Neurocognitive Impairment in Ugandan Children with Sickle Cell Disease Compared to Sibling Controls: A cross-sectional study

Paul Bangirana,1,2,* Amelia K. Boehme,3; Annet Birabwa,4 Robert O. Opoka,2,5 Deogratias Munube,2,5 Ezekiel Mupere,5 Phillip Kasirye,6 George Ru,7 Richard Idro2,5, Nancy S. Green,7*

1Department of Psychiatry, Makerere University College of Health Sciences, Kampala, Uganda; 2Global Health Uganda, Kampala, Uganda; 3Department of Neurology, Columbia University Vagelos Medical Center, New York, United States; 4Department of Mental Health and Community Psychology, Makerere University College of Social Sciences, Kampala, Uganda 5Department of Paediatrics and Child Health, Makerere University College of Health Sciences, Kampala, Uganda; 6Directorate of Paediatrics and Child Health, Mulago National Referral Hospital, and 7Department of Pediatrics, Columbia University Vagelos Medical Center, New York, United States.

*Corresponding authors

Word count: Abstract 250 words Manuscript 3000 words

Tables: 4 Figures: 1 Supplemental Tables: 4

Running title: Neurocognitive Impairment in Ugandan Sickle Cell Children

Acknowledgements: This work was supported by a grant from the U.S. National Institutes of Health (R21HD089791, Idro, Green). We thank the outstanding BRAIN SAFE team, Global Health Uganda and the Department of Paediatrics and Child Health of Makerere University School of Medicine and Columbia University Vagelos Medical Centre. We also thank the study participants and their families for their time and effort.

Disclosures: The authors have no conflicts to disclose

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract

Objectives:
To compare neurocognitive function between children with sickle cell anemia (SCA) and their non-SCA siblings and determine risk factors for poor neurocognition in Uganda.

Study Design:
This cross-sectional study assessed children with SCA and their non-SCA siblings for neurocognitive and executive function at a children’s SCA clinic in Kampala. The SCA group also underwent standardized stroke examination and transcranial doppler ultrasound (TCD) for detecting stroke risk. Age-specific z-scores were compared using Wilcoxon-Rank Sum test or Chi-square where appropriate. Linear regression assessed for factors associated with impaired neurocognition.

Results:
The SCA group (n=242) were younger than their siblings (n=127), mean age (SD) 5.44 (2.9) vs. 7.8 (3.3), p<0.0001, had lower hemoglobin 7.32 (1.02) vs. 12.1 (1.45), p=0.001 and higher caretaker education (p=0.02). Overall neurocognitive SCA z-score was -0.69 (1.10) vs. siblings 0.21 (1.46), p<0.001, with lower neurocognitive scores on all subtests and similar findings for executive function among the younger sample. By hemoglobin type, SCA or non-SCA, each younger group scored higher than older children. Compared to siblings, regression modelling among the SCA children revealed significant downward neurocognitive impact of SCA, age, anemia, malnutrition and lower caretaker education. Prior stroke or elevated TCD among the SCA sample exacerbated neurocognitive differences from siblings.
Conclusions:

Neurocognitive testing in a sample of children with SCA compared to non-SCA siblings revealed poorer SCA-associated neurocognitive functioning which worsened with age. Risk from age, prior stroke and elevated TCD were seen, along with effects from low hemoglobin and caretaker education. These neurocognitive effects suggest need for intervention trials using disease-modifying therapy.
Introduction

Sickle cell anemia (SCA) is a serious inherited blood condition affecting 0.5-2% of births in Uganda and other high-prevalence countries in sub-Saharan Africa (SSA). High disease burden, compounded by health and health systems challenges in low-income countries, expose many affected children to early disease complications, including cerebrovascular injury. SCA-associated cerebrovascular injury commonly results in overt and/or clinically “silent” infarcts, often in children under age 10 years. Infarcts can lead to impaired neurocognitive function. In high-income countries where successful stroke prevention strategies are routinely practiced, continued occurrence of silent infarcts remain a neurocognitive risk. Worldwide, children with SCA have heightened risk of intellectual deficits with or without imaging abnormalities.

Severe anemia is a risk factor for SCA-associated cerebral infarcts and impaired neurocognition due to abnormal blood flow and reduced cerebral oxygen delivery. Risk of cognitive impairment from SCA in SSA may be compounded by low parental education, a proxy for poverty, malnutrition and endemic infections. Moreover, stroke reduction strategies are not generally available in SSA. Cerebrovascular risk among the many African children with SCA raise questions about prevalence and types of neurocognitive risk in this population. To date, few pediatric studies of SCA in SSA have assessed the associated neurocognitive effects compared to sibling controls.

We earlier assessed the frequency of neurological and neurocognitive impairment in a cross-sectional study of Ugandan children with SCA ages 1-12 years, “Burden and Risk of
Neurological and Cognitive Impairment in Pediatric Sickle Cell Anemia in Uganda (BRAIN SAFE). Overall frequency of neurocognitive dysfunction was 11.2%, with older (ages 5-12 years) at 3-fold higher risk of impairment compared to younger participants (ages 1-4). In this secondary analysis, we report detailed findings of neurocognitive evaluation of participants compared to their non-SCA siblings. We hypothesized that, compared to non-SCA siblings, children with SCA had lower neurocognitive function and more frequent impairment and age was a risk factor. In contrast to other SSA studies of children with SCA, ours was a large sample of younger children comparing to non-SCA siblings and focused on broad neurocognitive characteristics.

