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Summary 

Immunoglobulins are among the most important anti-viral effectors of the human immune 

system. The biological mechanisms underlying antibody production and maintenance are 

relatively well understood. However, a broader model of how host intrinsic factors and external 

processes influence humoral responses to viral infections is lacking. Here, we investigate how 

age, sex, genetics, health-related habits, and immune factors relate to the anti-viral antibody 

repertoire of healthy humans. We used VirScan, a high-throughput technology based on phage-

display immunoprecipitation sequencing (PhIP-seq), to characterize antibody reactivity against 

more than 90,000 viral epitopes in 1,212 healthy adults of European and African descent. By 

comparing VirScan with various serological assays, we first show that PhIP-seq-based antibody 

repertoires recapitulate expected serostatuses and uncover considerable variation in epitope-

specific reactivity. In addition to age and sex effects, we find that the antibody repertoire is 

strongly associated with active smoking, which results in increased antibody levels against 

rhinoviruses. We provide evidence that individuals born in Central Africa and Europe differ in 

antigenic reactivity to common herpesviruses by targeting different viral proteins. By comparing 

antibody repertoires to 169 immune cell parameters, we find that HLA-DR expression in 

circulating dendritic cells is associated with increased reactivity against EBV. Finally, we 

conducted a GWAS of antibody binding against more than 2,600 viral peptides. We confirmed a 

strong effect of HLA and IGH loci and the FUT2 gene and identified new associations between 

variants in these genes and antibodies against adenoviruses and saliviruses. These findings 

highlight the determinants of human variation in the humoral response to viruses and broaden 

perspectives on how the antibody repertoire is generated and maintained. 
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Introduction 

The cellular and molecular mechanisms underlying the generation of human humoral immunity 

against viral infections are now well understood. However, this process is influenced by a range 

of factors that together determine the strength and longevity of the antibody response, most of 

which are unknown. Blood antibody titers serve as a proxy to evaluate the humoral immune 

response and are widely used as correlates of protection after vaccination or natural infection. 

Recent family- and population-based studies have examined how genetic and non-genetic 

parameters influence the humoral immune response by assessing their relationship to anti-viral 

antibody titers. These studies have shown that antiviral antibody levels are strongly related to sex 

and age. For example, women have higher titers against human papillomavirus (HPV)1 and 

Epstein-Barr virus (EBV)1,2 and generally generate more robust vaccine responses than men3. 

Population immunity against some herpesviruses, such as HSV-1 and cytomegalovirus (CMV), 

tends to increase over time due to accumulated exposure1,2,4,5. In contrast, viruses that are more 

prevalent in children (such as respiratory syncytial virus (RSV) and varicella-zoster virus (VZV)) 

or are a part of childhood immunization schedules (such as measles, mumps, and rubella viruses) 

tend to be present at high levels in most adults1,2. Other non-genetic factors associated with 

serostatus include socioeconomic status1,2 and smoking4.  

Human genetic factors also affect antibody production and maintenance. Total 

immunoglobulin levels are known to be heritable, and genetic variants determining the blood 

concentration of all soluble isotypes have been identified2,6,7. Family-based studies have revealed 

that virus-specific antibody titers are also influenced by host genetics, including antibodies 

against CMV, EBV, and Influenza A virus (IAV)8,9. In addition, genome-wide association 

studies (GWAS) have identified several loci associated with antibody titers. The most 

established is the MHC locus2,10–13, which is associated with antibody titers against EBV, 

Hepatitis B virus (HBV), VZV, and Molluscum contagiosum virus (MCV)10,11,14,15. Other known 

loci include IGH genes, STING1 and FUT2, related to antibodies against the Norwalk virus16,17. 

However, although the determinants of the anti-viral humoral response are increasingly well 

characterized, previous studies have focused on total immunoglobulin titers or on antibodies 

against few, candidate viruses, precluding a detailed understanding of human humoral immunity 

against the vast number of viruses that infect humans18. Furthermore, human antibodies targeting 

one virus can recognize many different viral epitopes, i.e., molecular elements of the virus that 
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are recognized as antigens, but it remains unclear how epitope-specific reactivity varies among 

individuals and what factors affect inter-individual variation in viral antigenic specificity. 

Phage immunoprecipitation sequencing (PhIP-seq) is a phage-display-based, high-throughput 

technology for evaluating antibody-epitope interactions. This approach was first used to identify 

plasma autoantibodies using a phage library covering the human peptidome19,20. PhIP-seq has 

since been used to diagnose COVID-19 patients1321, profile the humoral immune response 

against bacteria and food allergens22–24, and identify antibody repertoire changes in patients with 

inflammatory bowel disease5. The VirScan phage library is a specific implementation of PhIP-

seq that covers the peptidome of all viruses known to infect humans25. It has been applied to 

study the global effect of measles infection on the antibody repertoire26, follow immune 

development in neonates27, diagnose liver cancer28, and identify public epitopes against viruses29. 

