaminants (log2 733 

intensities). To test the mean difference between the control and cases, we conducted a Wilcoxon 734 

test. The p-values are provided to indicate the significance levels for the mean differences between 735 

the two groups for each contaminant (A-F). Specifically, p < 0.05 indicates statistical significance, 736 

and p < 0.1 suggests a trend toward significance. Overall, these results help to identify specific 737 

contaminants that may contribute to the altered cord serum metabolome in cases.  738 

Fig. 3. Correlation plots that depict the relationships between contaminant exposure, 739 

metabolite clusters, and demographic data in controls (A) and cases (B). We used pairwise 740 

Spearman correlation to calculate the correlation coefficients between all cluster variables, 741 

contaminants, and demographic variables in the ABIS cohort. Positive and negative correlations 742 

are denoted by blue and red colours, respectively. The size of the dot in each cell corresponds to 743 

the strength of the pairwise correlation. To improve visualization, we only show correlations 744 

between +/- 0.20 to 1.0 in the plots. Overall, these correlation plots provide a comprehensive 745 
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overview of the complex relationships between environmental contaminants, metabolites, and 746 

demographic factors in the ABIS cohort. 747 

Fig. 4. Partial correlation network in the form of a chord diagram that shows the associations 748 

between contaminant exposure, metabolite clusters, and demographic data in controls (A) 749 

and cases (B). To filter out spurious or indirect correlations between variables, we used the 750 

Debiased Sparse Partial Correlation (DSPC) algorithm (Basu et al. 2017) to only show direct 751 

correlations. We used a conservative cut-off between +/- 0.14 to 1.0 to visualize the correlations 752 

and project only correlations across groups (Contaminants, metabolite clusters, and 753 

covariates/demographic data). Positive and negative correlations are denoted by blue and red lines, 754 

respectively. Overall, this partial correlation network provides a more detailed view of the complex 755 

relationships between environmental contaminants, metabolites, and demographic factors in the 756 

ABIS cohort.  757 

Fig. 5. Impact of environmental contaminants on cord serum metabolites. Horizontal bar plots 758 

(A, D, G) and (C, F, I) display the ranks of contaminants as predictors of metabolite clusters (PC2, 759 

PC11, and LC6) and individual metabolites (Tryptophan, 3-Chlorothieno [2,3-b]thiophene-2-760 

carbonyl chloride, and TG(16:0/18:2/18:2)), respectively. The potential impact of contaminants 761 

on metabolite clusters or individual metabolites is determined by their rank at the top of the bar 762 

plot. The ranks are based on their absolute normalized (ridge) regression coefficients. Violin plots 763 

(B, E, H) show the levels of metabolites (clusters) associated with levels of exposure to 764 

contaminants from contaminants clusters 1 (CC1) and 3 (CC3). The violin plot represents the 765 

density of the sample within each quartile, and their distribution is represented using a box plot at 766 

the centre. Two-way ANOVA followed by post-hoc Tukey´s HSD test was used to compare the 767 

mean difference between levels of metabolites (along quartiles).  768 

Fig. 6. Pathway enrichment analysis comparing cases versus controls for Deoxynivalenol 769 

(DON) impact polar metabolites. The scatter plots depict the p-values using two different 770 

pathway maps: MFN pathway maps on the left panels and KEGG pathway maps on the right 771 
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panels. The pathway analysis methods Mummichog and GSEA are used on the y-axis and x-axis, 772 

respectively, for both control (A, B) and cases (C, D). The size of the circle on each scatter plot 773 

represents the pathway impact value. For more detailed information, such as the number of 774 

metabolites in the pathways (total number/hits/significant hits) and p-values, please refer to the 775 

supplementary information. 776 
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Prenatal exposure to environmental contaminants is associated with altered 

cord serum metabolite profiles in future immune-mediated diseases   
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Fig. S1. Box plots that show the levels of selected contaminants in the ABIS cohort at the 

individual disease levels. The violin plots (A-D) on top of the box plots illustrate the 

distribution of the selected contaminants (log2 intensities). To compare multiple group means, 

we used the Kruskal-Wallis Test, and for pairwise comparison against the reference (Control), 

we used the Wilcoxon Test. The p-values are provided to indicate the significance levels for 

the mean differences between the two groups (control vs. cases) for each contaminant (A-D). 