Methods

Study design and setting

A random cross-sectional sample of 265 children with SCA ages 1-12 years attending the Mulago Hospital Sickle Cell Clinic in Kampala, Uganda and a sample of their non-SCA siblings were enrolled in BRAIN SAFE 1 (2016-2018). Sample size was determined from previously reported frequency and impact of cerebral infarction on neurological and neurocognitive function. Routine SCA pediatric care did not include disease-modifying therapy at that time. The study was approved by Makerere University School of Medicine Research and Ethics Committee, Uganda National Council for Science and Technology and Columbia University Institutional Review Board.
Participants

As previously reported, inclusion criteria were: a) SCA confirmed by hemoglobin electrophoresis (HbSS or HbS-B0 thalassemia); b) having attended the Mulago SCA clinic.14 To focus on SCA-related neurological complications, we excluded those with a history of neurological abnormalities before 4 months of age.38 Caregiver written informed consent was obtained, with assent from participants aged eight years or older. Non-SCA sibling participants were also enrolled, with inclusion criteria of: a) ages 1-12 years; and b) hemoglobin electrophoresis demonstrating lack of SCA (i.e., HbAA or HbAS).

Physical and Neurological assessments

Anthropometric assessments of malnutrition for the SCA and sibling participants for detecting low weight-for-height (“wasting”) were made using World Health Organization (WHO) standards, as we previously reported.14,39 Parental education was scored as previously performed.40 Assessments of SCA participants at enrolment were: medical history and physical examination, examination for prior stroke using NIH Pediatric Stroke Scale (PedNIHSS) and stroke risk by elevated (“conditional” or “abnormal”) arterial flow velocity by transcranial doppler (TCD).14

Neurocognitive assessment
Overall neurocognitive function, including behavioral measures, attention and executive function were assessed using age-appropriate tests by experienced testers in both SCA and non-SCA siblings. All assessment tools had previously been translated into a predominant local language and used to establish age-specific community norms for healthy children in Kampala. For children aged 1-4 years, the Mullen Scales of Early Learning (Mullen) and the Behavioral Rating Inventory for Executive Function-Preschool version (BRIEF-P) assessed neurocognitive functioning and executive function, respectively. The Mullen sub-tests assess gross and fine motor, visual reception, receptive language and expression language. Summation of fine motor, visual reception, receptive language and expressive language scores constitute the Early Learning Composite to measure overall neurocognitive ability, the primary outcome for the Mullen. The BRIEF-P is a caregiver assessment of the child's executive functioning using 63 items for which the caregiver endorses child behaviors exhibited over the prior six months. Summation of these items gives the Global Executive Composite to measure executive function, the primary outcome of the BRIEF-P. Secondary outcomes were Self-control, Flexibility and Metacognition.

Children aged 5-12 years were tested using the Kaufman Assessment Battery for Children, second edition (KABC-II), BRIEF school-age version and Test of Variables of Attention (TOVA) to assess overall neurocognitive functioning, executive function and attention, respectively. KABC-II subscales assessed working memory (sequential processing), visual spatial ability (simultaneous processing), learning ability (learning) and reasoning (planning). Summation of these four scales generates the Mental Processing Index, a measure of overall
neurocognitive ability which was the primary outcome. The BRIEF for school-age participants uses caregiver responses on 86 items with the General Executive Composite as the primary outcome and Behavioral Regulation and Metacognition as the secondary outcomes. TOVA, a computerized test for which children are instructed to press a switch whenever a specific target appeared on the screen, assesses attention and inhibitory control. D’ Prime, a measure of response sensitivity was the primary outcomes. Secondary outcomes included omission errors, commission errors, response time and attention-deficit/hyperactivity disorder (ADHD) score.

Statistical analyses

SCA and non-SCA participants were grouped by two age ranges. Raw scores for all neurocognitive assessments were converted into age-adjusted z-scores, as previously described. Within each age range, z-scores were analyzed and compared, by group, using means and standard deviations or medians/ranges through a Wilcoxon-Rank Sum test for continuous variables or Chi-square for categorical variables (impaired versus not impaired). Z-scores of -2 or lower were categorized as impaired. In contrast, negative z-scores for BRIEF and BRIEF-P (pre-school) indicate better function. Hence the minus signs for those two tests were flipped to positives here for consistent directionality for reporting results. Factors associated with impaired cognition were assessed using linear regression for the z-scores and by logistic regression for the categorical outcome of impaired neurocognitive function. Missing data were removed.

Results
SCA and Non-SCA Siblings Demographic and Clinical Characteristics

Neurocognitive assessment was performed in 242 of 265 (91.3%) SCA participants and all 127 non-SCA siblings. Parents of the 23 SCA participants without neurocognitive assessments were unable to schedule testing.14 Of the SCA children tested, 100 (41.3%) were aged 1-4 years and 142 were aged 5-12 years (58.7%); 40 (31.5%) of the non-SCA siblings were 1-4 years and 87 (68.5%) were aged 5-12 years (Table 1). Mean age of SCA participants was 5.44 ±2.9 years vs. 7.8± 3.3 in the non-SCA siblings (p<0.0001); 51.6% of the SCA sample were male compared to 56.1% in the non-SCA siblings (p=0.33). Mean SCA hemoglobin was 7.3 ±1.02 g/dl vs. 12.1 ±1.45 in non-SCA siblings (p=0.0001). Extent of anemia was similar in both SCA age groups (7.35±1.11 g/dl in the younger vs. 7.29±0.96 g/dl in the older group; p=0.71). In contrast, among non-SCA siblings the younger group had lower hemoglobin (10.9±1.55 g/dl vs. 12.6±1.06; p=0.001). Using WHO standards, 16.0% of the SCA group had wasting vs. 8.7% in non-SCA participants (p=0.08).39 In the older age SCA group, higher proportions were female (52.8% vs. 41.0%, p=.02), wasted (20.3% vs. 10.3%, p=.04), with clinical evidence of prior stroke (8.5%) (Table 1).