Here, we use the VirScan PhIP-seq library of over 90,000 viral peptides in 1,212 healthy adults 

to reveal non-genetic and genetic factors that influence the anti-viral antibody response and 

epitope-specific reactivity in homeostatic conditions. We identify novel associations between the 

antibody repertoire with age and sex, and show that individuals from different continents do not 

recognize the same EBV epitopes upon infection. We show that cigarette smoking results in a 

strong increase in antibody levels against various rhinovirus strains, which is reversible with 

smoking cessation. We investigate correlations between the antibody repertoire and immune 

phenotypes and highlight the impact of anti-IAV antibody levels on the ex vivo cellular response 

to live IAV. Finally, we identified strong associations between human genetic variation at three 

genomic loci and antibodies against a range of viruses, including the recently described family of 

saliviruses. 

 

Results 

PhIP-seq Reveals the Anti-Viral Antibody Repertoire of Healthy Adults 

We performed PhIP-seq on 900 samples from the Milieu Intérieur (MI) cohort, collected in 

Rennes (France) between 2012-2013 (Figure 1A)30. The MI cohort consists exclusively of 

individuals with all four grandparents born in mainland France and has a uniform sex and age 

distribution, with all subjects between 20 and 69 years old (Figure 1B; Table S1). To validate the 

findings from the MI cohort and explore population differences in humoral responses, we also 

performed PhIP-seq on 312 samples from the EvoImmunoPop (EIP) cohort collected in Ghent 
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(Belgium) (Figure 1A). The cohort consists of males ranging from 20 to 50 years old (Figure 1C; 

Table S2), including 100 and 212 individuals of self-reported European or African descent, born 

in Belgium and Central Africa, respectively. Plasma antibody reactivity was assessed for all 

samples using the VirScan V3 library25, which contains 115,753 peptide sequences, 85% of 

which are viral. Peptides were filtered to include unique viral sequences for a final set of 97,978 

peptides (STAR Methods). These peptides originate from a range of viral families, including 

herpesviruses (18,262 peptides), poxviruses (11,567 peptides), and flaviviruses (8,089 peptides) 

(Figure S1A). At the virus level, many peptides originate from relatively common viruses, such 

as IAV (5,655 peptides), Hepatitis B virus (5,423 peptides), and CMV (3,973 peptides), but also 

from less well-studied viruses, such as Orf virus (2,130 peptides) and MCV (2,075 peptides) 

(Figure S1B).  

The number of enriched peptides (STAR Methods) per subject was normally distributed, 

with an average of 881 and 1,044 peptides for MI and EIP subjects, respectively, owing to cohort 

differences in age, sex and/or ancestry (Figures 1D and S1C). When estimating antibody 

reactivity from peptide scores, we found that most peptides are enriched in only a few 

individuals, reflecting individual-specific immune responses (so-called private epitopes) or false 

positives (Figures 1E and S1D), in line with previous PhIP-seq studies4,22,24. Within the MI and 

EIP cohorts, 2,608 and 3,210 epitopes were public, hereby defined as peptides significantly 

enriched in >5% of subjects for at least two peptides from the same virus. Public epitopes 

originated from 113 viral species, the most common being EBV, IAV, and Enterovirus B, in both 

MI (Figure 1F) and EIP cohorts (Figure S1E). Notably, some viruses showed more public 

epitopes in the EIP cohort, relative to MI cohort (Figure 1G). For example, HHV-8 had 72 public 

epitopes in EIP, but only 5 in MI, reflecting a higher infection rate in the African-descent EIP 

subjects. Together, our analyses reveal the great diversity of the anti-viral antibody repertoire of 

healthy adults, mainly targeting viruses causing recurrent or persistent infections. 

 

AVARDA Scores Reflect Serostatus Established by Gold-Standard Assays 

Although the possibility of investigating the reactivity of thousands of epitopes simultaneously is 

one of the strengths of the VirScan assay, plasma antibodies may also cross-react with 

phylogenetically related viral peptides, resulting in false positive signals. To circumvent this 

issue, we used the AVARDA algorithm, which generates probabilities of antibody reactivity at 
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the virus species level, taking sequence alignment between peptides and peptide representation in 

the library into account31 (STAR Methods). As expected, the viruses with the highest 

seroprevalence according to AVARDA included EBV, rhinoviruses A and B, adenovirus C, and 

the herpesviruses HSV-1 and CMV (Figure 1H). To validate AVARDA results further, we 

compared AVARDA scores to serological measurements obtained by standard ELISA or 

Luminex-based assays in the same individuals2 (STAR Methods). AVARDA breadth scores 

were strongly and specifically associated with ELISA serostatus (STAR methods) for CMV (P = 

2.05 × 10-159), EBV (P = 6.03 × 10-19), and HSV-2 (P = 2.13 × 10-52) (Figure S2A-C, E-G). 