Specifically, p < 0.05 indicates statistical significance, and p < 0.1 suggests a trend toward 

significance. CD, HT, IBD, JIA, and T1D refer to Celiac disease, Hypothyroidism, Crohn's 

disease, Juvenile Idiopathic Arthritis and Type 1 Diabetes respectively.  
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Fig. S2. Classification of controls and immune-mediated diseases using contaminant 

exposure as predictors. In panel A, the ranks of the predictors (contaminants) obtained from 

the Logistic ridge regression (LRR) model, adjusted by Z-Score, Maternal age and BMI, are 

presented. The greatest contributing contaminants (predictors) that aided in the classification of 

control vs. cases (mean AUC = 0.65, 95% CI: 0.63–0.67) are shown at the top of the chart. In 

panel B, the Receiver Operating Characteristic (ROC) and AUC values from stepwise-

predictive LRR models (10-fold cross-validation) are shown. An optimal set of five 

contaminants (predictors) (AUC = 0.67, 95% CI: 0.66–0.68) associated with the classification 

of control vs. cases are presented. 
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Fig. S3. Association between exposure to environmental contaminants and the alteration 

of cord serum metabolites. The bar plots (A-F) show the linear predictors of changes in cord 

serum metabolite profiles, which are analysed in the form of metabolite clusters (Polar 

metabolite and lipid clusters). At the top of each bar plot (A-F), the most contributing 

contaminants (predictors) associated with selected metabolite clusters are shown. The ranks of 

the predictors are based on their absolute normalized (ridge) regression coefficients. The bar 

plots (A-D) represent the contaminant exposure as linear predictors of changes in polar 

metabolite clusters PC1, PC4, PC6 and PC10, while the bar plots (E-F) represent the 

contaminant exposure as linear predictors of changes in lipid clusters LC1 and LC3. 
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Table S1. List of contaminants, clusters and their level of identification based on the 

Metabolomics Standards Initiative (MSI).  

Full name Abbreviation 

 

Cluster 

Level of 

identification 

Bisphenol S BPS CC1 Level 1 

Deoxynivalenol DON CC1 Level 1 

Monobutyl phthalate MBP CC1 Level 2 

Perfluorodecanoic acid PFDA CC1 Level 1 

Methylperfluorooctane sulfonamidoacetic 

acid MeFOSAA 

CC1 Level 2 

Environmental Contaminant 1 EC1 CC1 Level 2 

Environmental Contaminant 2 EC2 CC1 Level 2 

a-Zearalanol ZEL CC1 Level 1 

Ethylparaben EP CC2 Level 1 

Methylparaben MP CC2 Level 1 

Propylparaben PP CC2 Level 1 

Perfluorohexanesulfonic acid Branched PFHxSBr CC3 Level 1 

Perfluorohexanesulfonic acid PFHxS CC3 Level 1 

Perfluorooctanoic acid Branched 1 PFOABr1 CC4 Level 1 

Perfluorooctanoic acid Linear 1 PFOAL1 CC4 Level 1 

Perfluorooctanoic acid Branched 2 PFOABr2 CC4 Level 1 

Perfluorooctanoic acid Linear 2 PFOAL2 CC4 Level 1 

Perfluorooctanesulfonic acid Branched PFOSBr CC4 Level 1 

Perfluorooctanesulfonic acid PFOS CC4 Level 1 

Environmental Contaminant 3 EC3 CC4 Level 2 
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Table S2. Two-way analysis of variance (ANOVA) for cord serum lipids (cluster LC1 to LC8) 

impacted by contaminants exposure (Contaminant cluster CC1 to CC4). The samples were 

grouped based on contaminants exposure quartiles (1 to 4) and Groups (Control/Cases). The 

statistical significance levels are represented by p-values (p < 0.05 marked bold, p-values < 0.1 

in italics).   

