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Abstract: SARS-CoV-2 Omicron surged as a variant of concern (VOC) in late 2021.
Subsequently, several distinct Omicron variants have appeared and overtaken each other. We
combined variant frequencies from GISAID and infection estimates from a nowcasting model for
each US state to estimate variant-specific infections, attack rates, and effective reproduction
numbers (Rt). BA.1 rapidly emerged, and we estimate that it infected 47.7% of the US
population between late 2021 and early 2022 before it was replaced by BA.2. We estimate that
BA.5, despite a slower takeoff than BA.1, also infected 35.7% of the US population, persisting in
circulation for nearly 6 months. Other Omicron variants - BA.2, BA.4, or XBB - infected 30.7%
of the US population. We found a positive correlation between the state-level BA.1 attack rate
and social vulnerability. Our findings reveal the complex interplay between viral evolution,
population susceptibility, and social factors since Omicron emerged in the US.

One-Sentence Summary
For each US state, we estimate Omicron variant-specific infections, attack rates, and effective
reproduction numbers.
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Main Text:

Introduction:

Nearly four years since the World Health Organization declared the COVID-19 outbreak as a pandemic,
SARS-CoV-2 caused more than 778 million confirmed cases globally and more than 6.9 million deaths
[1]. The emergence of genetically distinct SARS-CoV-2 variants of concern (VOC) posed a major
challenge for control programs and greatly extended the length and health impact of the pandemic.

Following the emergence of the first major VOC, Alpha, in late 2020 [2], new VOCs have arisen and
resulted in successive waves of infection [3], [4]. Alpha co-circulated with both Beta and Gamma variants
(first detected contemporaneously in late 2020 in South Africa and Brazil [5], [6], respectively); these
variants were subsequently replaced after the emergence and spread of the Delta variant [7] in mid-2021.
The emergence of the Omicron variant, first detected in South Africa and Botswana in November 2021
[8], [9] was followed by rapid global spread and the replacement of the Delta variant.

Large-scale genomic sequencing of SARS-CoV-2 isolates collected from individuals with detected
COVID-19 disease has been instrumental in documenting the evolution of successive VOC in many
settings [5], [7], [9]–[11]. However, a considerable fraction of SARS-CoV-2 infections do not result in
documented disease [12]–[15], especially after the introduction of vaccines and the development of partial
immunity associated with previous infection [16]–[18]. Understanding the dynamics of transmission and
strain replacement requires methods to infer time trends in variant-specific infections. Here, we combine
nationwide SARS-CoV-2 sequencing data from GISAID with infection estimates from a Bayesian
nowcasting model to better characterize the rise and fall of Omicron variants in the United States (US)
between late 2021 and March 2023.

Results:

Quantifying variant-specific infections by combining variant frequency and infection
estimates

The emergence and spread of multiple SARS-CoV-2 variants has been a hallmark of the COVID-19
pandemic. Combining 3,103,250 SARS-CoV-2 genomic sequences (Figs. S1-S3) and infection estimates
from a nowcasting model (covidestim [19]; Fig. 1A), we estimated daily infections by each major variant
of Omicron (BA.1*, BA.2*, BA.4*, BA.5*, and XBB*) from each US state and the District of Columbia
from December 2021 to March 2023 (Fig. 1).

Reported cases, hospitalizations, and deaths provide an incomplete picture of the status of the COVID-19
pandemic since the majority of infections are asymptomatic. We address this by using infection estimates
from covidestim [19], a nowcasting model that generates daily infection estimates while correcting for
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under-reporting and notification delays (Fig. 1A). We then sorted the SARS-CoV-2 sequences for all 50
states and the District of Columbia and binned the lineages into variant categories - BA.1*, BA.2*,
BA.4*, BA.5*, and XBB* (Table S1). Combining these two sets of analytic outputs, we calculated the
daily frequencies of each Omicron variant (Fig. S1). We used this information to estimate the number of
daily variant-specific infections via a spline interpolation (Fig. 1B). For more details see Materials and
Methods.

We identified three peaks of infections in 2022 associated with the prevalence of distinct variants, one
period in the winter, one in spring to early summer, and one in the late fall (Fig. 1A). The first Omicron
period (BA.1*, December 2021 - January 2022) caused an estimated 4.2 million infections per day at its
peak (about 1.25% of the US population) (Fig. 1B, Tables 1 and S2). In total, we estimate that BA.1*
caused approximately 160 million infections in the US during this wave (Table 1). The second Omicron
period started in April 2022 (>2% frequency) with the emergence of Omicron BA.2* and lasted until
November 2022 (<2% frequency) with the initial emergence of BA.4* and BA.5*. These variant-specific
surges peaked at ~625,000 (BA.2*), ~140,000 (BA.4*), and ~800,000 (BA.5*) infections per day in the
US. Finally, the third Omicron period, from November 2022 to March 2023, was driven by a resurgence
of BA.5* and the emergence of the recombinant variant, XBB*, which peaked at ~500,000 and ~300,000
infections per day in the US, respectively.