Impaired Cognition in SCA children vs. non-SCA siblings

By combined median or mean z-scores, the sample with SCA scored lower on the Mullen (ages 1-4) and KABC-II (ages 5-12) than non-SCA siblings, with median z-scores of 0.62 (-5-2.51) vs. 0.30 (-3.84-3.42, p<0.0001). Similarly, mean overall z-score of SCA participants was -0.69 ±1.10 vs. siblings 0.21 ±1.46 (p<0.001; Table 2). In contrast, the two groups were not different in overall executive function by median (1.01 (-2.56-3.25) vs. 1.07 (-2.87- 3.35); p=0.32) or mean (0.86 ±1.02) vs. 0.94 ±1.29).
To remove the potential excess influence from prior stroke on the SCA sample, we re-analyzed their mean z-scores after removing the affected SCA participants (mean age 6.0±2.59). For overall cognitive function, the mean SCA z-score changed only slightly (-0.61±1.03) and remained statistically significantly lower than controls (p=0.006). As expected, the mean z-score for the SCA sub-sample with prior stroke vs. no stroke was much lower -2.18±1.53 (p<0.001). A similar re-analysis was performed for mean overall executive function. Similarly, there was no statistically significant difference in mean z-score from the SCA sample after removing those with prior stroke.

For SCA participants aged 1-4, median and mean z-scores from the Mullen and BRIEF-P composite tests, and each sub-test, were lower than for non-SCA siblings (Table 2). Median composite Mullen z-scores of children with SCA compared to non-SCA were -0.35 vs. 0.53 (p<0.0001) (Table 2, Figure 1). Comparable z-score differences between the two groups were found on each of five components tests: gross motor, fine motor, visual reception, receptive language, and expressive language (p ≤0.001). For the BRIEF-P by caretaker assessment, median z-scores from the composite global executive function of children with SCA compared to non-SCA siblings were 1.44 vs. 2.02 (p=0.006), with similar differences in each of three component tests: self-control, flexibility, and metacognition.

For participants aged 5-12, differences between composite KABC-II median z-scores from the SCA versus non-SCA siblings were comparable to those found in the younger children: -0.88 vs. 0.25 (p<0.0001) (Table 2, Figure 1). Z-scores between SCA and non-SCA groups were significantly different for each of four sub-tests: sequential processing, simultaneous processing,
learning, and planning. In contrast, BRIEF caretaker assessment composite z-scores did not differ between SCA and non-SCA (0.57 vs. 0.69; p=0.90) nor did either sub-test, behaviour regulation and metacognition. For TOVA test for attention, median z-scores between children with SCA and non-SCA were similar in four of five sub-tests, (D’ prime (discriminability, omission errors, commission errors, response time). Only z-scores from the sub-test for ADHD were significantly lower for SCA: 0.32 vs. 0.19 (p=0.001).

Categorical data were assessed as proportions of neurocognitively impaired versus not impaired using -2 z-score or lower for each test performed. Among SCA participants, 27 (11.2%) had overall neurocognitive impairment compared to 8 (6.3%) of the non-SCA siblings (p=0.13; Supplemental Table 1). Among SCA participants, neurocognitive impairment was more common in the older group (15.4 vs. 5.0%; p=0.01). For executive function assessed by BRIEF-P or BRIEF, 36 (14.9%) of SCA participants had impaired executive function compared to six (4.7%) of non-SCA (p=0.02). In contrast, among non-SCA siblings, 9.2% in the older and none in the younger group had impaired neurocognitive functioning (9.2% vs. 0%, p=0.18) or impaired executive function (6.9% vs. 0%, p=0.16). Among the older SCA group, children had only nominally higher proportion of impaired TOVA D’ Prime (discriminability, omission errors, commission errors, response time) and ADHD compared to siblings (6.7% vs. 4.7%, p=0.58; 4.3% vs. 1.1%, p=0.18).

Factors Associated with Impaired Cognition in SCA children vs. non-SCA sibling

Using linear regression, participants with SCA had lower Mullen or KABC-II z-scores than the corresponding sibling sample (beta -0.91, SE 0.13, p<0.0001; Table 3). This relationship
strengthened after adjusting for age (beta -1.03, SE 0.14; p<0.001), and especially when adjusting for age and hemoglobin (beta -1.14, SE 0.30; p<0.0001). Adjusting for caregiver education did not affect impact of age (beta -1.04, SE 0.14, p<0.0001). In unadjusted and adjusted models, age remained consistently associated with neurocognitive z-scores: every added year of age accounted for a 0.1 decrease in mean Mullen or KABC-II z-score after accounting for SCA status and hemoglobin (beta -0.10, SE 0.02, p<0.0001), for a 1.0 z-score decrease over the 10-year sample age range. Hemoglobin level was statistically significant in the unadjusted model, with each g/dL increased hemoglobin conferring a lower z-score of 0.13 in Mullen or KABC-II (beta 0.13, SE 0.03, p<0.0001; Table 3). Higher caregiver education (secondary/tertiary school vs. primary/no school) was associated with higher Mullen or KABC-II z-score (beta 0.38, SE 0.15, p=0.014) in the model also adjusting for age.

