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A B S T R A C T
Background and Objectives: A key step in electrocardiogram (ECG) analysis is the detection of
QRS complexes, particularly for arrhythmia detection. Telehealth ECGs present a new challenge for
automated analysis as they are noisier than traditional clinical ECGs. The aim of this study was to
identify the best-performing open-source QRS detector for use with telehealth ECGs.

Methods: The performance of 16 open-source QRS detectors was assessed on six datasets. These
included four datasets of ECGs collected under supervision, and two datasets of telehealth ECGs
collected without clinical supervision. The telehealth ECGs, consisting of single-lead ECGs recorded
between the hands, included a novel dataset of 479 ECGs collected in the SAFER study of screening
for atrial fibrillation (AF). Performance was assessed against manual annotations.

Results: A total of 12 QRS detectors performed well on ECGs collected under clinical supervision
(𝐹1 score ≥ 0.96). However, fewer performed well on telehealth ECGs: five performed well on the
TELE ECG Database (𝐹1 of ≥ 0.99); four performed well on high-quality SAFER data (𝐹1 of ≥ 0.96);
and performance was poorer on low-quality SAFER data (three QRS detectors achieved 𝐹1 of 0.85-
0.88). The presence of AF had little impact on performance.

Conclusions: The Neurokit, ‘two average’, and University of New South Wales QRS detectors
performed best in this study. These performed sufficiently well on high-quality telehealth ECGs, but
not on low-quality ECGs. This demonstrates the need to handle low-quality ECGs appropriately to
ensure only ECGs which can be accurately analysed are used for clinical decision making.

1. Introduction
The electrocardiogram (ECG) is one of the most widely

used physiological measurement techniques, providing de-
tailed information on heart function. Traditionally ECG
measurements have been confined to clinical settings. How-
ever, recently it has become possible to measure the ECG in
telehealth settings using handheld devices or smartwatches
(1; 2). This presents the opportunity to conduct health as-
sessment beyond the clinical setting, with potential appli-
cations including remote health monitoring, personalized
diagnosis, rehabilitation, and screening for atrial fibrillation
(AF). Indeed, the recent COVID-19 pandemic has acted as
a strong catalyst for innovation in this area (3). However,
the increasing use of wearable and telehealth technologies
also presents new challenges. For instance, ECGs collected
in telehealth settings can be of lower quality than those
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collected in clinical settings for several reasons (4): the ECG
is often measured further away from the heart (such as at
the hands rather than the chest); devices typically use dry
electrodes rather than the more conductive adhesive elec-
trodes; and there is less quality control since measurements
are taken by a non-expert user without clinical supervision.
Therefore, there is a need to assess the performance of ECG
analysis algorithms to understand how well they perform in
the telehealth setting.

QRS detection is a fundamental task in ECG analysis.
QRS complexes indicate ventricular depolarisation, i.e. the
electrical impulse which causes the the heart to pump blood
into the circulation. QRS detection is widely used for heart
rate and rhythm monitoring, and heart rate variability anal-
ysis. Furthermore, QRS detection is frequently the first step
towards extraction of more detailed ECG features such as QT
intervals and P-waves. A range of QRS detection algorithms
have been proposed (5; 6), most of which were developed
using ECGs collected in clinical settings ((4) being a notable
exception). Therefore, there is a need to assess their perfor-
mance with telehealth ECGs. QRS detectors should firstly be
accurate, correctly identifying QRS complexes. They should
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ideally remain accurate in the presence of pathologies such
as AF (which results in an irregular heart rhythm), and in
the presence of noise. In addition, QRS detection algorithms
should also be stable with low execution times to ensure they
are suitable for rapid and long-term analyses.

Previous studies have compared the performance of QRS
detection algorithms across databases recorded in differ-
ent settings. Liu et al. assessed ten QRS detectors across
five datasets including one telehealth dataset (5). The algo-
rithms, chosen for their computational efficiency, achieved
𝐹1 scores of >99% on high-quality signals, ≤ 80% for low-
quality signals, and ≥ 94% during pacing and in the pres-
ence of arrhythmias. The study concluded that an optimized
knowledge-based algorithm (7) performed best. Llamedo
and Martinez assessed six QRS detectors on 12 databases
covering five categories: normal sinus rhythm, arrhythmia,
ST and T morphology changes, stress, and long-term mon-
itoring (6). The study concluded that the gqrs algorithm
performed best. Research in (8) assessed 12 QRS detectors
across five publicly available datasets. The study concluded
that the neurokit (nk) algorithm performed best when con-
sidering both accuracy and execution time. Previous work in
this area addresses known algorithms and benchmark ECG
databases, but there is a lack of knowledge about the latest
algorithms and their application to new telehealth databases,
especially their performance on self-recorded ECGs.

The aim of this study was to identify the best-performing
open-source QRS detector for use with telehealth ECG
signals. The performance of 16 algorithms was assessed on
multiple datasets including a novel dataset collected using
handheld devices during screening for AF. Performance was
assessed primarily in terms of the accuracy of QRS detection
(quantified using the 𝐹1 score), and also in terms of the
execution time and error rate of algorithms. The findings
are particularly relevant given the rapid introduction of
single-lead ECG technology in consumer devices such as
smartwatches, and clinical devices such as handheld ECG
recorders.