Contaminant 

cluster 
Lipid cluster 

Factor 1: 

Contaminant 

quartiles 

Factor 2: 

Groups 

(Control, Cases) 

Interactions 

F1*F2 

CC1 LC1 0.291 0.203 0.467 

CC1 LC2 0.271 0.674 0.568 

CC1 LC3 9.59×10-4 0.884 0.701 

CC1 LC4 6.95×10-4 0.983 0.850 

CC1 LC5 0.519 0.055 0.064 

CC1 LC6 0.265 0.124 0.111 

CC1 LC7 2.03×10-2 0.919 0.936 

CC1 LC8 0.869 0.449 0.260 

CC2 LC1 0.706 0.195 0.895 

CC2 LC2 0.683 0.719 0.471 

CC2 LC3 0.814 0.901 0.992 

CC2 LC4 0.531 0.973 0.958 

CC2 LC5 0.995 0.071 0.947 

CC2 LC6 0.731 0.176 0.608 

CC2 LC7 0.096 0.960 0.139 

CC2 LC8 0.298 0.378 0.917 

CC3 LC1 0.578 0.220 0.721 

CC3 LC2 0.283 0.803 0.856 

CC3 LC3 0.276 0.981 0.730 

CC3 LC4 0.581 0.840 0.747 

CC3 LC5 1.43×10-4 0.061 0.433 

CC3 LC6 3.27×10-3 0.194 0.329 

CC3 LC7 0.909 0.967 0.160 

CC3 LC8 0.179 0.455 0.919 

CC4 LC1 0.249 0.141 0.074 

CC4 LC2 0.246 0.534 0.416 

CC4 LC3 0.194 0.713 0.027 

CC4 LC4 0.221 0.868 0.032 

CC4 LC5 0.019 0.026 0.068 

CC4 LC6 0.361 0.123 0.348 

CC4 LC7 0.172 0.774 0.521 

CC4 LC8 0.095 0.296 0.523 
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Table S3. Post-Hoc test that followed a two-way analysis of variance for cord serum lipids 

(cluster LC1 to LC8) affected by contaminant exposure (Contaminant cluster CC1 to CC4). 

The Post-Hoc Tukeys’ HSD test was used for pairwise comparison between metabolite levels 

(along quartiles). The statistical significance levels are indicated by p-values, with values less 

than 0.05 marked in bold and values less than 0.1 in italics.  