At the state level, we estimated that the daily BA.1* infections peaked at ~548,000, ~422,000, ~318,000,
and ~281,000, for California, Texas, Florida, and New York, respectively. Similar to our national
estimates, these daily peaks of infection represent over 1% of the state population. We summarize the total
and peak daily infections for each Omicron variant for all 50 states, the District of Columbia, and the
whole country (Tables 1, S2, and S3).
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Fig. 1. Time series of daily Omicron variant infections across the entire United States.
The left y-axis, in black, is the state-level, and the right y-axis, in red, is the national scale. Note that the scale of the
y-axis differs between time series.
A) Time series of infection estimates for all variants. The gray lines are infection estimates per state and the red line
is the mean infection estimates per day for the whole US.
B) Time series of infection estimates for each variant. The gray lines are infection estimates per state and the red
lines are the mean of infection estimates per day for the whole US. The scales differ by each variant subplot, as each
variant had a different size of total infection per day.

Table 1. Variant-specific Attack Rate, Peak, and Total Infections for the United States
Variant Categories

Omicron
BA.1*

Omicron
BA.2*

Omicron
BA.4*

Omicron
BA.5*

Omicron
XBB*

Total

Attack Rate
mean (max, min)

47.7%
(57.2 -
37.9)%

17.2%
(29.6 - 6.4)%

4.4%
(6.7 - 2.3)%

35.7%
(47.9 -
24.3)%

9.1%
(15.6 -
3.4)%

Peak Daily Infections

4,204,319 625,656 140,772 799,728 303,653

Total Infections

161,762,895 52,112,475 14,179,483 119,878,658 28,635,157 376,568,668

Omicron variant attack rates for each state

We used the daily infections to calculate the percent of the population estimated to have been ever
infected during each variant wave (variant-specific attack rates) for each US state (Figs. 2 and S4).
During the BA.1* wave, states with the highest attack rates - Kentucky (57.2%), Alabama (56.5%), and
Louisiana (56.3%) - were concentrated in the southeast, while we estimate the lowest attack rates from
Iowa (38.3%), South Dakota (38.0%), and Idaho (42.1%). The highest and lowest state attack rates for the
other Omicron variants were as follows: BA.2* highest in Hawaii (30%), lowest in South Dakota (6%);
BA.4* highest in North Carolina (6.8%), lowest in Vermont (2.3%); BA.5* highest in Kentucky (48%),
lowest in Vermont (24%); XBB* highest in Rhode Island (15.6%), lowest is Arkansas (3.4%; Fig. 2B,
S4). While Kentucky often had high attack rates and Vermont and South Dakota generally had lower
attack rates, we did not detect consistent geographical patterns for each Omicron variant.
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Fig. 2. Distribution of attack rate estimates across the United States for each Omicron variant.
A) Attack rate distribution and state-level attack rate estimates. Each dot is a state attack rate estimate, and the
boxplots show the distribution of attack rate values across all states.
B) Maps of the attack rate estimates. For all the Omicron variants we show the US map, with Alaska and Hawaii
placed below. Color on the state map indicates the state-level attack rate value of each variant.

Variant-specific effective reproduction numbers estimated from across the US

We estimated Omicron variant-specific effective reproductive numbers (Rt) for each state to gain insight
into variant transmission (Fig. 3). We produced variant-specific estimates of Rt across all states by
applying the EpiEstim R package [17] functions to our variant-specific daily infection estimates (Fig. 1B).
For Omicron BA.1*, the median Rt across all states started as high as 3 (1.5, 3) (Table S5), while the Rt

estimates for the other variants were smaller. We found similar longitudinal Rt estimates for BA.4* and
BA.5*, indicating that they were generating similar numbers of secondary cases in the US and thus able to
co-exist for several months. This observation suggests that there are variant-specific factors that can
impact their relative transmissibility (e.g. immune escape, infectivity), but there are important population
factors that also impact infection incidence.
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Fig. 3. Time series of variant-specific effective reproductive numbers across all states.
On each facet is depicted the time series for all US states and its confidence interval to the Rt estimate. The red line
is the national average overall states. To help the visualization we apply over each state Rt time series a locally
estimated scatterplot smoothing function (LOESS). The y-axes showing the Rt values are independently scaled for
each variant to highlight changes over time.

Variant-specific associations between attack rates and social vulnerability

To investigate whether SARS-CoV-2 transmission is associated with sociodemographic factors, we
examined correlations between our estimated outcomes and the CDC social vulnerability index (SVI)
metric [20]. Comparing the state SVI (Fig. 4A) to the attack rates for each variant, weighted by the state
population sizes (Fig. 4B), we found that the Omicron BA.1* (correlation coefficient R = 0.56). BA.4* (R
= 0.3), and BA.5* (R = 0.31) attack rates positively correlate with the SVI (Fig. 4B). The BA.2* and
XBB* emergences occurred immediately following the two largest Omicron waves, BA.1* and BA.5*,
respectively. We, therefore, hypothesized that while individuals living in states with higher SVIs have
higher exposure rates, they are less susceptible to infection during variant emergence immediately
following exposure to a previous novel variant wave.