2. Methods
2.1. QRS detection algorithms

The 16 QRS detectors assessed in this study are sum-
marised in Table 1 (with source links provided in Appendix
A.2). The QRS detectors were identified through a search
for open-source algorithms. The majority of algorithms were
found in either in the ‘NeuroKit’ (8) or ‘ecgdetector’ (9)
Python packages. Some algorithms were available in both
packages with slightly different implementations, in which
case the faster implementation was used. Python implemen-
tations were used where available to provide a fair com-
parison of algorithm execution times. In four cases Python
implementations were not available and Matlab implemen-
tations were used instead (jqrs, rdeco, rpeak, and unsw). Six
additional algorithms were identified but not used in this
study due to one of the following reasons: (i) no Python
or Matlab implementation was available; (ii) the available

implementation only accepted particular sampling frequen-
cies; (iii) the available implementation predominantly led to
errors; or (iv) the execution time was substantially longer
than that of other algorithms. Further details are provided in
Appendix A.3.
2.2. Datasets

The performance of QRS detectors was assessed using
six datasets, including datasets collected in inpatient, out-
patient, and home settings. The datasets are summarised
in Table 2 and described in the following paragraphs. Full
source links for the datasets are provided in Appendix A.1.
2.2.1. MIT-BIH Normal Sinus Rhythm Database

(SIN)
The MIT-BIH Normal Sinus Rhythm Database (SIN)

contains 18 24-hour ECG recordings from patients referred
to the Arrhythmia Laboratory at Boston’s Beth Israel Hospi-
tal, who were found not to have significant arrhythmias (14).
The first two hours of each recording were used in this study.
The subjects consisted of 13 women and 5 men, aged 20 to
50. Each recordings contains two ECG channels of unknown
leads, the first of which was used in this analysis.
2.2.2. MIT-BIH Arrhythmia Database (ARR)

The MIT-BIH Arrhythmia Database (ARR) contains 48
30-minute ECG recordings from 47 patients referred to the
same Arrhythmia Laboratory (27; 14). This dataset consists
of 23 recordings which were selected at random from a larger
dataset and a further 25 recordings which were manually
selected to include examples of significant but uncommon
arrhythmias. The subjects included 22 women and 25 men
aged 23 to 89. The first ECG channel in each recording was
analysed, which was the modified limb lead II in most cases.
2.2.3. PhysioNet/Computing in Cardiology Challenge

2014 Datasets (HIGH and LOW)
The PhysioNet/Computing in Cardiology Challenge 2014

datasets consist of 10-minute ECG recordings from patients
and healthy volunteers (28; 14). The two publicly available
datasets were used in this study: (i) the Training Set (HIGH),
which contains 100 recordings which are generally of high
quality; and (ii) the Augmented Training Set (LOW), which
contains 100 recordings that are generally of low quality.
Each record in these datasets contains a single ECG lead.
The LOW dataset contains the following leads: lead II (78
records); lead III (5), lead AVF (3), lead AVL (1), and no
lead label (13). No lead labels are provided in the HIGH
dataset.
2.2.4. TELE ECG Database (TELE)

The TELE ECG Database contains 250 30-second lead-
I ECG recordings from home-dwelling patients suffering
from chronic obstructive pulmonary disease and/or conges-
tive heart failure (30; 4). Recordings were acquired without
clinical supervision using the TeleMedCare Health Moni-
tor (TeleMedCare Pty. Ltd. Sydney, Australia). The device
records an ECG from the hands using dry metal electrodes.
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Table 1
QRS detection algorithms

Abbreviation Description Reference(s)

christ christov: Detect QRS complexes as points exceeding an adaptive threshold consisting of the
sum of: (i) steep-slope threshold (a linear reduction from 200ms to 1200ms 200ms after a QRS);
(ii) adaptive integrating threshold (increases in the presence of electromyogram noise); and (iii)
adaptive beat expectation threshold (a linear reduction between 2/3 and 1 mean RR-interval after a
QRS).

(10)

engz engzee, sqrs: Detection of QRS complexes as points exceeding a threshold based on a filtered
signal: (i) removal of baseline wandering; (ii) application of a threshold to detect R-peaks; (iii)
application of a refractory period to prevent multiple detection of a single R-peak.

(11; 12)

gamb gamboa: Detection using amplitude histogram and critical points: (i) signal normalization using the
amplitude histogram; (ii) detection of critical points in the first derivative exceeding a threshold;
(iii) elimination of false beats through constraints on detected ECG signal beats; (iv) Computation
of the mean ECG wave to obtain QPRS features.

(13)

gqrs gqrs: The ECG beat detection algorithm initiates with: (i) employing a trapezoid low-pass filter to
the signal, followed by a QRS matched filter convolution. (ii) The parameters of recent intervals
and peak thresholds are adjusted without recording QRS locations. (iii) Sample detection occurs,
identifying larger samples and peaks that surpass the QRS threshold, thus marking them as QRS
complexes. If no peak is detected, the system lowers the peak detection threshold. (iv) Primary and
secondary peak identification differentiates between peak types based on neighborhood size and
relevance to a previous primary peak or associated T-wave.