Children with SCA on average had lower executive function z-scores by BRIEF-P or BRIEF compared to siblings (unadjusted beta -0.08, SE 0.15, p=0.06; Table 3). This relationship strengthened after accounting for age (beta -0.22, SE 0.27, p<0.0001). Relationship between SCA and executive functioning was no longer statistically significant when adjusted for hemoglobin or caregiver education.

By categorical evaluation, impaired cognition versus not impaired, SCA participants had higher odds than siblings of an impaired Mullen or KABC (OR 1.88, 95%CI 0.83-4.27; Supplemental Table 2); this relationship strengthened after accounting for age and caregiver education (aOR 5.07, 95%CI 1.69-15.1). Relationship between SCA and impaired cognition was no longer statistically significance after adjusting for age and hemoglobin. In unadjusted and adjusted
models, age remained associated with impaired cognition, with every year older accounting for a 50% increase in the odds of impaired testing after accounting for SCA status and sex (aOR 1.50, 95%CI 1.29-1.75). Effects of higher caregiver education (secondary/tertiary school vs. primary/no school) on neurocognitive impairment were not statistically significant.

Children with SCA had higher odds of impaired executive function by BRIEF-P or BRIEF compared to siblings (OR 2.85, 95%CI 1.17-6.94; Supplemental Table 2); the relationship became stronger after accounting for age (OR 3.29, 95%CI 1.14-9.52). This pattern remained when adjusting for age and caregiver education (aOR 3.45, 95%CI 1.19-10.0) but was not significant when adjusted for hemoglobin and age.

Subgroup Analysis of Impaired Cognition in SCA participants

By multivariate analyses, factors associated with neurocognitive dysfunction among SCA participants included age (OR 1.43, 95%CI 1.23-1.98; Table 4) and especially abnormal stroke examination (OR 6.60, 95%CI 2.14-20.4) or elevated TCD velocities (OR 2.90, 95%CI 1.09-7.74). These results were consistent within each age subgroup (Supplemental Table 3). Adjusting for hemoglobin and malnutrition, age (aOR 1.50, 95%CI 1.25-1.79) and prior stroke (aOR 6.96, 95%CI 2.01-24.1) remained significant predictors of neurocognitive dysfunction in the SCA sample.

Analysis of Impaired Cognition in only non-SCA Sibling Controls

Among non-SCA siblings, age – but not hemoglobin, sex or malnutrition - was associated with neurocognitive dysfunction (OR 2.83, 95%CI 1.09-7.39). Adjusting for age and hemoglobin +/-
sex, age remained a significant predictor of neurocognitive dysfunction (aOR 3.48, 95%CI 1.00-12.1). When evaluating the impact of caregiver education (secondary/tertiary vs. primary/no school), all of the children with impaired overall cognition had a caretaker with the lower education level.

Discussion

Children with SCA in SSA are at risk for disease-associated cerebrovascular injury as well as environmental challenges. In our large clinic-based sample of Ugandan children with SCA in Kampala compared to their non-SCA siblings, our cross-sectional broad neurocognitive assessment revealed these main findings: 1) Mean and median test z-scores were substantially lower in the SCA sample, with overall differences of approximately 1 z-score, even after accounting for age, hemoglobin level or caregiver education; 2) Children with SCA had a 4-fold increased risk of neurocognitive dysfunction; 3) Among SCA participants, older age was strongly predictive of impaired neurocognitive testing compared to non-SCA siblings. Lesser effects were found from hemoglobin level, malnutrition and lower caregiver education but not sex; 4) Manifestations of SCA-associated cerebrovascular injury, prior stroke or elevated TCD arterial velocity, were the largest driver of impaired cognition, followed by age. However, removal of the modest number of SCA participants with clinically evident prior stroke from the analyses did not significantly affect the results of the remaining sample; 5) In contrast, age was the primary driver of impaired cognition among non-SCA siblings; 6) Executive function was also significantly lower in the SCA sample, with differences attributable to the younger age.
These risk factors were frequently found among the SCA sample, implying significant disease-associated neurocognitive risk.

Similar findings of impaired neurocognitive function and attention compared to non-SCA siblings were observed in a prior Tanzanian report of a smaller sample of older SCA children. In contrast, the present study did not show associations between SCA and executive function, unlike other findings in African children with SCA and children in the U.S. and elsewhere. Those differences could be attributed to the measures we used, based on parental report of executive performance, an approach which may under-report functional deficits. In contrast, several prior studies actual tested child performance.

Unlike our findings here, the Tanzanian study had not observed a decline in performance in older versus younger SCA participants. Cumulative effects of SCA cerebrovascular injury over time are considered to be primarily responsible for the association between age and neurocognitive impairment in children with SCA. Nonetheless, effect of age on neurocognitive impairment was also found among our sample of non-SCA siblings, although to a lesser extent. Collectively, these observations suggest that low caregiver education, alone and/or as a surrogate for low socioeconomic status (SES) and/or educational disadvantages may have contributed to – but were not the main drivers of - the age effects seen on children with SCA in SSA. Similar findings were reported in a U.S. study, where SCA and social factors both influenced neurocognition. The effect of age on neurocognitive outcome in our study could also be a consequence of ‘growing into deficit’ where effects of brain injury become apparent as the child grows older.
A relatively high proportion of neurocognitive impairment in the older group of non-SCA siblings may be at least attributable to social issues, as all neurocognitively impaired siblings had caregivers with low education. We had previously reported this association among healthy children in Kampala. Unlike the random SCA clinic-based selection, sibling participation may have been biased, e.g. from possible parental concerns.