Conversely, the AVARDA breadth score was not predictive of ELISA serostatus for IAV (P = 

0.30) (Figure S2D, H), probably because of large individual variations in IAV antigenic 

specificity captured by Virscan and the converse narrow specificity of ELISA. Of 43 Luminex-

based serology assays, 27 were significantly associated with the VirScan AVARDA scores, with 

the top 16 most significant associations being with the cognate virus (Figures S2I). Six assays 

were weakly associated with an incorrect virus (P > 0.0042), and 16 were not associated with 

any AVARDA breadth score. Such false negatives could either be due to experimental or 

analytical errors with the PhIP-seq assay, ELISA or Luminex assays, poor quality antigens in the 

ELISA or Luminex assays, or a reflection of low serological values close to assay limits of 

detection.  

To evaluate whether the AVARDA algorithm induces false negatives, we tested the 

association between ELISA serostatus and Z-scores of individual epitopes in the MI cohort 

(STAR Methods). For 9 of 12 ELISA assays, associations between epitopes and ELISA 

serostatus were strong and specific (Figure S3A-D). Interestingly, epitope-level analysis also 

revealed that subjects exposed to a given virus recognize different proteins of this virus, which 

could not be identified based on the AVARDA or ELISA data. For example, in contrast to the 

AVARDA score, a large number of IAV epitopes were significantly associated with the ELISA 

IAV serostatus, indicating that increased resolution can be achieved by analyzing individual 

epitopes (Figure S3D-H). Additionally, a subgroup of individuals who are considered EBV-

negative according to the ELISA assay displayed positive reactivity against epitopes from the 

EBV BFRF3 protein, implying that the ELISA assay underestimates EBV seropositivity (Figure 

S3F, right panel). Nevertheless, due to antibody cross-reactivity, some epitopes of a given virus 

were occasionally associated with ELISA results for other viruses. These include Influenza B 
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epitopes being weakly associated with Influenza A serostatus (Figure S3D), epitopes from 

various viruses with CMV serostatus (Figure S3A), and an epitope from the EBV N protein with 

HSV-2 serostatus (Figure S3G). Collectively, these analyses show that AVARDA analyses are 

overall specific and provide high resolution and sensitivity when combined with epitope-level 

analyses for the corresponding viruses. 

 

Age and Sex Effects on The Anti-Viral Antibody Repertoire 

By combining epitope-level and AVARDA analyses, we first investigated the effects of age and 

sex on the anti-viral antibody repertoire, including antibody levels against 2,608 public peptides 

and 150 viruses. Regression modeling indicated that antibody reactivity against a wide range of 

viruses is strongly associated with age, in line with previous studies (Figure 2A)4,5. Antibodies 

against 565 epitopes significantly increased with age, primarily those targeting herpesviruses, as 

well as the Orthopneumovirus RSV, which infect the human host continuously throughout a 

lifetime. HSV-1 and EBV were the viruses for which antibody reactivity was most significantly 

associated with age, according to the AVARDA analysis (Figure 2B). Eighty-three peptides from 

HSV-1 were differentially targeted with age, with all except seven being increasingly targeted in 

older individuals. The strongest associations were with peptides from the US6 gene, encoding 

the surface protein glycoprotein D (Figure 2C). For EBV, antibodies against 144 of 159 peptides 

were positively associated with increased age, covering a wide range of proteins, including 

EBNA-3, -4, and -6 (Figure 2D). Even though the EIP cohort has a relatively narrow age range 

(20-50 years), we replicated the increasing reactivity against HSV-1, EBV, and CMV with age 

(Figure 2E).  

Conversely, antibodies against 766 epitopes significantly decreased with age, primarily from 

Rhinoviruses, Enteroviruses, and IAV, suggesting higher exposure in younger adults and/or 

antibody waning in older adults. AVARDA analysis confirmed that antibodies against 

Rhinoviruses A and B, Enterovirus B, and Aichivirus A significantly decrease with age (Figure 

2B). Seroprevalence against Aichivirus A, a virus discovered in 1991, is very high worldwide 

and was shown to increase with age32,33, which is supported by our results. In contrast, IAV was 

not significant in the AVARDA analysis, confirming that the AVARDA IAV score does not 

capture anti-IAV humoral responses correctly (Figure S2D vs S3D).  
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Sex effects on the antibody repertoire were smaller than the age effects: 330 epitopes were 

significantly associated with higher antibody levels in women and 236 epitopes in men (Figure 

2F). While significant epitopes originated from a range of viruses, AVARDA analysis indicated 

that only CMV and HHV-6 viruses were robustly associated with sex, with higher antibody 

reactivity in women relative to men (Figure 2G). These results suggest that women are more 

exposed to herpesviruses than men, in contrast with bacterial infections that affect the antibody 

repertoire of both women and men comparably 4. 