(14)

hamilt hamilton, eplimited: Detect QRS complexes using filtering, differentiation, rectification, and a
moving window method: (i) applying low-pass and high-pass filtering to the signal; (ii) calculating
the signal’s derivative; (iii) rectifying the signal and utilizing a moving window of 80 ms; (iv)
detecting QRS complexes following a predefined rule set.

(15; 16)

jqrs jqrs: QRS detection enhanced by sliding window and custom filter: (i) window-based peak energy
detector; (ii) band-pass filter with QRS matched filter (Mexican hat); (iii) reject detections based
on heuristic during flat lines; (iv) search-back procedure for suspected missed beats.

(17; 18; 19)

kali Kalidas and Tamil, Stationary Wavelet Transform (swt): Peak detection using Stationary
Wavelet Transform: (i) resample signal to 80 Hz for real-time processing; (ii) compute 2-level
SWT using ’db3’ wavelet; (iii) square and MWA to enhance QRS peaks; (iv) threshold-based peak
detection; (v) detect missed beats based on RR intervals; (vi) determine actual R-peak location
within 0.10 seconds.

(20; 8)

mart martinez, wavedet, Continuous Wavelet Transorm (CWT): The algorithm functions by
executing a continuous wavelet transformation of the ECG signal across five distinct scales:
(i) Each scale calculates a standard deviation, epsilon, from the transformed signal and peaks
exceeding this epsilon are identified. (ii) The algorithm then filters these identified peaks across
each scale, keeping only those closely associated with preceding scale peaks. (iii) It locates R-peaks
by pinpointing zero-crossings in scale one within a specified range.

(21)

nab nabian: Usage of sliding window with adaptive thresholds and domain knowledge to detect PQRST
points: (i) Filter using Elliptic, Gaussian, or Butterworth (default: Elliptic); (ii) Detect potential
R-peaks using global maxima in sliding window; (iii) Eliminate R-peaks below amplitude threshold;
(iv) Find missing R-peaks using R-R interval; (v) Detect PQST points using predefined R-based
locations.

(22)

nk neurokit: Usage of signal smoothing and gradients to detect QRS complexes: (i) Computing the
gradient and average gradient threshold of the highpass-filtered raw ECG signal. (ii) Identifying the
start and end of QRS complexes by comparing the signal’s smoothed gradient with the gradient
threshold. (iii) Ignoring QRS complexes that are too short by setting a minimum length. (iv)
Identifying R-peaks within each QRS. (v) Ensuring peaks identified are not too close together by
enforcing a minimum delay.

pan-tomp pan tompkins: Filtering of the signal to segment the QRS complex: (i) low-pass and high-pass
filtering; (ii) derivative of the signal; (iii) squaring of the derivative to amplify the QRS complex;
(iv) adaptive thresholding with a refractory period using a moving window approach.

(23)

rdeco r-deco: QRS detection using an envelope-based method: (i) using the difference between the lower
and upper envelopes to flatten the signal; (ii) limiting the search range by considering segments
whose value is higher than the 80 ms later value and whose upward slope lasts longer than 80 ms;
(iii) selecting the segments of maximal value; (iii) defining the R peaks using the Pan-Tompkin
adaptive thresholding method; (iV) eliminating false detections by performing a 50 ms backward
search for each peak.

(24)

rpeak rpeakdetect: Periodic adjustment of thresholds and parameters to detect QRS complexes using
sensitivity-appropriate filtering: (i) cascaded low-pass and high-pass filtering to reduce signal noise;
(ii) approximation of a derivative and application of an amplitude squaring operation; (iii) use of a
moving window integrator with adaptive thresholds to segment the locations of QRS complexes.

(23; 16)

two-avg two average, elgendi: Application of statistical thresholds and moving averages to generate blocks
of interest: (i) bandpass filtering; (ii) integration of moving averages to generate blocks of interest;
(iii) rejection of blocks smaller than the QRS complex length of the healthy adult and detection of
the R peak as the maximum value of the remaining blocks.

(25)

unsw unsw: Application of an adaptive threshold to a feature enriched signal: (i) filtering the signal
with detrending, median filtering, and bandpass filters; (ii) calculating the QRS feature using the
differentiated and filtered signal; (iii) smoothing the QRS features signal frequencies using the
fundamental frequency as the lower bound; (iv) Adaptive threshold calculation using windows of
different lengths on the filtered QRS feature signal; (v) Identification of possible QRS complexes
using a peak-through detector on the filtered QRS feature signal; (vi) Rejection of erroneous QRS
complexes.

(4)

wqrs wqrs: Transformation to a curve-length signal to apply an adaptive threshold: (i) low-pass filtering;
(ii) non-linear scaling of the signal to amplify the QRS complex and reduce noise; (iii) an adaptive
threshold reveals the onset and duration of the QRS complex.

(26)
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Table 2
Datasets
Abbreviation Description No. Beats No.

Recordings
Recording
Duration (min)

Total Time
(min)

Sampling
Frequency (Hz)

Source

Supervised ECG recordings
SIN Recordings from patients without

arrhythmias: excerpts from long-
term recordings collected at an
Arrhythmia Laboratory.