Contaminant 

cluster 

Lipid 

cluster 

Factor 1: Contaminant quartiles 

Q2-Q1 Q3-Q1 Q4-Q1 Q3-Q2 Q4-Q2 Q4-Q3 

CC1 LC1 1.000 0.379 0.762 0.371 0.755 0.925 

CC1 LC2 0.407 0.820 0.271 0.905 0.994 0.785 

CC1 LC3 0.317 0.106 3.68×10-4 0.942 0.091 0.289 

CC1 LC4 0.166 0.081 2.38×10-4 0.988 0.156 0.292 

CC1 LC5 0.991 0.904 0.866 0.980 0.711 0.467 

CC1 LC6 0.216 0.659 0.911 0.864 0.585 0.962 

CC1 LC7 0.759 0.154 0.018 0.675 0.204 0.837 

CC1 LC8 0.988 0.870 0.915 0.971 0.987 0.999 

CC2 LC1 0.929 0.952 0.992 0.665 0.988 0.849 

CC2 LC2 0.957 0.633 0.864 0.903 0.993 0.977 

CC2 LC3 0.986 0.935 0.992 0.788 0.926 0.990 

CC2 LC4 0.993 0.694 0.943 0.523 0.839 0.952 

CC2 LC5 1.000 0.998 0.998 0.997 0.997 1.000 

CC2 LC6 0.968 0.798 0.745 0.968 0.946 1.000 

CC2 LC7 0.148 0.989 0.325 0.277 0.975 0.516 

CC2 LC8 0.995 0.341 0.640 0.483 0.786 0.961 

CC3 LC1 0.609 0.625 0.862 1.000 0.971 0.975 

CC3 LC2 0.807 0.220 0.914 0.731 0.995 0.585 

CC3 LC3 0.870 0.943 0.729 0.997 0.277 0.384 

CC3 LC4 1.000 0.985 0.756 0.977 0.787 0.539 

CC3 LC5 0.216 0.343 4.93×10-5 0.994 0.048 0.024 

CC3 LC6 0.490 0.273 0.001 0.979 0.101 0.231 

CC3 LC7 0.999 0.983 0.986 0.953 0.998 0.893 

CC3 LC8 0.299 0.702 0.174 0.910 0.991 0.772 

CC4 LC1 0.969 0.655 0.629 0.376 0.353 1.000 

CC4 LC2 0.759 0.826 0.178 0.999 0.718 0.646 

CC4 LC3 0.863 0.462 0.167 0.903 0.573 0.932 

CC4 LC4 0.812 0.727 0.157 0.999 0.620 0.718 

CC4 LC5 0.984 0.215 0.139 0.101 0.059 0.996 

CC4 LC6 0.999 0.881 0.470 0.818 0.389 0.895 

CC4 LC7 0.993 0.504 0.449 0.345 0.300 1.000 

CC4 LC8 0.928 0.754 0.315 0.379 0.093 0.886 
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Table S4.  Two-way analysis of variance (ANOVA) for cord serum polar metabolites (cluster 

PC1 to PC12) impacted by contaminants exposure (Contaminant cluster CC1 to CC4). The 

samples were grouped based on contaminants exposure quartiles (1 to 4) and Groups 

(Control/Cases). The statistical significance levels are represented by p-values (p < 0.05 marked 

bold, p-values < 0.1 in italics).   

 

Contaminant 

cluster 

Polar metabolite 

cluster 

Factor 1: 

Contaminant 

quartiles 

Factor 2: 

Groups 

(Control, 

Cases) 

Interactions 

F1*F2 

CC1 PC1 <2×10-16 0.685 0.331 

CC1 PC2 <2×10-16 0.022 0.516 

CC1 PC3 0.780 0.237 0.380 

CC1 PC4 3.11×10-11 0.001 0.876 

CC1 PC5 0.026 0.554 0.401 

CC1 PC6 <2×10-16 0.338 0.378 

CC1 PC7 0.017 0.726 0.533 

CC1 PC8 0.082 0.963 0.533 

CC1 PC9 0.085 0.703 0.824 

CC1 PC10 1.23×10-11 0.967 0.731 

CC1 PC11 4.09×10-9 3.98×10-4 0.544 

CC1 PC12 0.068 0.356 0.824 

CC2 PC1 0.025 0.574 0.186 

CC2 PC2 1.89×10-4 0.097 0.817 

CC2 PC3 0.836 0.250 0.723 

CC2 PC4 0.021 0.004 0.637 

CC2 PC5 0.338 0.498 0.789 

CC2 PC6 0.001 0.236 0.446 

CC2 PC7 0.006 0.735 0.122 

CC2 PC8 0.006 0.631 0.091 

CC2 PC9 0.718 0.577 0.250 

CC2 PC10 0.051 0.727 0.567 

CC2 PC11 0.469 0.004 0.793 

CC2 PC12 0.162 0.310 0.011 

CC3 PC1 2.02×10-6 0.589 0.829 

CC3 PC2 0.131 0.199 0.550 

CC3 PC3 0.115 0.259 0.665 

CC3 PC4 0.044 0.011 0.515 

CC3 PC5 0.095 0.538 0.396 

CC3 PC6 0.017 0.160 0.273 

CC3 PC7 0.509 0.738 0.004 

CC3 PC8 0.002 0.809 0.628 

CC3 PC9 0.905 0.591 0.232 

CC3 PC10 0.094 0.554 0.953 

CC3 PC11 0.044 0.005 0.384 

CC3 PC12 0.822 0.318 0.148 

CC4 PC1 0.242 0.468 0.861 
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CC4 PC2 0.376 0.118 0.678 

CC4 PC3 0.034 0.143 0.855 

CC4 PC4 0.138 0.002 0.666 

CC4 PC5 0.027 0.273 0.473 

CC4 PC6 0.001 0.398 0.617 

CC4 PC7 0.686 0.833 0.032 

CC4 PC8 0.010 0.427 0.090 

CC4 PC9 0.659 0.738 0.525 

CC4 PC10 0.019 0.621 0.943 

CC4 PC11 0.183 0.002 0.677 

CC4 PC12 0.579 0.401 0.006 
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Table S5.  Post-Hoc test that followed a two-way analysis of variance for cord serum polar 

metabolites (cluster PC1 to PC12) affected by contaminant exposure (Contaminant cluster CC1 

to CC4). The Post-Hoc Tukeys’ HSD test was used for pairwise comparison between metabolite 

levels (along quartiles). The statistical significance levels are indicated by p-values, with values 

less than 0.05 marked in bold and values less than 0.1 in italics.  