Study limitations include potential biases from SCA-associated survival and the cross-sectional study design. These issues may have affected the relationships seen with age. Nonetheless, our data reflect results from a substantial number of children receiving SCA care at a large urban center. Executive function was based on parental report rather than direct child assessment, hence could have been biased. More direct measures of executive function may provide clearer insights. Additional limitations include potential differential influences from illness-associated school absences adversely impacting test results and no assessment of attention in the younger age group. Low caretaker education level in this sample may have had a downward effect on neurocognitive testing, although sibling assessment would have minimized those effects. No adjustments were made for multiple comparisons due to the exploratory nature of this study.

In conclusion, in a substantial sample of Ugandan children comparing SCA to non-SCA siblings, we demonstrated that SCA was associated with neurocognitive impairment overall and with poorer executive functions in the younger age group. Age, prior stroke and elevated TCD arterial velocity were associated with neurocognitive impairment, with significant but lesser contributions from hemoglobin level, malnutrition and lower caregiver education. Low neurocognitive z-scores by age among non-SCA siblings suggests environmental influences, e.g.,
socio-economic status and education, among all participants, with potential parental selection bias for siblings. Given that risk of impairment increased with age, interventions in early childhood may more likely provide benefit. Disease-modifying therapies, e.g. hydroxyurea, should be tested for stabilizing or improving neurocognitive function in young sub-Saharan children through amelioration of modifiable risk factors, e.g. anemia.53,54

Conflict of Interest statement

The authors have no conflicts of interest to declare.

Acknowledgements

We acknowledge the parents and children who participated in the study, as well as the outstanding study team led by Maxencia Musiimenta and Grace Muwanguzi.

Funding

Funded was provided by a National Institutes of Health grant (1R21HD089791, PIs RI and NSG). Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the National Institutes of Health. The funding source had no role in the design of the study and collection, analysis, and interpretation of data and in writing the manuscript.

References

33. Bello-Manga H, Galadanci AA, Abdullahi S, et al. Low educational level of head of household, as a proxy for poverty, is associated with severe anaemia among children with sickle
42. Gioia GA, Espy KA, Isquith PK. BRIEF-P: behavior rating inventory of executive function--preschool version. Psychological Assessment Resources (PAR); 2003.

Table 1. Demographic and imaging characteristics stratified by SCA status and age group, 1-4 or 5-12 years of age. Data are expressed as N (%) unless otherwise stated.

<table>
<thead>
<tr>
<th>Total Sample</th>
<th>SCA by Age Group</th>
<th>Non-SCA Sibs by Age Group</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total SCA sample (N=242)</td>
<td>Non-SCA Siblings (N=127)</td>
</tr>
<tr>
<td>Age years, mean±SD</td>
<td>5.44±2.9</td>
<td>7.8±3.3</td>
</tr>
<tr>
<td>Hemoglobin (g/dl), mean (SD)</td>
<td>7.32±1.02</td>
<td>12.1±1.45</td>
</tr>
<tr>
<td>Female, N (%)</td>
<td>118 (48.4%)</td>
<td>55 (43.9%)</td>
</tr>
<tr>
<td>Wasting,* N (%)</td>
<td>37 (16%)</td>
<td>11 (8.7%)</td>
</tr>
<tr>
<td>Caretaker Education, N (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No School</td>
<td>54 (22.3%)</td>
<td>22 (17.2%)</td>
</tr>
<tr>
<td>Primary School</td>
<td>124 (51.2%)</td>
<td>87 (67.9%)</td>
</tr>
<tr>
<td>Secondary School</td>
<td>23 (9.5%)</td>
<td>7 (5.5%)</td>
</tr>
<tr>
<td>Tertiary School</td>
<td>33 (13.6%)</td>
<td>12 (9.4%)</td>
</tr>
<tr>
<td>Unknown</td>
<td>8 (3.3%)</td>
<td>0</td>
</tr>
<tr>
<td>Stroke by exam, N (%)</td>
<td>15 (6.2%)</td>
<td>-</td>
</tr>
<tr>
<td>Non-normal TCD, N (%)</td>
<td>37 (15.3%)</td>
<td>-</td>
</tr>
</tbody>
</table>

Bold font represents significant differences (<0.05).

*Defined by WHO standards as weight-for-age of -2 z-score or lower (ref. 39).
Table 2. Standardized overall and sub-test neurocognitive test results, by z-scores, for children aged 1-4 years and 5-12. The younger group was assessed by Mullen Scales of Early Learning and the Behavioral Rating Inventory for Executive Function-Preschool (BRIEF-P). The older group was assessed by Kaufman Assessment Battery for Children, 2nd edition, BRIEF Composite Function and TOVA Composite Function.