185,253 18 120 2,160 500 MIT-BIH NSR database (14)

ARR Recordings from patients with and
without arrhythmias: excerpts from
24-hour ambulatory recordings
collected at an Arrhythmia
Laboratory.

112,599 48 30 1,440 360 MIT-BIH arrhythmia
database (27; 14)

HIGH High-quality recordings from
patients and healthy volunteers:
collected from multimodal devices
such as bedside monitors.

72,315 100 10 1,000 250 2014 PhysioNet/CinC
challenge training set
(28; 14)

LOW Low-quality recordings from patients
and healthy volunteers: collected
from multimodal devices such as
bedside monitors.

78,518 100 10 1,000 360 2014 PhysioNet/CinC
challenge augmented training
set (28; 14)

Unsupervised, telehealth ECG recordings
TELE Single-lead, telehealth ECGs from

home-dwelling patients: collected by
patients without supervision using a
device which records the ECG from
the hands.

5,932 250 0.50 125 500 Harvard dataverse TELE
database (4)

SAFER Single-lead, telehealth ECGs
from home-dwelling AF screening
participants: collected by partici-
pants without supervision using a
handheld device.
Split into subsets according to
presence of AF (AF or non-AF) and
ECG quality (HIGH or LOW):

18,279 479 0.50 239.5 500 SAFER Feasibility Study
(private) (29)

- SAFER-AF-HIGH 8,456 183 0.50 91.5 500
- SAFER-nonAF-HIGH 7,065 199 0.50 99.5 500
- SAFER-nonAF-LOW 2,758 97 0.50 48.5 500

This dataset contains 221 ECGs randomly selected from 120
patients, and an additional 29 ECGs specifically selected
to represent poor-quality data. The dataset contains manual
annotations of QRS complexes. One ECG in the dataset
lasted longer than 30s, and was truncated to 30s for this
study.
2.2.5. SAFER ECG Dataset (SAFER)

The SAFER ECG Dataset contains 479 30-second lead-
I ECG recordings from home-dwelling subjects aged 65
and over, collected in an AF screening study (ISRCTN
16939438) (29). All participants gave informed consent to
participate in the study. The study was conducted in accor-
dance with the Declaration of Helsinki and was approved
by the London Central NHS Research Ethics Committee
(18/LO/2066).

ECG recordings were acquired without clinical super-
vision using the Zenicor EKG-2 device shown in Figure 1
(Zenicor Medical Systems AB, Sweden). The device records
an ECG from the thumbs using dry metal electrodes. This
dataset contains: 183 high-quality ECGs exhibiting AF (de-
noted SAFER-AF-HIGH) collected from 48 subjects (13
female and 35 male); 199 high-quality ECGs from subjects
without AF (SAFER-nonAF-HIGH) collected from 199 par-
ticipants (100 female and 99 male); and 97 low-quality ECGs
from subjects without AF (SAFER-nonAF-LOW) collected
from 97 subjects (49 female and 48 male). ECG quality
was assessed using the Cardiolund ECG Parser algorithm
(Cardiolund AB). R-peaks were manually annotated specif-
ically for this study. The presence of AF was determined

as described in (29): (i) using the Cardiolund algorithm to
identify ECGs with potential abnormalities; and (ii) expert
reviewers manually reviewing ECGs to identify AF (as
described in (29; 31)). To provide further details, ECGs were
classified as AF and non-AF based on ad hoc review by two
cardiologists. An ECG was classified as AF if either: (i) both
cardiologists agreed that the ECG contained AF; or (ii) one
cardiologist made an AF diagnosis and the other provided
no diagnosis. An ECG was classified as non-AF if either: (i)
the Cardiolund algorithm didn’t identify abnormalities in the
ECG, and the cardiologists did not identify an arrhythmia,
and the participant was not diagnosed with AF; or (ii)
both cardiologists agreed that the ECG didn’t contain an
arrhythmia.
2.3. Statistical analysis

The performance of QRS detectors was primarily as-
sessed using the 𝐹1 score (following a precedent in (32; 33)).
The 𝐹1 score is the harmonic mean of the sensitivity (𝑆𝐸𝑁)
and positive predictive value (𝑃𝑃𝑉 ). These three statistics
were calculated as follows from: the number of reference
QRS complex annotations (𝑛𝑟𝑒𝑓 ); the number of QRS com-
plexes identified by an algorithm (𝑛𝑎𝑙𝑔); and the number of
QRS complexes which were correctly identified (𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡).

𝑆𝐸𝑁(%) =
𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡
𝑛𝑟𝑒𝑓

× 100 (1)

𝑃𝑃𝑉 (%) =
𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡
𝑛𝑎𝑙𝑔

× 100 (2)
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Figure 1: The handheld Zenicor-EKG device used to record
30-second ECGs in the SAFER ECG Dataset.

𝐹1(%) =
2 × 𝑃𝑃𝑉 × 𝑆𝐸𝑁
𝑃𝑃𝑉 + 𝑆𝐸𝑁

× 100 (3)

𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡 was calculated as the number of reference QRS
complex annotations for which at least one QRS complex
was identified by an algorithm within ± 150ms of the ref-
erence QRS annotation as shown in Figure 2 (following the
methodology of (17)).