To test the hypothesis that states with higher SVI had higher exposure rates, we compared the Omicron
BA.1* attack rates to those for BA.2* (peaked ~4 months after BA.1) and BA.5* (peaked ~6 months after
BA.1). We calculated a negative correlation between the BA.1* and BA.2* attack rates (R = -0.31, 95%
CI [-0.54, -0.04]; Fig. 4C) and a positive correlation between BA.1* and BA.5* (R = 0.39, 95% CI [0.13,
0.6]; Fig. 4D). States like Kentucky, Louisiana, and Alabama, which are on the higher end of the SVI
scale, had attack rates that were relatively low for BA.1*, low for BA.2* attack rates, and high for BA.5*.
Four states that did not fit the negative BA.1*-BA.2* correlations were South Dakota, Iowa, Idaho, and
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Nebraska, all of which had low SVI values and relatively low attack rates for both variants. Thus our
analysis supports our hypothesis that variant waves are driven by opposing forces of social factors that
govern exposure rates and population susceptibility following previous outbreaks.

Fig. 4. Correlation between variant attack rates and the social vulnerability index.
A) Map of the SVI for all states, colors correspond to the SVI scores.
B) Scatterplot between attack rates by variant category and the SVI. Sizes are equivalent to the size of the state
population and colors correspond to the variant categories as in the Panel B of Fig. 1.
C) Scatterplot between the attack rate of Omicron BA.1* and Omicron BA.2*, colors correspond to the SVI quartile,
and size is proportional to the state population size. Correlation between the attack rates.
D) Scatterplot between the attack rate of Omicron BA.1* and Omicron BA.5*, colors correspond to the SVI quartile,
and size is proportional to the state population size. Correlation between the attack rates.

Discussion:

We investigated the Omicron variant-specific infection dynamics across all US states, estimating
daily infections, attack rates, and effective reproduction numbers. By combining sequencing data
with infection estimates, we aimed to disambiguate infection dynamics during periods of strain
replacement and when variants were co-circulating, revealing features of the epidemic that could
not be inferred from the reported epidemiological data alone.

We found that Omicron variants were responsible for approximately 376 million infections
across the US, including approximately 161 million during the BA.1* wave. The transmission
dynamics of variants differed markedly: BA.1* emerged as a genetically distinct[3], [21]–[23]
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variant which caused large rapid epidemics, especially in states with a higher degree of social
vulnerability. Subsequent Omicron variants, while able to both co-circulate and eventually
outcompete extant strains, spread at lower levels and often for longer durations, exhibiting much
weaker association with social vulnerability measures than the BA.1* variant. These findings
reveal the complex interplay between viral evolution, population susceptibility (driven by
previous infections and population-level immunity), and social factors that affect the risk of
exposure and infection.

The validity of our estimated variant-specific infections, attack rates, and effective reproduction
numbers depends on several assumptions [24]–[27]. Our state-level estimates of total infections
(i.e. not stratified by variant) were derived from a Bayesian nowcasting model which used
publicly available time series of COVID-19 case notifications, hospitalizations, and deaths,
accounting for effective population immunity. These estimates are calibrated to hospitalization
and death data, accounting for delays associated with disease progression and estimates of
infection hospitalization and infection fatality ratios [17]. We then used publically available
SARS-CoV-2 sequencing data from GISAID to estimate variant frequencies at the state level to
disaggregate the total number of infections into variant-specific incidence. As such, we assumed
the sequencing was done at random within states. We also note that our analysis of the
association between state-level attack rates and state-level SVI has the potential for ecological
fallacy and should thus be interpreted with caution.

Our findings align with data from blood donors [28] and another modeling study in China [29].
The prevalence of anti-spike and anti-nucleocapsid antibodies (infection-induced and
hybrid-induced) in the blood donor sample rose from 20.9% in April - June 2021 (Pre-Omicron),
to 54.6% in January - March 2022, and then to 70.3% in July - September 2022. The latter two
periods align with our estimates of the Omicron BA.1* and BA.5* waves. After the Omicron
BA.5* wave, we estimate a cumulative attack rate of 83.4% of the US population. The China
study estimates after the BA.5* introduction in a naive population, that 97% of the population
had been infected. The overall attack rate we estimate is larger than the US population, which is
explained by reinfections over the Omicron variant waves.

Our findings provide strong evidence that the dynamic evolution of SARS-CoV-2 variants is a
result of the interplay between exposure and immunity to the virus [3], [18], [30], [31]. The
pandemic's history has been marked by the initial emergence of highly transmissible variants [3],
[7], [27], [32] and the Omicron era is marked with immune escape characteristics [3], [30], [33],
necessitating ongoing adaptations in public health responses. By quantifying infection rates,
attack rates, and effective reproduction numbers for different variants across all states, we
provide valuable insights that can guide preparedness and resource allocation.
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Materials and Methods:

First, we describe the processing of lineage information and how the lineages were summarized
into categories. Second, we describe how the variant-specific infection estimates are produced by
joining the infection estimate time series and variant frequency time series. Third, we describe
the use of a modified version of EpiEstim tools to estimate the Rt for each of the variants. Lastly,
we describe the joint analysis of the attack rate estimates and social vulnerability index scores.