 

The Anti-Viral Antibody Repertoire Differs Strongly Between Populations 

We leveraged the EIP cohort to investigate the effect of ancestry and continent of birth on the 

anti-viral antibody repertoire. While all EIP samples were collected in Belgium, the subjects of 

Central African ancestry (AFB) had only moved to Europe within the last few years before 

sample collection 34, implying that differences with the subjects of European ancestry (EUB) 

reflect both environmental and genetic effects. Although the EIP cohort is relatively small, we 

found large differences in antibody repertoires between AFB and EUB (Figure 3A). We detected 

898 viral peptides disproportionately targeted by antibodies in EUB individuals. Most of these 

originate from Enterovirus B and C and IAV, although these associations were relatively weak in 

the AVARDA data (P > 0.001 in all cases). Conversely, 647 peptides were disproportionately 

targeted by antibodies in AFB individuals, 61% of which are related to herpesviruses (Figure 

3A). The higher reactivity of AFB to herpesviruses relative to EUB was further confirmed by 

strong AVARDA signals for antibodies against CMV (P = 1.47 × 10-19), HHV-6A (P = 7.04 × 

10-17), and HHV-8 (P = 7.89 × 10-20), also known as Kaposi's sarcoma-associated herpes virus 

(KSHV), confirming previous studies35–37.  

HHV-8 was the virus with the most prominent differences in reactivity according to the 

AVARDA analysis (Figure 3B). The levels of anti-HHV-8 antibodies were significantly higher 

in AFB compared to EUB for 68 of 70 peptides. Although the UniProt annotation of HHV-8 

proteins is relatively poor, it is clear that the primary antibody target is the K8.1 Glycoprotein 

(Figure 3C). Similarly, 108 of 123 CMV peptides were enriched in the AFB cohort, with 

antibodies targeting a range of viral proteins (Figure 3D). The most significant targets included 

RL12, UL32 (Tegument protein pp150) and UL139. Protein structure predictions have suggested 
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that UL139 is involved in cell adhesion and could be a good target for an anti-CMV vaccine 38, 

supported by our results.  

Finally, EBV had many epitopes differently enriched in AFB and EUB (Figure 3E). 

Intriguingly, AVARDA did not identify a statistically significant difference in EBV reactivity 

between the two groups, suggesting that different EBV proteins are targeted by AFB and EUB 

antibodies. Epitope-level analyses confirmed that the viral proteins LMP-1 and EBNA-4 were 

disproportionally targeted by AFB, whereas EBNA-6 was targeted by EUB (Figure 3E). This is 

most likely due to exposure of AFB and EUB to different EBV strains. Interestingly, the LMP-1 

protein sequence in EBV is particularly associated with geographical origin and the distribution 

of the EBV-associated Burkitt's lymphoma 39,40. Collectively, these findings reveal regional and 

population differences in antibody reactivity against epitopes of common viruses and highlight 

the limitation of using single antigens to assess seroprevalence in worldwide epidemiological 

studies. 

 

Cigarette Smoking is Associated with High Antibody Reactivity Against Rhinoviruses 

We tested associations between the anti-viral antibody repertoire and a curated list of 124 

variables that assess socio-economic status, health-related habits, vaccination and medical 

history, and disease-related biomarkers, while adjusting for age, sex, and ancestry (STAR 

methods). The variable most significantly associated with humoral response was the number of 

years a subject has smoked cigarettes (Figure 4A), which was positively associated with 

reactivity against 138 peptides. These peptides originate from multiple viral species, primarily 

the diverse Enteroviruses A-D and Rhinoviruses A and B. The AVARDA analysis only detected 

Rhinoviruses A and B as significantly associated with years of smoking, suggesting that the 

signals for Enterovirus A-D peptides are due to cross-reactivity (Figure 4B). Apart from the 39% 

significant rhinovirus peptides with an unknown strain of origin, most significant peptides 

originated from strains A23, B14, A2, and A1B (Figure 4C). These viruses are responsible for 

the common cold, which is known to be more frequent and severe in smokers, although the 

mechanism is debated41,42. The rhinovirus epitope most significantly associated with smoking 

originates from a Rhinovirus B polyprotein containing capsid proteins (Figure 4D), the antibody 

levels against which show an increase with years of smoking (P = 3.24 × 10-10). Notably, ex-

smokers demonstrated similar levels of reactivity against Rhinovirus B as subjects who never 
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smoked (P = 8.75 × 10-11) (Figure 4E). Furthermore, the number of years since smoking 

cessation in ex-smokers was negatively associated with viral AVARDA scores for both 

Rhinovirus A (P = 3.6 × 10-5) and Rhinovirus B (P = 0.00025). Together, these findings indicate 

that smoking has a strong but reversible effect on the antibody repertoire against rhinoviruses.  