 

Contaminant 

cluster 

Polar 

metabolite 

cluster 

Factor 1: Contaminant quartiles 

Q2-Q1 Q3-Q1 Q4-Q1 Q3-Q2 Q4-Q2 Q4-Q3 

CC1 PC1 0.002 10-8 10-8 0.021 10-8 0.006 

CC1 PC2 10-8 10-8 10-8 0.813 10-8 0.004 

CC1 PC3 1.000 0.862 0.998 0.875 0.997 0.773 

CC1 PC4 4×10-7 1.84×10-4 10-8 0.571 0.357 0.020 

CC1 PC5 0.494 0.653 0.014 0.995 0.362 0.242 

CC1 PC6 

4.76×10-10 9.10×10-13 

8.78×10-

13 

9.06×10-

4 

5.71×10-

7 0.362 

CC1 PC7 0.539 0.853 0.011 0.951 0.288 0.100 

CC1 PC8 0.139 0.321 0.096 0.972 0.998 0.930 

CC1 PC9 1.000 0.603 0.533 0.665 0.471 0.051 

CC1 PC10 2.4×10-6 7×10-7 10-8 0.993 0.155 0.262 

CC1 PC11 1.71×10-5 1.93×10-4 10-8 0.950 0.346 0.127 

CC1 PC12 0.922 0.918 0.218 0.581 0.564 0.052 

CC2 PC1 0.072 0.035 0.690 0.992 0.543 0.375 

CC2 PC2 

0.998 0.938 0.003 0.869 0.006 

3.40×10-

4 

CC2 PC3 0.978 0.798 0.988 0.957 1.000 0.936 

CC2 PC4 0.707 0.974 0.020 0.918 0.252 0.064 

CC2 PC5 0.615 0.288 0.877 0.944 0.966 0.737 

CC2 PC6 0.066 0.075 0.913 1.000 0.011 0.012 

CC2 PC7 0.812 0.522 0.158 0.113 0.621 0.004 

CC2 PC8 0.116 0.013 0.011 0.844 0.814 1.000 

CC2 PC9 0.988 0.990 0.851 0.923 0.963 0.685 

CC2 PC10 0.721 0.669 0.548 1.000 0.085 0.070 

CC2 PC11 0.806 0.501 0.998 0.958 0.886 0.610 

CC2 PC12 0.883 0.898 0.463 0.481 0.887 0.140 

CC3 PC1 

0.967 0.002 

5.92×10-

5 0.008 

4.08×10-

4 0.850 

CC3 PC2 0.125 0.585 0.240 0.790 0.989 0.929 

CC3 PC3 0.734 0.495 0.076 0.981 0.506 0.748 

CC3 PC4 0.473 0.509 0.983 0.026 0.272 0.741 

CC3 PC5 0.924 0.109 0.292 0.359 0.664 0.960 

CC3 PC6 0.633 0.325 0.009 0.956 0.199 0.464 

CC3 PC7 0.987 0.919 0.721 0.764 0.512 0.977 

CC3 PC8 0.820 0.030 0.005 0.229 0.065 0.940 

CC3 PC9 0.994 0.996 0.886 1.000 0.965 0.957 

CC3 PC10 0.114 0.619 0.149 0.737 0.999 0.803 

CC3 PC11 0.601 0.443 0.866 0.034 0.185 0.891 
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CC3 PC12 0.997 0.800 0.986 0.893 0.999 0.943 