<table>
<thead>
<tr>
<th>Overall Differences by Sickle Cell Status</th>
<th>SCA Participants (N=242)</th>
<th>Non-SCA Siblings (N=127)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall Neurocognition</td>
<td>-0.69±1.10</td>
<td>0.21±1.46</td>
<td><0.0001</td>
</tr>
<tr>
<td>Overall Executive Function*</td>
<td>0.86±1.02</td>
<td>0.94±1.29</td>
<td>0.32</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mullen Scale of Early Learning (ages 1-4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCA Participants (N=100)</td>
</tr>
<tr>
<td>Mullen Early Learning Composite</td>
</tr>
<tr>
<td>Median (Range)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mullen Early Learning Components</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gross motor</td>
</tr>
<tr>
<td>Median (Range)</td>
</tr>
<tr>
<td>Fine motor</td>
</tr>
<tr>
<td>Median (Range)</td>
</tr>
<tr>
<td>Visual reception</td>
</tr>
<tr>
<td>Median (Range)</td>
</tr>
<tr>
<td>Receptive language</td>
</tr>
<tr>
<td>Median (Range)</td>
</tr>
<tr>
<td>Expressive language</td>
</tr>
<tr>
<td>Median (Range)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Behavioral Rating Inventory for Executive Function-Preschool (BRIEF-P) (ages 1-4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCA Participants (N=142)</td>
</tr>
<tr>
<td>BRIEF-P: Global Executive function*</td>
</tr>
<tr>
<td>Median (Range)</td>
</tr>
<tr>
<td>BRIEF-P Components*</td>
</tr>
<tr>
<td>Self control*</td>
</tr>
<tr>
<td>Median (Range)</td>
</tr>
<tr>
<td>Flexibility*</td>
</tr>
<tr>
<td>Median (Range)</td>
</tr>
<tr>
<td>Metacognition*</td>
</tr>
<tr>
<td>Median (Range)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kaufman Assessment Battery for Children, 2nd Edition (ages 5-12)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCA Participants (N=142)</td>
</tr>
<tr>
<td>KABC mental processing index</td>
</tr>
<tr>
<td>Median (Range)</td>
</tr>
<tr>
<td>KABC Components</td>
</tr>
<tr>
<td>Sequential processing</td>
</tr>
<tr>
<td>Median (Range)</td>
</tr>
<tr>
<td>Simultaneous processing</td>
</tr>
<tr>
<td>Median (Range)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>------------------------</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

BRIEF Composite Function (ages 5-12)

<table>
<thead>
<tr>
<th></th>
<th>BRIEF: Global Executive function*</th>
<th>BRIEF Components</th>
<th>Behaviour regulation*</th>
<th>Metacognition*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.47±0.91</td>
<td>0.57 (-2.56-2.05)</td>
<td>0.39±1.03</td>
<td>0.69 (-2.81-1.86)</td>
</tr>
</tbody>
</table>

BRIEF Components

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Behaviour regulation*</td>
<td>0.57±0.83</td>
<td>0.71 (-1.95-2.04)</td>
<td>0.57±0.89</td>
<td>0.89 (-1.85-1.96)</td>
</tr>
<tr>
<td>Metacognition*</td>
<td>0.31±0.92</td>
<td>0.52 (-2.65-1.90)</td>
<td>0.19±1.02</td>
<td>0.52 (-3.12-1.51)</td>
</tr>
</tbody>
</table>

TOVA Composite Function (ages 5-12)

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>D’ Prime**</td>
<td>-0.31±0.87</td>
<td>-0.11 (-3.31-1.80)</td>
<td>-0.28±1.15</td>
<td>-0.24 (-3.10- 5)</td>
</tr>
<tr>
<td>Omission errors</td>
<td>0.004±0.78</td>
<td>-0.13 (-1.69-3.75)</td>
<td>-0.06±0.99</td>
<td>-0.33 (-2.49-5)</td>
</tr>
<tr>
<td>Commission errors</td>
<td>-0.07±1.09</td>
<td>-0.08 (-5.00, 2.56)</td>
<td>0.31±0.84</td>
<td>0.27 (-1.25-5)</td>
</tr>
<tr>
<td>Response time</td>
<td>-0.35±1.02</td>
<td>-0.32 (-4.36, 2.16)</td>
<td>-0.13±1.01</td>
<td>-0.20 (-2.51-2.74)</td>
</tr>
<tr>
<td>ADHD</td>
<td>-0.33±1.03</td>
<td>-0.32 (-4.36-2.15)</td>
<td>0.32±1.41</td>
<td>0.19 (-3.96-4.82)</td>
</tr>
</tbody>
</table>

*Signs were flipped for the BRIEF for consistent directionality.

** discriminability, omission errors, commission errors, response time

Bold font represents statistically significant differences (p<0.05) in median values.
Table 3. Multivariable Linear Regression Analyses Evaluating Mean Mullen Scales of Early Learning or KABC-II Z-score Differences and BRIEF-P and BRIEF in Children with SCA (N=242) compared to Non-SCA Siblings (N=127).

<table>
<thead>
<tr>
<th></th>
<th>Modeling Overall Z-score for the Mullen or KABC-II using Linear Regression</th>
<th>Modeling Overall Z-score for the BRIEF-P or BRIEF using Linear Regression</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Beta (SE, p-value)</td>
<td>Beta (SE, p-value)</td>
</tr>
<tr>
<td></td>
<td>Univariable</td>
<td>Adjusted for age</td>
</tr>
<tr>
<td>Sickle Cell Anemia</td>
<td>-0.91 (0.13, p<0.0001)</td>
<td>-1.03 (0.14, <0.0001)</td>
</tr>
<tr>
<td>Age, by year*</td>
<td>-0.08 (0.02, p<0.0001)</td>
<td>-0.11 (0.02, <0.0001)</td>
</tr>
<tr>
<td>Hemoglobin (g/dL)*</td>
<td>0.13 (0.03, p<0.0001)</td>
<td>-0.02 (0.06, p=0.75)</td>
</tr>
<tr>
<td>Male</td>
<td>0.015 (0.14, p=0.91)</td>
<td>-</td>
</tr>
<tr>
<td>Malnutrition² (yes/no)</td>
<td>-0.39 (0.20, p=0.05)</td>
<td>-</td>
</tr>
<tr>
<td>Caregiver Education¹</td>
<td>0.26 (0.17, p=0.12)</td>
<td>-</td>
</tr>
</tbody>
</table>

*Age and hemoglobin are modeled as continuous measures
¹Caregiver education of secondary/tertiary school compared to primary school or less.
²By World Health Organization (WHO) standards

Bold font represents statistically significant differences (p≤0.05).
Table 4. Multivariable analyses assessing odds of impaired Mullen or KABC-II in participants with SCA (N=242). Test results were dichomotomized as impaired or not impaired using a z-score cut-off of -2z or worse.