 

The Relationship Between Immune Phenotypes and Anti-Viral Antibodies 

Given the profound effects that viral infections can have on the immune system43–45, we next 

assessed the association between the antibody repertoire and the wide range of immunity-related 

data collected in the MI cohort, including detailed cellular phenotyping based on flow cytometry 

and functional immune evaluation based on gene expression and cytokine production in response 

to stimulation. For cellular phenotyping, 169 peripheral blood immune cell phenotypes were 

measured in MI subjects, including immune cell frequencies, cell surface markers by MFIs, and 

immune cell ratios (STAR methods) 46. Among all tested viruses, CMV was the only virus for 

which antibody levels were strongly associated with flow cytometry phenotypes (Figure 5A). In 

total, 15 flow cytometry phenotypes were associated with anti-CMV antibodies, 13 of which 

were T-cell-related. The strongest association was observed with the frequency of CD4+ effector 

memory T-cells re-expressing CD45RA (TEMRA cells; P = 4.2 × 10-69) (Figure S4A), confirming 

previous studies47,48. The CMV peptides significantly associated with CD4+ TEMRA cells came 

from 47 Uniprot entries from 26 viral proteins. The strongest associations included peptides of 

various envelope glycoproteins, such as Glycoprotein B, Glycoprotein M, and Membrane 

glycoprotein UL139, but also tegument proteins, such as Cytoplasmic envelopment protein 3 and 

pp150 (Figure 5B). In addition to the established association between anti-CMV antibodies and 

TEMRA cells, we identified significant associations between the surface expression of HLA-DR in 

conventional type 1 dendritic (cDC1) cells and antibody reactivity against 12 EBV peptides 

(Figure S4B; P > 8.88 × 10-9). All but one of the significant EBV peptides originate from the 

EBNA-LP antigen, a known modulator of viral gene expression. 

To investigate whether anti-viral antibodies have an impact on the functional immune 

response against viruses, we then tested the association between all common epitopes and gene 

expression of 560 immunity-related genes 49 as well as circulating levels of 13 cytokines, 

measured before and after live IAV stimulation of whole blood in the entire MI cohort (Saint-

André et al., under revision) (STAR methods). Because gene expression was measured in bulk, 
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we controlled all statistical models for cell frequencies of 15 common immune cell populations, 

including CD4+ TEMRA cells. In the unstimulated state, only seven genes were associated with 

anti-CMV antibodies (Figure 5C, S4C), whereas 93 genes were associated when not controlling 

for blood cell composition, indicating that most of the effects of latent CMV infection on the 

host transcriptome are mediated by changes in blood cell proportions. Again, a broad spectrum 

of immunogenic CMV peptides were associated with gene expression (Figure 5D).  

Upon stimulation with live IAV, most associations between anti-CMV antibodies and gene 

expression observed at steady state remained significant (Figure S4E). The exceptions were the 

genes LAG3 and GNLY, which were significantly associated with anti-CMV antibodies at 

baseline, but not after stimulation with IAV. This occured as IAV stimulation drastically 

increased gene expression for both of these genes, hiding the difference seen between CMV-

negative and CMV-positive subjects at baseline. More importantly, 43 unique IAV peptides were 

significantly associated with the upregulation of 8 genes and downregulation of 6 genes upon 

IAV stimulation but not at baseline, indicating that anti-IAV antibody levels impact the 

immediate cellular response to IAV ex vivo (Figure 5E). The primary peptide target of the anti-

IAV antibodies was Hemagglutinin, but Neuraminidase and Matrix protein 1 were also 

significantly associated with the expression of some genes (Figure 5F). The gene most strongly 

associated with anti-IAV immunity was IL21, with no other virus being statistically significant 

(Figure S4D). At the cytokine level, three associations were significant (Figure S4F), with the 

strongest association being between anti-IAV antibodies and increased IL-8 production upon 

IAV stimulation (P = 6.1 × 10-4). Collectively, these results demonstrate that humoral immunity 

against past IAV infection impacts the magnitude of immune cell response against live IAV, 

both at the transcriptional and protein levels.  

 

Host Genetic Factors Influence the Anti-Viral Antibody Repertoire 

To identify genetic factors affecting the anti-viral antibody repertoire, we conducted a GWAS of 

the 2,608 public peptides in the MI cohort by testing association with 5,699,237 imputed SNPs46, 

while controlling for age, sex, and genetic structure. The EIP cohort was used as a replication 

cohort36. We detected four independent, genome-wide significant loci (P < 6.8 × 10-11) 

associated with 105 viral epitopes (Figure 6A). For two out of four loci, associated peptides 

originated from multiple viruses, indicating that candidate variants have pleiotropic effects on 
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anti-viral humoral immunity (Figure 6B). The HLA locus showed the strongest associations, in 

line with previous work demonstrating its major effects on humoral responses against EBV, 

IAV, HSV-1, VZV, JC polyomavirus, and MCV 2,4,10–13. Here, we found a significant association 

between HLA variants and antibody response against 99 peptides from 12 viruses. Among these 

associations, the strongest was with antibodies against the EBNA-5 protein of EBV (P = 5.6 × 

10-26; Prep = 3.0 × 10-6). Additionally, we found new associations with Enterovirus A, 

adenoviruses A-F, and Norwalk virus. Notably, many variants in HLA-DR and HLA-DQ genes 

were strongly associated with antibodies against adenoviruses A-F in both MI and EIP cohorts 

(Figure S6A) (P < 7.59 × 10-14; Prep < 2.6 × 10-3). The same variants are associated with several 

autoimmune diseases, including rheumatoid arthritis and type 1 diabetes50. We also found two 

Rubella virus peptides associated with genetic variation near the IGH locus (P = 1.7 × 10-12; 

Figure S6B). This large genomic region encodes the heavy chain of the antibody molecule, and 

has previously been associated with antibody titers against various pathogens4. The association 

was replicated in the EIP cohort (Prep = 0.04; Figure 6B). 