CC4 PC1 0.479 0.196 0.713 0.945 0.983 0.794 

CC4 PC2 0.988 0.939 0.710 0.994 0.508 0.359 

CC4 PC3 0.597 0.854 0.383 0.174 0.025 0.859 

CC4 PC4 0.994 0.975 0.229 0.908 0.139 0.453 

CC4 PC5 0.981 0.146 0.060 0.302 0.147 0.982 

CC4 PC6 0.806 1.000 0.019 0.820 0.001 0.018 

CC4 PC7 1.000 0.761 0.934 0.726 0.914 0.980 

CC4 PC8 0.637 0.065 0.011 0.565 0.217 0.922 

CC4 PC9 0.997 1.000 0.678 0.999 0.801 0.730 

CC4 PC10 0.976 0.036 1.000 0.102 0.972 0.035 

CC4 PC11 0.918 0.716 0.738 0.975 0.347 0.165 

CC4 PC12 0.925 0.998 0.867 0.859 0.505 0.931 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 11, 2023. ; https://doi.org/10.1101/2023.11.10.23298353doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.10.23298353
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table S6. provides information on the pathways identified through pathway enrichment 

analysis using MFN pathway maps for controls. It includes the pathways, their corresponding 

p-values, and the number of metabolites in each pathway, including the total size, hits, and 

significant hits. The combined p-value was calculated by combining GSEA and Mummichog 

scores. This table lists only those pathways that have a combined p-value of less than 0.05.  

 

Name of the 

pathways 

Total 

size 

Hits Significant 

hits 

Mummichog 

P values 

GSEA 

P 

values 

Combined 

P values 

Tyrosine metabolism 160 50 40 0.0207 0.0099 0.00195 

Tryptophan 

metabolism 
94 31 26 0.02223 0.0198 0.00384 

Valine, leucine and 

isoleucine 

degradation 

65 12 11 0.049 0.0101 0.00426 

Pyrimidine 

metabolism 
70 20 17 0.05297 0.0099 0.00449 

Urea cycle/amino 

group metabolism 
85 26 21 0.07829 0.01 0.00638 

Glycine, serine, 

alanine and threonine 

metabolism 

88 27 21 0.1365 0.01 0.01037 

Butanoate 

metabolism 
34 11 10 0.06911 0.02083 0.01086 

Beta-Alanine 

metabolism 
20 9 8 0.1347 0.01099 0.01112 

Caffeine metabolism 11 4 4 0.1909 0.01176 0.01594 

Fructose and 

mannose metabolism 
33 7 7 0.05475 0.04301 0.01661 

Sialic acid 

metabolism 
107 14 11 0.2462 0.01 0.01725 

Aminosugars 

metabolism 
69 10 8 0.286 0.01064 0.02068 

Propanoate 

metabolism 
31 9 8 0.1347 0.03297 0.02849 

Pyruvate Metabolism 20 11 8 0.4575 0.01099 0.03164 

Hexose 

phosphorylation 
20 10 7 0.5454 0.01099 0.03667 

Methionine and 

cysteine metabolism 
94 17 14 0.1189 0.05941 0.04206 

Glutamate 

metabolism 
15 9 8 0.1347 0.05495 0.04371 

Selenoamino acid 

metabolism 
35 6 5 0.3404 0.02222 0.04451 

Histidine metabolism 33 10 9 0.09685 0.08511 0.0478 

Glycosphingolipid 

metabolism 
67 20 15 0.2781 0.0297 0.04787 
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Table S7. provides information on the pathways identified through pathway enrichment 

analysis using KEGG pathway maps for controls. It includes the pathways, their corresponding 

p-values, and the number of metabolites in each pathway, including the total size, hits, and 

significant hits. The combined p-value was calculated by combining GSEA and Mummichog 

scores. This table lists only those pathways that have a combined p-value of less than 0.05.  