𝐹1 scores are reported using the median and inter-
quartile range of the 𝐹1 score for each ECG window.

Two additional performance measures were used: algo-
rithm execution time and error rate. Execution times were
assessed as the mean time taken for an algorithm to process
each 30s ECG segment. Error rates were defined as the
percentage of 30s ECG segments in which an algorithm
encountered an error and did not return identified QRS
complexes.

The two-sided Mann-Whitney U test was used to test for
statistically significant differences between 𝐹1 scores at the
95% significance level. A Bonferroni correction was used
to account for the multiple comparisons (a comparison for
each beat detector). This test was used as the distributions
were neither normally distributed nor dependent on each
other. Comparisons were made between: (i) supervised and
telehealth ECGs; (ii) high- and low-quality ECGs; (iii) AF
and non-AF ECGs; and (iv) female and male subjects.

3. Results
3.1. Algorithm performance

The performance of the algorithms is presented in Figure
3 using the 𝐹1 score. When using a 𝐹1 score of ≥ 0.96 to
identify good performance, a total of 12 out of 16 algorithms
performed well on ECGs collected under clinical supervi-
sion (ARR, HIGH and LOW, and SIN). The exceptions were
engz, gamb, jqrs, and mart. Fewer algorithms performed
well on telehealth ECGs: five algorithms performed well
on the TELE dataset (gqrs, nk, rdeco, two-avg, and unsw);
four algorithms performed well on high-quality SAFER
data (nk, rdeco, two-avg, and unsw); and performance was

considerably poorer on low-quality SAFER data, with only
three algorithms scoring≥ 0.85 (nk, two-avg, and unsw), and
none scored higher than 0.88.

Therefore, overall the nk, unsw and two-avg algorithms
performed best, with consistently high 𝐹1 scores on datasets
of supervised ECG recordings, and the highest 𝐹1 scores on
self-recorded ECGs (TELE and SAFER datasets).

Additional results for the positive predictive value (𝑃𝑃𝑉 )
and sensitivity (𝑆𝐸𝑁) are provided in Appendix A.4. These
metrics show that: gamb performed poorly because of a
low 𝑃𝑃𝑉 , indicating that it falsely detected additional QRS
complexes; and mart, and engz had a low 𝑆𝐸𝑁 , indicating
that they frequently missed QRS complexes.

Figure 4 shows the error rates of each QRS detector.
Most QRS detectors had no or very few errors. The best-
performing algorithms had 0.0% errors on all datasets (nk,
unsw and two-avg). The engz and gamb algorithm imple-
mentations frequently produced errors, and some errors were
encountered for gqrs, jqrs, rdeco and rpeak algorithms. Of
particular note, the gamb algorithm exhibited higher error
rates on SAFER data, including error rates of≥99% for gamb
(in keeping with a previous study (8)). This was due to the
algorithm’s use of a fixed amplitude threshold which was
often not met for SAFER ECGs.

Figure 5 shows the mean execution time of each QRS
detector. The fastest QRS detector, rpeak, had an execution
time of 1.2 ms (i.e. 0.004% of the signal duration). Of the
best-performing QRS detectors (nk, two-avg, and unsw),
nk had a short execution time of 2.8 ms (0.009% of the
signal duration), whereas two-avg was slightly slower with
an execution time of 8.0 ms (0.026% of the signal duration),
and unsw was slower still at 12.9 ms (0.043% of the signal
duration). Four QRS detectors had much longer execution
times (christ, engz, gqrs, and wqrs), although we note that
C code implementations are available for some of these that
would have led to shorter execution times.
3.2. Comparison between supervised and

telehealth ECGs
For most QRS detectors, the performance of QRS de-

tectors was higher on supervised ECG recordings than on
unsupervised, telehealth ECGs. A total of 15 (out of 16)
QRS detectors had a significantly higher 𝐹1 score on the su-
pervised SIN dataset than the unsupervised SAFER-nonAF-
HIGH dataset (mart showed no sigificant difference). Simi-
larly, 14 QRS detectors had a significantly higher𝐹1 score on
the supervised ARR dataset than the unsupervised SAFER-
AF-HIGH dataset (hamilt and nk showed no sigificant differ-
ence). Referring to Figure 3: some QRS detectors performed
below average on unsupervised ECGs despite having per-
formed well on supervised ECGs: gqrs achieved 𝐹1 scores
of≥0.98 on supervised ECGs (SIN, ARR, HIGH, LOW), but
≤0.74 on SAFER; and rpeak achieved ≥0.97 on supervised
ECGs, but ≤0.61 on TELE and SAFER datasets.

The results for positive predictive value (𝑃𝑃𝑉 ) and
sensitivity (𝑆𝐸𝑁) (in Appendix A.4) show that most QRS
detectors which performed poorly on self-recorded ECGs
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Figure 2: Assessing whether QRS complexes were correctly identified: An ECG signal is shown with dotted red lines marking
reference R-peak annotations, grey areas showing the tolerance of ± 150ms around these annotations within which QRS complexes
are deemed to be correctly identified, and markers for the R-peaks identified by the 16 QRS detectors used in this study.

had a low PPV, indicating false positive QRS detections. In
addition, some QRS detectors had low sensivities, indicating
unrecognized QRS complexes (e.g. engz, gamb, jqrs, mart,
nab, and wqrs).