Antibodies against Norwalk virus and Saliviruses were associated with variants in or near the 

FUT2 gene. Mutations in FUT2 determine the secretor status phenotype, a known risk factor for 

Norovirus infection causing winter vomiting disease. Consistently, the lead variant for anti-

Norwalk virus antibodies (P = 1.1 × 10-11), located in the RASIP1 gene, is in partial linkage 

disequilibrium (LD) (r² = 0.52 in the MI cohort) with the FUT2 stop mutation that most 

commonly determines the secretor status51 (Figure 6C) (rs601338; P = 2.3 × 10-9). This specific 

variant was not present in the genotyping panel of the EIP cohort, but the locus itself was 

significant at the genome-wide level (Prep = 6.0 × 10-9; r² with rs601338 = 0.998). In addition, we 

discovered a novel association between the FUT2 locus and two Salivirus strains (P < 1.6 × 10-

12). Saliviruses were discovered in 2009 in diarrheal samples and were shown to cause 

gastroenteritis52, although the target cell and entry mechanism are currently unknown. The lead 

variant was the same for both Salivirus strains (Figure 6D) and is in complete LD with the FUT2 

stop mutation mentioned above (r² = 0.995), indicating that the secretor status phenotype 

increases the risk of Salivirus infection. Associations with both Salivirus strains were also 

significant in the EIP cohort (Prep < 1.9 × 10-8; Figures 6B and S6C). While the Z-scores 

correlate strongly between the peptides of the two Salivirus strains, neither correlate with the 

significant Norovirus peptide, indicating that this result is not due to cross-reactivity between 
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these viruses (Figure S6D). Collectively, our findings highlight the pleiotropic effects of host 

genetic factors on humoral response against multiple viruses and support the hypothesis of 

antagonistic pleiotropy between infectious and autoimmune diseases. 

 

Discussion 

Here, we investigate how various non-genetic and genetic factors relate to the antibody repertoire 

in 900 subjects of the Milieu Intérieur cohort and 312 subjects of the EvoImmunoPop cohort. We 

used the PhIP-seq technology to measure blood plasma antibody reactivity against > 90,000 viral 

peptides of the VirScan library. We first evaluated our approach by comparing PhIP-seq scores 

to serostatus determined by ELISA- and Luminex-based technologies. We confirmed that the 

PhIP-seq assay is overall sensitive and specific for detecting a range of viruses. In the cases 

where the technologies disagreed, there was generally no clear separation into seropositive and 

seronegative individuals for the gold standard assay, and it is unclear to what degree it could 

serve as a positive control in those cases. Although the first VirScan study included experimental 

validation25, this is, to our knowledge, the most extensive validation study of the PhIP-seq 

technology to date. 

We found a range of viral associations with age, sex, ancestry group, and smoking. 

Antibodies against HSV-1 and EBV, especially, increased with age, but also other herpesviruses 

such as HSV-2 and CMV. Enteroviruses and rhinoviruses showed the opposite relationship, 

where antibodies against Rhinoviruses A-C and Enteroviruses B and C decreased slowly with 

increased age. The differences between men and women were relatively small, although women 

generally had higher levels of antibodies against herpesviruses such as CMV, HHV-6A, and 

HHV-6B. A large number of viruses were associated with European or African descent. The 

strongest associations were for the herpesviruses HSV-1, CMV, HHV-6A, HHV-6B, and KSHV, 

which were targeted more widely in subjects of African ancestry. We also found that subjects 

with European or African backgrounds have antibodies targeting different proteins of EBV, even 

though the general reactivity to the virus does not differ between the groups. Interestingly, one of 

these proteins, LMP-1, shows large sequence differences between geographical regions33,34, 

suggesting that regional differences among EBV strains result in population differences in 

antibody targets. Finally, we identified a strong relationship between anti-Rhinovirus antibodies 

and smoking, particularly for the strains A23 and B14. This relationship was at least partially 
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reversible, as the levels of anti-Rhinovirus antibody levels after smoking cessation decreased 

with time to those of never-smokers. 

We also investigated the relationship between immune factors and the anti-viral antibody 

repertoire. We confirmed the strong effect of CMV infection on CD4+ TEMRA counts and found a 

positive association between anti-EBV antibodies and HLA-DR expression in the cDC1 subset. 