Data Sources
The GISAID database contains more than 16 million genomes, of which approximately one-third
come from US genomic surveillance efforts [11]. We processed the metadata and generated
counts and frequencies of each variant lineage. Frequencies of variants have been used as a
surveillance tool by the Centers for Disease Control and Prevention (CDC) and can give
information on new invading variants. The GISAID metadata contains the Pango lineage
nomenclature system classification of the genome. We can further distribute lineage information
into variant categories by aggregating the major parental lineages and their sublineages into the
same category. We categorized those lineages into major lineages categories (which we refer to
as “Omicron variants”), such as Omicron BA.1* to incorporate Omicron BA.1 and its
sublineages, Omicron BA.2* to Omicron BA.2 and its sublineages, and so on (Table S1).

The covidestim model estimates the time-series of SARS-CoV-2 infections in the United States
by state and county based on cases, hospitalizations, and deaths data. The model output is a
median of the infection estimates and its credible interval.

Lineages collapsing into major lineages categories
We pre-processed the metadata downloaded from GISAID and categorized the Pango lineages
into 8 major categories: ‘Omicron BA.1*’, ‘Omicron BA.2*’, ‘Omicron BA.3*’, ‘Omicron
BA.4*’, ‘Omicron BA.5*’, ‘Omicron XBB*’, ‘Other Recombinant’ and ‘Other’, see Table 1 for
details on each lineage and its sublineage alias.

As for the categories such as ‘Omicron BA.3*’, ‘Other Recombinant’, and ‘Other’, had less than
2% in frequency and we suppressed them from the main analysis.

We have collapsed all the sub-lineages into major categories, the following table summarizes our
categorization. From the categorization, we count and calculate the frequency of each of these
categories in every state and week. See Fig. S1 in the supplementary material for the counts of
genomic sequences for the whole US during the studied period, Dec 2021 to May 2023, into the
8 previously mentioned categories.

Variant-specific estimates by joining genomic frequencies and infection estimate
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We summarized the genomic sequence data to align with the Covidestim weekly infection
estimates. From weekly counts, we calculate the frequency of each of the major variant
categories described above. This process guarantees compatibility between the dates of metadata
and infection estimates. We filter out frequencies below 2% on a week. By multiplying the
frequencies of each category at each state by the number of total infections estimated for each
state weekly, we produce estimates of the infections per variant in each state per week. We round
the number of infections estimated to an integer number of infections.

In a formula, we have

𝐼
𝑣,𝑠

(𝑡) =  𝐼
𝑠
(𝑡)𝑓

𝑣,𝑠
(𝑡),

Where the infection estimate time series for the variant v at state s, , is given by the𝐼
𝑣,𝑠

(𝑡)

infection estimate time series of total infection at state s, , times the frequencies time series𝐼
𝑠
(𝑡)

of each variant s within the state s, With every week.𝑓
𝑣,𝑠

(𝑡).  𝑓
𝑣,𝑠

(𝑡) > 0. 02

We interpolate the weekly time series using a b-spline function to produce a daily time series of
infections. We repeated the same procedure to the 2.5th and 97.5th quantiles of the infection
estimates generated by Covidestim. We report the 2.5th and 97.5th quantiles of the posterior
distribution trajectories as the lower and upper bound, respectively, for the credible interval (CrI)
of the infection estimates. To compare the incidence estimates by each variant, we calculated the
cumulative incidence over the epidemic of each variant for all states. The incidence is given as
the percent of the population ever infected with the variant in the state.

Effective reproduction number estimates
The daily time series of each variant in each state was then given to the ‘estimate_R()’ function
from the R package EpiEstim. To avoid non-converging problems with the model employed by
EpiEstim, we only parse time series with more than ten days of continuous infection estimates.
The model is parametrized using an uncertain Serial Interval (SI) setting, estimating the serial
intervals of SARS-CoV-2 (Omicron variant specific) by drawing from two (truncated) normal
distributions for the mean and standard deviation of the SI. The truncated normal distribution of
the SI is then parametrized with a mean of 3.5 (1–6 days).

Rt ratios per variant for each state
We calculated the Rt ratio for pairs of variants to compare the Rt values between each variant
across states (Fig. S6). We created pairs based on temporal succession; for time points with two
or more variants co-circulating, we divided the succeeding variant time series by the preceding
variant time series (Fig. S6A). In all pairs of succession, we found the average Rt ratio was
greater than 1, meaning all the succeeding variants were more transmissible and capable of
invasion (Fig. S6B and Fig. S5).
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Social Vulnerability Index aggregation to the state level
The social vulnerability index (SVI) is a metric compiled by the CDC summarizing the social
conditions that may affect the outcome in the face of disasters, such as infectious disease
outbreaks[18](Fig. 4). The SVI is a summary metric, incorporating 4 main themes:
socioeconomic status; household characteristics; racial and ethnic minority status; and housing
type and transportation. States that are high on the SVI scale tend to have larger populations and
are primarily concentrated in the southern half of the US (Fig. 4A). Originally the index was
compiled at the census tract and county level; we have aggregated them by state to be able to
use it with the state-level estimates of infections by variant.