 

 

Name of the 

pathways 

Total 

size 

Hits Significant 

hits 

Mummichog 

P values 

GSEA 

P 

values 

Combined 

P values 

Aminoacyl-tRNA 

biosynthesis 
22 14 14 0.0072 0.0101 0.00077 

Glycine, serine and 

threonine metabolism 
30 14 14 0.0072 0.0101 0.00077 

Tyrosine metabolism 42 21 19 0.02887 0.0099 0.00262 

Fructose and mannose 

metabolism 
20 6 6 0.1235 

0.0105

3 
0.00994 

Valine, leucine and 

isoleucine 

biosynthesis 

8 6 6 0.1235 
0.0105

3 
0.00994 

Valine, leucine and 

isoleucine degradation 
35 10 9 0.158 0.0101 0.01188 

Phenylalanine 

metabolism 
10 8 7 0.2676 0.0101 0.01869 

Phenylalanine, 

tyrosine and 

tryptophan 

biosynthesis 

4 3 3 0.3529 
0.0133

3 
0.02991 

Amino sugar and 

nucleotide sugar 

metabolism 

35 9 6 0.7479 0.0101 0.04446 
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Table S8. provides information on the pathways identified through pathway enrichment 

analysis using MFN pathway maps for cases. It includes the pathways, their corresponding p-

values, and the number of metabolites in each pathway, including the total size, hits, and 

significant hits. The combined p-value was calculated by combining GSEA and Mummichog 

scores. This table lists only those pathways that have a combined p-value of less than 0.05.  

 

Name of the 

pathways 

Total 

size 

Hits Significant 

hits 

Mummichog 

P values 

GSEA 

P 

values 

Combined 

P values 

Urea cycle/amino 

group metabolism 
85 21 8 0.04279 

0.0105

3 
0.00392 

Beta-Alanine 

metabolism 
20 9 5 0.01973 

0.0246

9 
0.0042 

Glutamate metabolism 15 8 4 0.05732 0.0125 0.0059 

Glutathione 

Metabolism 
19 4 3 0.02771 

0.0281

7 
0.00637 

Aminosugars 

metabolism 
69 10 5 0.03316 

0.0246

9 
0.00664 

Valine, leucine and 

isoleucine degradation 
65 11 5 0.05113 

0.0232

6 
0.0092 

Alanine and Aspartate 

Metabolism 
30 10 4 0.1235 0.0125 0.01154 

Pyruvate Metabolism 20 10 4 0.1235 0.0125 0.01154 

Glycerophospholipid 

metabolism 
156 21 7 0.1102 

0.0210

5 
0.01639 

Glycine, serine, 

alanine and threonine 

metabolism 

88 25 7 0.2259 
0.0106

4 
0.0169 

Butanoate metabolism 34 10 4 0.1235 
0.0229

9 
0.01949 

Carbon fixation 10 2 2 0.04075 
0.0952

4 
0.02543 

Aspartate and 

asparagine 

metabolism 

114 30 6 0.591 
0.0108

7 
0.03885 

Pyrimidine 

metabolism 
70 18 6 0.1357 

0.0543

5 
0.04358 

Arginine and Proline 

Metabolism 
45 19 5 0.3361 

0.0224

7 
0.04445 
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Table S9. provides information on the pathways identified through pathway enrichment 

analysis using KEGG pathway maps for cases. It includes the pathways, their corresponding p-

values, and the number of metabolites in each pathway, including the total size, hits, and 

significant hits. The combined p-value was calculated by combining GSEA and Mummichog 

scores. This table lists only those pathways that have a combined p-value of less than 0.05.  

 

Name of the 

pathways 

Total 

size 

Hits Significant 

hits 

Mummichog 

P values 

GSEA 

P 

values 

Combined 

P values 

Aminoacyl-tRNA 

biosynthesis 
22 15 7 0.03758 

0.0109

9 
0.00363 

Glycine, serine and 

threonine metabolism 
30 14 6 0.08186 

0.0112

4 
0.00735 

Phosphonate and 

phosphinate 

metabolism 

4 2 2 0.05452 
0.0322

6 
0.01291 

Alanine, aspartate and 

glutamate metabolism 
28 12 5 0.1234 

0.0344

8 
0.02749 

Glyoxylate and 

dicarboxylate 

metabolism 

31 7 3 0.2106 
0.0229

9 
0.03066 

Pantothenate and CoA 

biosynthesis 
17 5 3 0.0864 

0.0588

2 
0.03193 

Glycolysis or 

Gluconeogenesis 
23 3 2 0.1385 

0.0428

6 
0.03637 

Arginine and proline 

metabolism 
37 19 4 0.6919 

0.0109

9 
0.0447 
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