Algorithm errors predominantly occurred in unsuper-
vised telehealth ECGs (see Figure 4).
3.3. The impact of signal quality

Low signal quality was associated with poorer perfor-
mance of QRS detectors in the telehealth setting. The 𝐹1scores for all QRS detectors except gamb were significantly
lower on low-quality unsupervised ECGs (SAFER-nonAF-
LOW) than high-quality unsupervised ECGs (SAFER-nonAF-
HIGH). For instance, the best-performing QRS detectors
(nk, two-avg and unsw) performed well on high-quality un-
supervised ECGs (TELE, SAFER-nonAF-HIGH, SAFER-
AF-HIGH) with 𝐹1 scores of ≥0.98, but performed less
well on low-quality unsupervised ECGs (SAFER-nonAF-
LOW) with 𝐹1 scores of ≤0.88. Indeed, all remaining QRS
detectors showed 𝐹1 scores of ≤0.79 on low-quality ECGs
(SAFER-nonAF-LOW) in the unsupervised telehealth envi-
ronment.

Signal quality had a smaller but nonetheless significant
impact on QRS detectors when using supervised ECGs.
Almost all algorithms performed well on high-quality ECGs
(the SIN, ARR, and HIGH datasets) with 𝐹1 scores of ≥0.97
(except gamb and mart), and most of these algorithms con-
tinued to perform relatively well on low-quality supervised
ECGs (the LOW dataset) with 𝐹1 scores of ≥0.97 (except
engz, gamb, jqrs and mart). The small differences in 𝐹1scores between HIGH and LOW were significant for all QRS
detectors except wqrs and hamilt.

3.4. Other influencing factors
The presence of arrhythmia did not have a large effect

on 𝐹1 scores for either supervised ECGs (comparing ARR
and SIN) or unsupervised ECGs (comparing SAFER-AF-
HIGH and SAFER-nonAF-HIGH) (see Figure 3). Whilst
the differences were mostly small, 𝐹1 scores were signifi-
cantly lower during arrhythmias in ARR compared to SIN
for 7 out of 16 QRS detectors, and in SAFER-AF-HIGH
compared to SAFER-nonAF-HIGH for 8 QRS detectors.
Amongst the three best performing QRS detectors (nk, two-
avg, and unsw), the only significant difference was for nk in
the comparison of SAFER-AF-HIGH and SAFER-nonAF-
HIGH, although this difference was small with median 𝐹1scores of 0.99 on both datasets.

Sex had little impact on performance when using unsu-
pervised ECGs as demonstrated by there being no signifi-
cant differences in performance between female and male
subjects on high-quality, non-AF SAFER signals (see Figure
6a), and significant differences for only three out of 16 QRS
detectors on high-quality, AF SAFER signals (see Figure
6b). There were no significant differences in performance
between sexes on the SIN and ARR datasets (see Figures 9a
and 9b).

4. Discussion
4.1. Summary of findings

This study assessed the performance of open-source
QRS detectors on single-lead, telehealth ECGs. The neurokit
(nk), two average, elgendi (two-avg) and UNSW (unsw)
QRS detectors were identified as the best-performing out
of 16 QRS detectors. They performed well on telehealth
ECGs recorded without clinical supervision, and also on
ECGs recorded in clinical settings. They achieved 𝐹1 scores
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Figure 3: The performance of QRS detectors, expressed as the 𝐹1 score. Results are shown for the 16 QRS detectors (on the
y-axis) and the five datasets (x-axis).
Dataset definitions: ARR - MIT-BIH Arrhythmia Database; HIGH - PhysioNet/Computing in Cardiology Challenge 2014 training
set; LOW - PhysioNet/Computing in Cardiology Challenge 2014 augmented training set; SAFER-AF-HIGH - SAFER ECG Dataset
subset of high-quality ECGs exhibiting AF; SAFER-nonAF-HIGH - SAFER ECG Dataset subset of high-quality ECGs not exhibiting
AF; SAFER-nonAF-LOW - SAFER ECG Dataset subset of low-quality ECGs not exhibiting AF; SIN - MIT-BIH Normal Sinus
Rhythm Database; TELE - TELE ECG Database.

of ≥0.98 on high-quality telehealth ECGs and ≥0.99 on
ECGs recorded in clinical settings. Performance was lower
at ≥0.85 when analysing low-quality telehealth ECGs. Per-
formance was not affected by heart rhythm or gender. nk
had one of the fastest execution times (at 0.009% of the
signal duration), whereas unsw was approximately five times
slower (0.043%).
4.2. Comparison with literature

Several studies have compared the performance of mul-
tiple QRS detection algorithms across databases of differ-
ent quality (32; 17; 6; 8). Previous studies assessed 6-12
algorithms, compared to 16 in the current study. Several
of the high-performing algorithms included in the current
study were not widely assessed in previous comparison
studies: nk and two-avg were only included in (8); unsw was
only included in (32); and rdeco was not included in these
studies. In addition, previous studies had mostly focused on
assessing performance on supervised ECG recordings rather

than the telehealth setting. Telehealth data was only included
in (32): the current study included analyses of both this
dataset and also data from the SAFER AF screening study,
containing the additional challenge of QRS detection during
AF.