Univariable analysis did not adjust for any factors; Model 1 included age, malnutrition, and hemoglobin; Model 2 included age, malnutrition, hemoglobin, stroke by exam; Model 3 included age, malnutrition, hemoglobin, and elevated TCD. Bold font represents statistically significant differences (p<0.05).

1Caregiver education of secondary/tertiary school compared to primary school or less.
2By WHO standards.
3TCD velocities: conditional or abnormal ranges for children with SCA

<table>
<thead>
<tr>
<th>Age, by year</th>
<th>Univariable</th>
<th>Model 1</th>
<th>Model 2</th>
<th>Model 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.43 (1.23-1.98)</td>
<td>1.46 (1.24-1.73)</td>
<td>1.50 (1.25-1.79)</td>
<td>1.55 (1.27-1.88)</td>
</tr>
<tr>
<td>Malnutrition (yes/no)</td>
<td>1.29 (0.45-3.67)</td>
<td>0.97 (0.30-3.08)</td>
<td>0.92 (0.27-3.11)</td>
<td>0.55 (0.12-2.44)</td>
</tr>
<tr>
<td>Hemoglobin level (g/dL)</td>
<td>1.09 (0.74-1.61)</td>
<td>1.24 (0.80-1.93)</td>
<td>1.28 (0.81-2.01)</td>
<td>1.16 (0.68-1.97)</td>
</tr>
<tr>
<td>Caregiver Education</td>
<td>0.73 (0.26-2.04)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Stroke by exam</td>
<td>6.60 (2.14-20.4)</td>
<td>-</td>
<td>6.96 (2.01-24.1)</td>
<td>-</td>
</tr>
<tr>
<td>Elevated TCD</td>
<td>2.90 (1.09-7.74)</td>
<td>-</td>
<td>-</td>
<td>3.76 (1.08-13.0)</td>
</tr>
</tbody>
</table>

Subsample with elevated TCD or prior stroke (N=52, N_impaired= 14 (24.2 %))

Age, by year	1.25 (1.00-1.56)	1.30 (1.02-1.66)	-	-
Wasting (yes/no)	2.44 (0.35-16.9)	1.39 (0.15-12.7)	-	-
Hemoglobin level (g/dL)	1.25 (0.66-2.37)	1.50 (0.69-3.29)	-	-
Caregiver Education	0.36 (0.04-3.27)	-	-	-

Subsample without elevated TCD or prior stroke (N=182, N_impaired= 13 (7.1 %))

Age, by year	1.73 (1.33-2.26)	1.82 (1.35-2.46)	-	-
Wasting (yes/no)	0.78 (0.17-3.71)	0.53 (0.09-3.19)	-	-
Hemoglobin level (g/dL)	1.18 (0.66-2.12)	1.29 (0.65-2.55)	-	-
Caregiver Education	0.57 (0.12-2.68)	-	-	-
Supplemental Table 1. Study participants scored as impaired on standardized neurocognitive test results defined by z-score cut-off of -2z or worse. Mullen Scales of Early Learning and Kaufman Assessment Battery for Children, 2nd edition were used to test participants ages 1-4 years and 5-12 years, respectively.

<table>
<thead>
<tr>
<th></th>
<th>Total Sample</th>
<th>SCA by Age Group</th>
<th>Non-SCA Sibs by Age Group</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SCA (N=242)</td>
<td>Controls (N=127)</td>
<td>p-value</td>
</tr>
<tr>
<td></td>
<td>Ages 1-4 yrs (n=100)</td>
<td>Ages 5-12 yrs (n=142)</td>
<td>Ages 1-4 yrs (n=40)</td>
</tr>
<tr>
<td>Primary Analysis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impaired Mullen or KABC-II*</td>
<td>27 (11.2%)</td>
<td>8 (6.3%)</td>
<td>0.13</td>
</tr>
<tr>
<td>Impaired BRIEF and Pre-BRIEF: Executive Function**</td>
<td>36 (14.9%)</td>
<td>6 (4.7%)</td>
<td>0.02</td>
</tr>
<tr>
<td>Impaired attention TOVA (D’ Prime)**</td>
<td>10 (6.7%)</td>
<td>4 (4.6%)</td>
<td>0.49</td>
</tr>
<tr>
<td>Impaired attention TOVA (ADHD)</td>
<td>6 (4.3%)</td>
<td>1 (1.1%)</td>
<td>0.18</td>
</tr>
<tr>
<td>Components of KABC-II</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impaired sequential processing</td>
<td>4 (1.7%)</td>
<td>2 (1.6%)</td>
<td>0.98</td>
</tr>
<tr>
<td>Impaired simultaneous processing</td>
<td>10 (4.1%)</td>
<td>8 (6.3%)</td>
<td>0.45</td>
</tr>
<tr>
<td>Impaired learning</td>
<td>20 (8.3%)</td>
<td>12 (9.4%)</td>
<td>0.70</td>
</tr>
<tr>
<td>Impaired planning</td>
<td>2 (1%)</td>
<td>0</td>
<td>0.55</td>
</tr>
<tr>
<td>Components of Mullen Test</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impaired gross motor</td>
<td>9 (3.7%)</td>
<td>0</td>
<td>0.03</td>
</tr>
<tr>
<td>Impaired fine motor</td>
<td>4 (1.7%)</td>
<td>0</td>
<td>0.30</td>
</tr>
<tr>
<td>Impaired visual reception</td>
<td>5 (2.1%)</td>
<td>0</td>
<td>0.17</td>
</tr>
<tr>
<td>Impaired receptive language</td>
<td>5 (2.1%)</td>
<td>0</td>
<td>0.17</td>
</tr>
<tr>
<td>Impaired expressive language</td>
<td>2 (1%)</td>
<td>0</td>
<td>0.55</td>
</tr>
</tbody>
</table>