Data availability:

The findings of this study are based on metadata associated with 3,103,250 sequences available
on GISAID from September 1st, 2021 up to April 22, 2023, and accessible at
https://doi.org/10.55876/gis8.231023hd (GISAID Identifier: EPI_SET_231023hd).
All genome sequences and associated metadata in this dataset are published in GISAID’s
EpiCoV database. To view the contributors of each sequence with details such as accession
number, Virus name, Collection date, Originating Lab and Submitting Lab, and the list of
Authors, visit https//doi.org/10.55876/gis8.231023hd

Data Snapshot
EPI_SET_231023hd is composed of 3,103,250 individual genome sequences with collection
dates ranging from 2021-09-01 to 2023-04-22. Data were collected in 2 countries and territories.
All sequences in this dataset are compared relative to hCoV-19/Wuhan/WIV04/2019 (WIV04),
the official reference sequence employed by GISAID (EPI_ISL_402124). Learn more at
https://gisaid.org/WIV04.

Code availability
The pipeline used to calculate the variant-specific infections, attack rates, Rt, Rt ratio, and SVI
comparison is available on the following GitHub repository:
https://github.com/rafalopespx/Variant_infections_rate
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Fig. S1. Flowchart of the process of joining genomic and epidemiological data streams. From the
genomic sequences metadata GISAID and infection estimates from covidestim, we produced infection
estimates by multiplying the frequencies of each Omicron variant by the infection estimates. Those
estimates are then imputed to EpiEstim functions to produce variant-specific effective reproduction
numbers, Rt, and state attack rates.

Fig. S2. Number of genomic sequences per variant category per week during the period of
December 1st, 2021 to May 1st, 2023, to the whole country. From the GISAID metadata, we calculate
the amount of sequences deposited to the database per week, during the analyzed period. Each bar is a
week of the period and the filling of the bar is the frequency of each variant during that week. It is
possible to see the pattern of succession of variants over the year.
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Fig. S3. Number of genomic sequences per variant category per week during the period of
December 1st, 2021 to May 1st, 2023, to all individual states. From the GISAID metadata, we calculate
the amount of sequences deposited to the database per week per state, during the analyzed period. Each
bar is a week of the period and the filling of the bar is the frequency of each variant during that week. It is
possible to see the pattern of succession of variants over the year.
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Fig. S4. Frequency from the raw number of genomic sequences per variant category, during the
period ranging from December 1st, 2021 to May 1st, 2023, over all the individual states. From the
GISAID metadata, we calculate the amount of sequences deposited to the database per week, during the
analyzed period. Each bar is a week of the period and the filling of the bar is the frequency of each variant
during that week. It is possible to see the pattern of succession of variants over the year.
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Fig. S5. Attack rate per each variant category for all individual states. Bar chart to the
variant-specific attack rates estimates in the layout of the US states. Each chart is the attack rates of the
variants with the corresponding color. The double-letter state abbreviation is displayed on the right side of
each subchart.
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Fig. S6. Effective reproduction number (Rt) ratios to each pair of succeeding variants by each state
overall. The Rt ratio is calculated by dividing the average Rt of the predecessor variant by the successor
variant. When the slope rises it means the entering variant has a larger value of average Rt over the
predecessor variant.
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Replacement of variants is marked with a higher Rt ratio, and the co-circulation of variants is
marked with a smaller Rt ratio

We estimate the advantage of one variant over another by taking the Rt ratios during their period of
coexistence. From the Rt ratios, we can classify two different periods to the succession of Omicron
variants. Periods of complete clearance of the previous variants are marked with higher Rt ratios, as for
the Rt between BA.2*/BA.1* and XBB/BA.5* (Fig. 3.). Conversely, we see periods of coexistence of
more than one variant have smaller Rt ratios, e.g., the ratios between BA.4*/BA.2*, BA.5*/BA.2* and
BA.5*/BA.4*. The median Rt values of BA.2*, across the US, were almost 20% higher than the Rt values
of BA.1*, and to XBB* distribution of Rt values it was more than 20% bigger than the Rt values of
BA.5*. In summary, variants with comparable higher Rt (BA.2* and XBB*) values to their predecessor,
can completely invade the dominant variants. See Fig. S6. for the Rt ratios for all states.