The current study adds to our understanding of how best
to detect QRS complexes in telehealth ECGs, and demon-
strates the need to develop techniques to handle low-quality
ECGs appropriately. Previously, QRS detectors had been
found to perform worse on telehealth data, and in particular
the TELE dataset (32). We also observed worse performance
on telehealth data, although we found that the best QRS
detectors performed adequately well on high-quality tele-
health data, and that performance was only substantially
worse on low-quality telehealth data. This provides two
complementary directions for future work: (i) QRS detectors
could be developed to perform well even in the presence of
noise (e.g. through denoising (34) or improved algorithm
design (4)); and (ii) ECG signal quality algorithms could be
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Figure 4: The error rates for each QRS detector (expressed as percentages).

developed to identify low-quality recordings in which QRS
complexes cannot be accurately identified (35; 17).

The current study also has implications for future re-
search. We observed that the performance of QRS detec-
tors on supervised or high-quality ECG recordings is not
necessarily indicative of their performance on unsupervised
recordings, in keeping with (6). This highlights the impor-
tance of assessing performance in the target setting, such
as in AF screening as performed in this study. We also
observed quite different performances on the TELE dataset
to those reported previously: whereas the highest perform-
ing algorithm achieved an 𝐹1 score of 0.80 on TELE in
(5), eight of the algorithms included in the present study
achieved 𝐹1 scores of 0.88-1.00. Whilst in many cases this
may be explained by including additional algorithms in this
study, it is notable that the jqrs algorithm’s performance
was substantially higher on this dataset in the present study
(0.94) than the previous study (0.79). This demonstrates
the need to share open-source algorithm implementations
and the code used to perform algorithm assessments. To
address this, we have provided a repository of open-source
algorithms and assessment code to accompany this article:
https://github.com/floriankri/ecg_detector_assessment.

4.3. Strengths and limitations
The key strengths of this study are the assessment of

QRS detectors in a real-world AF screening setting, and
the inclusion of recently developed, high-performance QRS
detectors. The key limitation is that algorithms were run
retrospectively on a computer, rather than in real-time on
a telehealth device. Some algorithms were implemented in
Python, and others in Matlab. Therefore, the comparison
of algorithm execution times reported in this study may
not be truly representative of the relative execution times
which would be observed on devices: the comparison of
Python and Matlab execution times may not be fair; different
algorithms may have been optimised to different extents;
and some algorithms may be more amenable to further
optimisation for use on devices than others (such as through
implementation in C, as is already the case for parts of unsw).
4.4. Implications

This study identified leading QRS detector algorithms
for use with telehealth ECGs. The best-performing algo-
rithms were able to detect QRS complexes with a very
high degree of accuracy on high-quality telehealth ECG
data, demonstrating the potential utility of telehealth devices
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Figure 5: QRS detector execution times: The mean execution time of each QRS detector was calculated across all datasets, where
QRS detectors were implemented in either Python (blue) or Matlab (red).

for assessments based on RR-intervals (such as arrhyth-
mia detection). Furthermore, the study demonstrates the
importance of selecting a high-performance QRS detector,
since performance can vary greatly on telehealth ECGs,
between even well-established algorithms. The study also
demonstrates the difficulty in analysing low-quality tele-
health ECGs, which appear to be of particularly low quality,
perhaps due to increased artifact, the use of dry electrodes,
being self-recorded without clinical supervision, and acqui-
sition at the hands rather than the chest (4).

5. Conclusion
This study identified three leading QRS detectors for

use with single-lead, telehealth ECGs: the nk, two-avg and
unsw algorithms. These algorithms provided accurate QRS
detection with fast execution times. Whilst most other al-
gorithms performed well on data collected under clinical
supervision, many did not perform as well on telehealth
data, demonstrating the importance of selecting a high-
performance algorithm for use in clinical analysis. The per-
formance of even the leading algorithms was substantially
lower on low-quality telehealth ECGs, highlighting the need
to handle low-quality ECGs appropriately in an analysis
pipeline. All the algorithms used in this study are openly
available, and the code used in this study is provided to
facilitate future research at: https://github.com/floriankri/
ecg_detector_assessment .
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(5) provided the foundations for the selection of datasets
and their presentation in Table 2.
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(a) SAFER-nonAF-HIGH: High-quality, non-AF ECGs (including 100 female and 99 male subjects).
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(b) SAFER-AF-HIGH: High-quality, AF ECGs (including 92 female and 91 male subjects).
Figure 6: Comparison of the performance of QRS detectors between female (F) and male (M) SAFER participants.
Definitions: ns - no significant difference; * - 0.01 <p ≤ 0.05; ** - 0.001 <p ≤ 0.01; **** - p ≤ 0.0001.
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A. Appendix
A.1. Dataset sources

Table 3 provides links to the publicly available datasets
used in this study. Note that the SAFER dataset is private,
and further information on this dataset is available in (29).
A.2. Algorithm sources

Table 4 provides source links for the QRS detection
algorithms used in this study.
A.3. Excluded algorithms

Table 5 summarises the QRS detectors which were ex-
cluded from this study. They were excluded for the following
reasons:

• aristot: Excluded because only a C implementation
was found, and the algorithm did not perform com-
petitively compared to gqrs in (6).