EBV has been strongly associated with the HLA haplotype in this study and others 2,4,10–13, and 

EBV can use the HLA surface protein as a receptor for viral entry 43. Still, previous studies have 

primarily focused on how EBV infection decreases HLA expression in infected B-cells, so this 

observed increase in HLA expression might constitute an independent mechanism. We also 

found an association between anti-IAV antibodies and the transcriptional response to ex vivo 

whole blood stimulation with live IAV. Multiple genes, including IL21, IRF5, EGR2, and CCL7, 

were affected, as well as the secretion of the cytokine IL-8. The association was generally 

positive, indicating that individuals previously infected with IAV responded more strongly. We 

showed that this enhanced response is not mediated by differences in cell-type composition, 

suggesting instead that anti-IAV antibodies, or other effectors of immunological memory, trigger 

a more rapid immune response in seropositive than in seronegative subjects. 

Finally, we conducted a GWAS analysis on all public epitopes of the MI and EIP cohorts. 

We confirmed previous findings in the MHC and IGH loci and identified additional pleiotropic 

effects on adenoviruses, Enterovirus A, Norovirus, and Rubella virus by these loci. We also 

identified a strong association between the recently discovered Saliviruses and the FUT2 locus, 

which was previously linked to Norovirus infection, another gastroenteric virus. While very little 

is known about Saliviruses, this finding hints that they may use similar infection mechanisms as 

Norovirus.  

 

Limitations of the Study 

The study has multiple limitations. To begin with, the PhIP-seq method used throughout the 

study has some important caveats. While peptide coverage is broad, it is limited to linear 

peptides presented on the phage surface, meaning that antibodies binding to more complicated 

3D structures of the protein might be missed. In addition, antibody cross-reactivity between 

peptides leads to uncertainty about which virus a particular result should be attributed to. Here, 

we used the AVARDA algorithm to circumvent this to some extent, but this can also lead to false 
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negatives. Finally, the large number of tests required to evaluate the entire peptide library, in 

combination with the relatively small sample size of this cohort, likely leads to a large number of 

false negatives. Despite these drawbacks, we identified a range of factors related to the anti-viral 

antibody response. Some of these included already-known findings, which we could confirm and 

extend with the high resolution provided by the PhIP-seq technology. We also identified several 

novel factors, which we hope contribute to the steadily growing list of parameters that might 

impact the process of antibody generation and maintenance. Finally, we hope these findings will 

inspire more mechanistic studies of the antiviral immune system.  
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Figure legends 

 

Figure 1 Overview of the Milieu Intérieur (MI) and EvoImmunopop (EIP) cohorts. A) 

Distribution of sex and ancestry within the MI and EIP cohorts, respectively. B, C) Age 

distribution within the MI (B) and EIP (C) cohorts. D) Number of enriched peptides per MI 

subject. E) Number of MI subjects having significant antibody reactivity against each peptide. F) 

Percentage of MI subjects showing peptide enrichment for 2,608 public peptides separated by 

virus. Only viruses with at least two peptides with an enrichment of >5% are shown. G) 

Comparison of the number of enriched peptides per virus between the MI and EIP cohorts. 

Viruses that differ considerably between the cohorts are indicated. H) Heatmap indicating the 

predicted infection status of each individual for the 20 most prevalent viruses, as determined by 

the AVARDA algorithm (Padj < 0.05 after Benjamini-Hochberg correction). 

 

Figure 2 The anti-viral antibody repertoire in relation to age and sex. A, F). P-values for the 

associations between all public peptide Z-scores of the MI cohort and age (A) or sex (F), 

separated by viral species. B, E, G) P-values plotted against effect size for the association 

between the AVARDA breadth score and either age in the MI cohort (B), age in the EIP cohort 

(E), or sex in the MI cohort (G). C, D) P-values for the associations between age and peptide Z-

scores for HSV-1 (C) and EBV (D), separated by viral protein. 

 

Figure 3 The anti-viral antibody repertoire in relation to ancestry group. A) P-values for the 

associations between all public peptide Z-scores of the EIP cohort and ancestry group. B) P-

values plotted against effect size for the association between the AVARDA breadth score and 

ancestry group. C, D) P-values for the associations between ancestry group and peptide Z-scores 

for HHV-8 (C) and EBV (D), separated by viral protein. E) P-values plotted against effect size 

for the association between EBV peptide Z-scores and ancestry group. Only the most significant 

peptide from each UniProt entry is shown. Each peptide is labeled and colored by the protein of 

origin. 

 

Figure 4 The anti-viral antibody response in relation to smoking. A) P-values for the association 

between all public peptide Z-scores of the MI cohort and the number of smoking years. B) P-
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values plotted against effect size for the association between the AVARDA breadth score and the 

number of smoking years. C) The distribution of the viral strain of origin for all rhinovirus 

peptides significantly associated with smoking years. D) The number of years a person has 

smoked plotted against the Z-scores for antibody reactivity against the peptide most associated 

with smoking. The regression line for a linear model is shown in blue, with the confidence 

interval indicated in light blue. E) The Z-score distribution of the rhinovirus peptide most 

significantly associated with smoking status.  