Fig. S7. The ratio between variant-specific Rt boxplot and dots to the state-specific ratios. Dots are the
state-level Rt ratio and the boxplot is the distribution over all the states. The pairs of variants are chosen as the
succeeding history of variants throughout 2022. After the BA.1* wave and before the XBB* Introduction to the US,
the Rt ratios are pretty similar, which was a period of coexistence of variants. The BA.2*/BA.1* and BA.5*/XBB*
are significantly higher, and mark the complete clearance of the previous variant, respectively BA.1* and XBB*.
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Table S1. Categorization of Pango lineages and sublineages alias

Category ‘Omicron
BA.1*’

‘Omicron
BA.2*’

‘Omicron
BA.3*’

‘Omicron
BA.4*’

‘Omicron
BA.5*’

‘Omicron
XBB*’

‘Recombinant’ ‘Other’

Pango
lineage

BA.1 or
B.1.1.529
.1

BA.2 or
B.1.1.529.
2

BA.3 or
B.1.1529.
3

BA.4 or
B.1.1.529
.4

BA.5 or
B.1.1.529
.5

XBB X, excluding
XBB

Any
other

Sublineag
es alias

BD.1 B["G" "H"
"J" "L"
"M" "N"
"R" "S"
"Y"] or
C["A" "B"
"H" "J"
"M" "V"]
or
D["D" "S"
"V"] or
E["J" "P"]
or F[“J”]

No alias
for
sublineage
s

C[“S”] or
D[“C”]

B["E" "F"
"K" "Q"
"T" "U"
"V" "W"
"Z"] or
C["C"
"D" "E"
"F" "G"
"K" "L"
"N" "P"
"Q" "R"
"T" "U"
"W" "Y"
"Z"] or
D["A"
"B" "E"
"F" "G"
"H" "J"
"K" "L"
"M" "N"
"P" "Q"
"R" "T"
"U" "W"
"Y" "Z"]
or
E["A"
"C" "D"
"E" "F"
"H" "N"
"Q" "R"
"S" "T"
"V" "W"
"Y" "Z"]
or
F["A" "B"
"C" "F"]

No alias
for
sublineag
es

No alias for
sublineages

No
alias for
subline
ages
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Table S2. Peak of infections by variant categories

Omicron
BA.1*

Omicron
BA.2*

Omicron
BA.4*

Omicron
BA.5*

Omicron
XBB*

USA 4,204,319 625,656 140,772 799,728 303,653

State
Alabama 80,699 6,097 4,461 14,819 5,983
Alaska 9,027 1,904 430 2,717 790
Arizona 103,970 13,127 2,523 19,627 5,975
Arkansas 49,773 2,257 1,106 8,238 1,715
California 548,049 87,067 16,727 113,263 35,291
Colorado 75,425 11,865 2,127 12,888 5,004
Connecticut 44,145 10,623 1,420 6,548 6,842
Delaware 13,389 2,883 414 2,136 1,211
District of
Columbia

10,903 1,518 323 1,510 1,065

Florida 318,587 67,102 17,295 79,468 26,388
Georgia 159,257 14,898 6,119 28,439 8,480
Hawaii 18,682 6,339 499 3,713 1,600
Idaho 17,138 2,344 952 4,127 1,873
Illinois 140,808 29,216 5,329 31,065 14,913
Indiana 81,697 9,031 2,489 16,823 5,317
Iowa 30,717 4,489 1,356 7,029 3,755
Kansas 37,585 3,332 2,005 5,739 2,845
Kentucky 58,792 8,449 2,282 16,826 4,674
Louisiana 75,108 8,542 3,172 13,962 5,042
Maine 10,069 5,770 526 3,478 3,065
Maryland 83,371 14,839 2,258 12,542 7,509
Massachusetts 82,828 22,513 2,456 12,387 11,933
Michigan 114,189 28,113 2,793 23,520 11,321
Minnesota 62,361 14,423 2,987 12,736 6,290
Mississippi 43,877 2,782 2,699 8,180 1,981
Missouri 78,656 9,588 4,167 13,998 6,102
Montana 12,300 2,195 850 2,451 1,314
Nebraska 19,585 2,689 1,087 5,505 3,251
Nevada 46,073 6,622 1,192 10,153 2,259
New Hampshire 14,377 4,075 600 2,807 1,727
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New Jersey 128,193 23,330 3,824 19,382 18,473
New Mexico 25,694 4,354 860 5,324 1,984
New York 281,267 56,751 7,882 39,921 30,444
North Carolina 143,645 21,360 6,347 27,913 12,096
North Dakota 10,915 1,168 277 1,896 682
Ohio 143,117 18,910 4,482 27,233 13,252
Oklahoma 64,238 3,899 1,560 10,404 3,910
Oregon 46,662 11,592 2,075 11,071 3,625
Pennsylvania 141,384 25,348 3,860 24,278 16,019
Rhode Island 16,010 3,321 359 2,102 2,315
South Carolina 85,567 7,491 3,939 13,580 4,193
South Dakota 11,348 1,062 392 1,913 1,274
Tennessee 97,156 8,163 3,680 19,420 6,692
Texas 422,616 35,932 14,956 80,743 25,776
Utah 41,564 5,510 1,004 6,323 2,295
Vermont 6,486 2,543 276 1,109 709
Virginia 103,246 18,160 4,652 19,349 10,278
Washington 89,584 18,463 2,486 17,473 6,482
West Virginia 20,050 3,665 1,173 5,200 1,805
Wisconsin 72,726 12,375 2,153 11,674 5,731
Wyoming 7,480 1,174 649 1,823 582
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Table S3. Total of infections by variant categories