• match: Excluded because the available implementa-
tion only accepted signals with a sampling frequency
of either 250Hz or 360Hz.

• rodr: Excluded because the available implementation
was found to predominantly lead to errors, as reported
in (8). Additionally, the results in the cases where no
error occurred were not competitive.

• rsslope: Excluded because the available implementa-
tion was found to predominantly lead to errors.

• visgraph: Excluded due to a substantially longer exe-
cution time than other algorithms, which was deemed
undesirable when evaluating signals in a mobile set-
ting.

• zong: Excluded because the available implementation
consistently led to errors during evaluation.

A.4. Additional results
Additional results for the positive predictive value (𝑃𝑃𝑉 )

and sensitivity (𝑆𝐸𝑁) of QRS detectors are provided in
Figures 7 and 8.

Additional results comparing performance between gen-
ders in supervised ECGs are provided in Figure 9.
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Table 3
Links to the six publicly available datasets used in this study.

Database Full Source Link

ARR https://www.physionet.org/physiobank/database/mitdb/

HIGH https://physionet.org/content/challenge-2014/1.0.0/

LOW https://physionet.org/content/challenge-2014/1.0.0/

SIN https://physionet.org/physiobank/database/nsrdb/

SYNTH https://github.com/floriankri/ecg_detector_assessment

TELE https://doi.org/10.7910/DVN/QTG0EP

Table 4
Source links for the QRS detection algorithms.

Shortname Full Source Link

aristot https://archive.physionet.org/physiotools/activity/cic92/node9.html

christ https://github.com/berndporr/py-ecg-detectors

engz https://github.com/berndporr/py-ecg-detectors/blob/master/ecgdetectors.py

gamb https://github.com/PIA-Group/BioSPPy/blob/master/biosppy/signals/ecg.py#L923

gqrs https://www.physionet.org/content/wfdb-python/3.3.0/#files-panel

hamilt https://github.com/berndporr/py-ecg-detectors

jqrs https://github.com/alistairewj/peak-detector/blob/master/sources/qrs_detect2.m

kali https://github.com/neuropsychology/NeuroKit/blob/master/neurokit2/ecg/ecg_peaks.py

mart https://github.com/neuropsychology/NeuroKit/blob/master/neurokit2/ecg/ecg_peaks.py

match https://github.com/berndporr/py-ecg-detectors/blob/master/ecgdetectors.py

nab https://github.com/neuropsychology/NeuroKit/blob/master/neurokit2/ecg/ecg_peaks.py

nk https://github.com/neuropsychology/NeuroKit/blob/master/neurokit2/ecg/ecg_peaks.py

pan-tomp https://github.com/neuropsychology/NeuroKit/blob/master/neurokit2/ecg/ecg_peaks.py

rdeco https://physionet.org/content/r-deco/1.0.0/R_peak_detection/Algorithm/peak_detection.m

rodr https://github.com/neuropsychology/NeuroKit/blob/master/neurokit2/ecg/ecg_peaks.py

rpeak http://www.mit.edu/~gari/CODE/ECGtools/ecgBag/rpeakdetect.m

rsslope https://archive.physionet.org/challenge/2013/sources/

two-avg https://github.com/berndporr/py-ecg-detectors/blob/master/ecgdetectors.py

unsw https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/QTG0EP

visgraph https://github.com/taulokoka/visgraphdetector/blob/main/visgraphdetector.py

wqrs https://github.com/berndporr/py-ecg-detectors/blob/master/ecgdetectors.py

zong https://github.com/PIA-Group/BioSPPy/blob/master/biosppy/signals/ecg.py#L513

Table 5
Excluded QRS detection algorithms

Abbreviation Name Reference(s)

aristot aristotle (36; 14)
match matched filter (23; 9)
rodr rodrigues (37; 38; 8)
rsslope rs-slope (39)
visgraph visgraphdetector (40)
zong zong, Slope Sum Function (ssf) (41; 8)
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Figure 7: The positive predictive value (𝑃𝑃𝑉 ) of QRS detectors.
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Figure 8: The sensitivity (𝑆𝐸𝑁) of QRS detectors.
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(a) SIN database (including 13 female subjects and 5 male subjects).
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(b) ARR database (including 22 female and 26 male subjects).
Figure 9: Comparison of the performance of QRS detectors between female (F) and male (M) subjects on supervised ECGs.
Definitions: * - significant difference; ns - no significant difference.

F Kristof et al.: Preprint submitted to Elsevier Page 15 of 13

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 8, 2023. ; https://doi.org/10.1101/2023.11.07.23298202doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.07.23298202
http://creativecommons.org/licenses/by-nc-nd/4.0/