*Of the 52 who had an abnormal stroke or TCD measure, 14 were impaired (4 who were aged 1-4 and 10 who were older than 5).
**discriminability, omission errors, commission errors, response time p-values were calculated using Chi-squared test, or Fisher’s Exact test where appropriate. Bolded data reflect statistically significant differences (p<0.05)

1 p-value for comparison by age group within SCA p=0.01
2 p-value for comparison by age group within non-SCA p=0.18
3 p-value for comparison by age group within SCA p =0.16
4 p-value for comparison by age group within non-SCA p=0.16
Supplemental Table 2. Multivariable regression analyses evaluating odds of impaired Mullen or KABC-II in SCA (N=242) compared to non-SCA Siblings (N=127).

<table>
<thead>
<tr>
<th></th>
<th>Modeling Overall Impaired Cognition Yes/No with Logistic Regression</th>
<th>Modeling Impaired Executive Function Yes/No with Logistic Regression</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OR (95%CI) univariable</td>
<td>OR (95%CI) Adjusted for age</td>
</tr>
<tr>
<td>Sickle Cell Anemia</td>
<td>1.88 (0.83-4.27)</td>
<td>4.69 (1.60-13.7)</td>
</tr>
<tr>
<td>Age, by year*</td>
<td>1.41 (1.23-1.61)</td>
<td>1.50 (1.29-1.75)</td>
</tr>
<tr>
<td>Hemoglobin (g/dL)*</td>
<td>0.91 (0.78-1.06)</td>
<td>-</td>
</tr>
<tr>
<td>Male</td>
<td>0.97 (0.47-2.00)</td>
<td>-</td>
</tr>
<tr>
<td>Wasting² (yes/no)</td>
<td>1.90 (0.94-3.87)</td>
<td>-</td>
</tr>
<tr>
<td>Caregiver Education¹</td>
<td>0.64 (0.23-1.72)</td>
<td>-</td>
</tr>
</tbody>
</table>

Bolded data reflect statistically significant differences (p<0.05)

*Age and hemoglobin were modeled as continuous measures

¹Caregiver education of secondary/tertiary school compared to primary school or less.

²By WHO standards
Supplemental Table 3. Multivariable analyses assessing Odds of Impaired Mullen or KABC-II in participants with SCA (N=242).

<table>
<thead>
<tr>
<th></th>
<th>Univariable</th>
<th>Model 1</th>
<th>Model 2</th>
<th>Model 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ages 1-4 yrs (n=100)</td>
<td>Ages 5-12 yrs (n=142)</td>
<td>Ages 1-4 yrs (n=100)</td>
<td>Ages 5-12 yrs (n=142)</td>
</tr>
<tr>
<td>Age, by year</td>
<td>0.93 (0.32-2.72)</td>
<td>1.71 (1.33-2.21)</td>
<td>1.16 (0.35-3.89)</td>
<td>1.55 (1.17-2.06)</td>
</tr>
<tr>
<td>Wasting (yes/no)</td>
<td>3.11 (0.29-33.1)</td>
<td>0.85 (0.26-2.76)</td>
<td>2.77 (0.25-30.1)</td>
<td>0.85 (0.22-3.25)</td>
</tr>
<tr>
<td>Hemoglobin level (g/dL)</td>
<td>1.08 (0.48-2.39)</td>
<td>1.13 (0.71-1.82)</td>
<td>1.56 (0.62-3.95)</td>
<td>1.14 (0.69-1.89)</td>
</tr>
<tr>
<td>Caregiver Education</td>
<td>3.36 (0.20-56)</td>
<td>0.58 (0.19-1.86)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Stroke by exam</td>
<td>11.6 (0.86-157)</td>
<td>4.75 (1.35-16.7)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Elevated TCD</td>
<td>15.4 (1.50-159)</td>
<td>2.04 (0.59-7.08)</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Univariable analysis was unadjusted; Model 1 included age, malnutrition, and hemoglobin; Model 2 included age, malnutrition, hemoglobin, stroke by exam; Model 3 included age, malnutrition, hemoglobin, and non-normal TCD. Bold font represents statistically significant differences (p<0.05).

1Caregiver education of secondary/tertiary school compared to primary school or less.
2By WHO standards
3Elevated TCD velocities: conditional or abnormal ranges for children with SCA
Figure 1. Overall neurocognitive findings by SCA status and age group. In each age group 1-4 years (left panel) by Mullen and 5-12 years (right panel) by KABC-II, median z-scores on overall neurocognitive testing in non-SCA siblings were higher than those with SCA (p<0.001). Comparing age groups for those with SCA or the non-SCA siblings, median values for the younger age group were lower than for the corresponding older group (p<0.001).