Omicron
BA.1*

Omicron
BA.2*

Omicron
BA.4*

Omicron
BA.5*

Omicron
XBB*

Total

USA 161,762,895 52,112,475 14,179,483 119,878,658 28,635,157 376,568,668

State
Alabama 2,772,841 502,481 301,070 1,840,577 364,149 5,781,118
Alaska 331,852 189,315 36,086 286,095 45,496 888,844
Arizona 3,997,666 1,055,156 210,600 2,319,194 476,758 8,059,374
Arkansas 1,634,641 226,639 95,847 1,063,683 102,172 3,122,982
California 20,332,095 6,943,130 1,359,685 16,185,013 3,108,330 47,928,253
Colorado 2,648,940 782,758 178,813 1,702,499 369,914 5,682,924
Connecticut 1,522,891 710,982 149,978 1,162,133 518,107 4,064,091
Delaware 461,352 185,235 38,615 295,717 92,789 1,073,708
District of
Columbia

322,927 118,000 30,969 216,461 80,392 768,749

Florida 10,901,127 4,667,189 1,296,781 9,182,990 2,386,455 28,434,542
Georgia 5,760,126 1,192,386 528,765 3,295,697 684,121 11,461,095
Hawaii 603,820 419,328 39,099 487,560 90,698 1,640,505
Idaho 751,594 178,263 52,393 540,414 122,580 1,645,244
Illinois 5,468,759 2,247,330 532,089 5,155,806 1,211,730 14,615,714
Indiana 3,075,722 777,050 233,370 2,254,682 391,892 6,732,716
Iowa 1,208,498 348,540 112,319 989,727 212,310 2,871,394
Kansas 1,368,857 265,362 150,426 865,498 191,838 2,841,981
Kentucky 2,555,786 635,456 231,573 2,140,746 338,583 5,902,144
Louisiana 2,621,453 586,838 267,115 1,882,854 362,779 5,721,039
Maine 617,251 346,511 49,827 501,764 185,229 1,700,582
Maryland 2,718,440 1,001,262 252,671 1,976,392 592,713 6,541,478
Massachusetts 2,936,602 1,481,011 294,630 2,083,316 1,044,955 7,840,514
Michigan 4,717,583 1,900,200 378,516 4,010,475 779,358 11,786,132
Minnesota 2,481,968 1,008,431 289,711 2,256,693 446,887 6,483,690
Mississippi 1,495,347 216,336 187,023 1,069,372 167,479 3,135,557
Missouri 2,909,771 753,251 375,551 2,440,057 449,121 6,927,751
Montana 532,094 143,079 33,344 387,768 81,431 1,177,716
Nebraska 819,490 210,089 92,888 728,462 175,299 2,026,228
Nevada 1,570,551 470,852 70,311 1,041,307 183,352 3,336,373
New Hampshire 609,876 269,619 47,485 415,388 157,023 1,499,391
New Jersey 4,032,876 1,819,971 398,646 3,214,700 1,300,745 10,766,938
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New Mexico 957,983 288,810 62,929 778,920 111,065 2,199,707
New York 9,414,502 4,117,501 861,538 6,893,665 2,667,404 23,954,610
North Carolina 5,558,845 1,618,409 707,725 4,080,326 1,000,189 12,965,494
North Dakota 361,065 79,590 19,952 279,255 43,128 782,990
Ohio 5,512,264 1,445,588 454,099 4,360,627 912,709 12,685,287
Oklahoma 2,149,327 308,975 135,519 1,399,006 251,413 4,244,240
Oregon 1,889,525 897,735 157,995 1,683,766 255,883 4,884,904
Pennsylvania 5,595,975 1,929,311 488,119 4,062,804 1,332,612 13,408,821
Rhode Island 505,780 206,988 39,350 333,036 165,326 1,250,480
South Carolina 2,854,649 556,436 307,723 1,771,568 320,376 5,810,752
South Dakota 335,727 56,862 28,966 240,432 66,014 728,001
Tennessee 3,659,591 645,005 281,411 2,561,121 513,954 7,661,082
Texas 15,937,226 3,541,687 1,172,640 10,249,347 2,293,542 33,194,442
Utah 1,565,741 455,929 75,906 857,997 117,272 3,072,845
Vermont 276,505 152,197 14,149 151,874 46,990 641,715
Virginia 3,984,707 1,404,674 507,862 2,845,993 770,285 9,513,521
Washington 3,485,480 1,557,749 208,230 2,438,627 452,457 8,142,543
West Virginia 908,103 253,293 94,442 681,815 136,347 2,074,000
Wisconsin 2,745,629 871,016 225,331 2,008,904 425,997 6,276,877
Wyoming 281,475 72,670 19,401 206,535 37,509 617,590
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Table S4. Attack rates by variant categories

Omicron
BA.1*

Omicron
BA.2*

Omicron
BA.4*

Omicron
BA.5*

Omicron
XBB*

USA 47.6% 15.3% 4.2% 35.3% 8.4%

States
Alabama 56.6% 10.2% 6.1% 37.5% 7.4%
Alaska 45.4% 25.9% 4.9% 39.1% 6.2%
Arizona 54.9% 14.5% 2.9% 31.9% 6.6%
Arkansas 54.2% 7.5% 3.2% 35.2% 3.4%
California 51.5% 17.6% 3.4% 41.0% 7.9%
Colorado 46.0% 13.6% 3.1% 29.6% 6.4%
Connecticut 42.7% 19.9% 4.2% 32.6% 14.5%
Delaware 47.4% 19.0% 4.0% 30.4% 9.5%
District of Columbia 45.8% 16.7% 4.4% 30.7% 11.4%

Florida 50.8% 21.7% 6.0% 42.8% 11.1%
Georgia 54.3% 11.2% 5.0% 31.0% 6.4%
Hawaii 42.6% 29.6% 2.8% 34.4% 6.4%
Idaho 42.1% 10.0% 2.9% 30.2% 6.9%
Illinois 43.2% 17.7% 4.2% 40.7% 9.6%
Indiana 45.7% 11.5% 3.5% 33.5% 5.8%
Iowa 38.3% 11.0% 3.6% 31.4% 6.7%
Kansas 47.0% 9.1% 5.2% 29.7% 6.6%
Kentucky 57.2% 14.2% 5.2% 47.9% 7.6%
Louisiana 56.4% 12.6% 5.7% 40.5% 7.8%
Maine 45.9% 25.8% 3.7% 37.3% 13.8%
Maryland 45.0% 16.6% 4.2% 32.7% 9.8%
Massachusetts 42.6% 21.5% 4.3% 30.2% 15.2%
Michigan 47.2% 19.0% 3.8% 40.2% 7.8%
Minnesota 44.0% 17.9% 5.1% 40.0% 7.9%
Mississippi 50.2% 7.3% 6.3% 35.9% 5.6%
Missouri 47.4% 12.3% 6.1% 39.8% 7.3%
Montana 49.8% 13.4% 3.1% 36.3% 7.6%
Nebraska 42.4% 10.9% 4.8% 37.7% 9.1%
Nevada 51.0% 15.3% 2.3% 33.8% 6.0%
New Hampshire 44.9% 19.8% 3.5% 30.5% 11.5%
New Jersey 45.4% 20.5% 4.5% 36.2% 14.6%
New Mexico 45.7% 13.8% 3.0% 37.1% 5.3%
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New York 48.4% 21.2% 4.4% 35.4% 13.7%
North Carolina 53.0% 15.4% 6.7% 38.9% 9.5%
North Dakota 47.4% 10.4% 2.6% 36.6% 5.7%
Ohio 47.2% 12.4% 3.9% 37.3% 7.8%
Oklahoma 54.3% 7.8% 3.4% 35.4% 6.4%
Oregon 44.8% 21.3% 3.7% 39.9% 6.1%
Pennsylvania 43.7% 15.1% 3.8% 31.7% 10.4%
Rhode Island 47.7% 19.5% 3.7% 31.4% 15.6%
South Carolina 55.4% 10.8% 6.0% 34.4% 6.2%
South Dakota 37.9% 6.4% 3.3% 27.2% 7.5%
Tennessee 53.6% 9.4% 4.1% 37.5% 7.5%
Texas 55.0% 12.2% 4.0% 35.3% 7.9%
Utah 48.8% 14.2% 2.4% 26.8% 3.7%
Vermont 44.3% 24.4% 2.3% 24.3% 7.5%
Virginia 46.7% 16.5% 5.9% 33.3% 9.0%
Washington 45.8% 20.5% 2.7% 32.0% 5.9%
West Virginia 50.7% 14.1% 5.3% 38.0% 7.6%
Wisconsin 47.2% 15.0% 3.9% 34.5% 7.3%
Wyoming 48.6% 12.6% 3.4% 35.7% 6.5%
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Table S5. Interval values to the Rt estimates by variant categories

Variant Categories

Omicron BA.1* Omicron BA.2* Omicron BA.4* Omicron BA.5* Omicron XBB*

median 1.01 (4.23, 0.36) 1.03 (3.94, 0.33) 1.03 (2.59, 0.38) 1.04 (2.94, 0.41) 1.11 (2.35, 0.48)

upper 1.20 (7.74, 0.54) 1.12 (6.20, 0.56) 1.13 (3.97, 0.56) 1.12 (4.79, 0.56) 1.21 (3.68, 0.66)
lower 0.85 (2.13, 0.22) 0.95 (2.00, 0.18) 0.94 (1.65, 0.24) 0.97 (1.86, 0.29) 1.02 (1.56, 0.33)

28

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 8, 2023. ; https://doi.org/10.1101/2023.11.07.23298178doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.07.23298178
http://creativecommons.org/licenses/by-nc-nd/4.0/