 

Figure 5 The anti-viral antibody response in relation to immune phenotype. A, C) P-values for 

the association of immune cell phenotypes (A) and gene expression (C) with AVARDA breadth 

scores. B, D) P-values for the associations between CMV peptide Z-scores and CD4+ TEMRA cells 

(B) and CCL5 gene expression (D), separated by viral protein. E) P-values for peptide-gene 

expression associations in the control group (x-axis), plotted against the p-values for the same 

associations after IAV stimulation. CMV peptides are not included in the figure, as their 

inclusion inflates the x- and y-axes, making it difficult to discern significant differences in other 

viruses. Peptides originating from the IAV are indicated. F) Table of the 20 most significant 

peptide-gene expression associations for IAV peptides.  

 

Figure 6 Genome-wide association study of anti-viral antibody immunity A) Manhattan plot of 

associations between all 2,608 public peptides of the MI cohort and all common variants (MAF > 

5%). Only results with P < 0.005 are displayed. The significance threshold was determined by 

Bonferroni correction of P-values. The top hit of each peak is annotated with the closest gene. B) 

Table of the top significant independent hits of the MI GWAS for each virus. C, D) LocusZoom 

plots of the results from the association of Salivirus A (UniProt ID: D1L752) with FUT2 variants 

(C) and the association of Norwalk virus (UniProt ID: Q8V0P3) with RASIP1 variants (D).  

 

Figure S1 A, B) Bar chart indicating the number of peptides in the VirScan PhIP-seq library, 

separated by viral family (A) and top 50 viruses (B). C) Number of enriched peptides per EIP 

subject. D) Number of EIP subjects having significant antibody reactivity against each peptide. 

E) Percentage of EIP subjects showing peptide enrichment for 3,210 public peptides separated by 

virus. Only viruses with at least two peptides with an enrichment of >5% are shown. 
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Figure S2 A-D) P-values for the association between the AVARDA breadth score and ELISA-

determined serostatus for CMV (A), EBV (B), HSV-2 (C), and IAV (D). E-H) The  AVARDA 

breadth scores for the top three viruses associated with ELISA-determined serostatus for CMV 

(E), EBV (F), HSV-2 (G), and IAV (H). NA indicates that the serostatus could not be 

conclusively determined based on the ELISA assay. I) P-values for the association between the 

fluorescence intensity measurement of the Luminex xMAP serology assay and the AVARDA 

breadth scores. Serology variables are represented on the x-axis, and the top two AVARDA 

associations are connected with a black line. Significant associations (FDR < 0.05) are colored 

green if the association between serostatus and AVARDA score is for the cognate virus and red 

if there's a mismatched association. Non-significant associations are colored grey. 

 

Figure S3 A-D) P-values for the association between public peptide Z-scores and ELISA-

determined serostatus for CMV (A), EBV (B), HSV-2 (C), and IAV (D). E-H) The distribution 

of peptide Z-scores for the top three proteins associated with ELISA-determined serostatus for 

CMV (E), EBV (F), HSV-2 (G), and IAV (H). NA indicates that the serostatus could not be 

conclusively determined based on the ELISA assay. 

 

Figure S4 A, C) Effect size plotted against P-values for the association of the CMV AVARDA 

breadth score with immune cell phenotypes (A) and gene expression (C). B, D) P-values for the 

association of peptide Z-scores with HLA-DR surface expression in cDC1 cells (B) and IL21 

expression (D). E) P-values for peptide-gene expression associations in the control group (x-

axis), plotted against the p-values for the same associations after IAV stimulation for all CMV 

peptides. Peptides originating from two outlier host genes are indicated. F) P-values for the 

association of cytokine secretion at baseline or in response to live IAV stimulation with 

AVARDA breadth scores. 

 

Figure S5 A-C) Manhattan plots of the three most significantly associated genetic loci, MHC 

(A), IGH (B), and FUT2 (C), are shown for the MI and EIP cohorts. The GWAS results for the 

viral peptide with the lowest p-value are displayed for each locus. The gene closest to the top hit 
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in each cohort is indicated. D) Pairwise plot of Z-scores for the top associated peptides of 

Norovirus, Salivirus A, and Salivirus FHB.  

 

STAR Methods 

 

RESOURCE AVAILABILITY 

Lead contact 

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the lead contact, Etienne Patin (epatin@pasteur.fr) 

 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 

The Milieu Intérieur cohort 

The Milieu Intérieur (MI) cohort consists of 1,000 healthy adults recruited to investigate genetic 

and non-genetic determinants of human variation in immune responses30. Recruitment was 

conducted in the French city of Rennes in 2012-2013, and subjects were selected based on a 

large set of relatively strict inclusion and exclusion criteria described elsewhere 30. Of the 900 

subjects reported in the present study, 453 are female, and 447 are male, ranging from 20 to 69 

years of age. Additional cohort characteristics can be found in Table S1. The study has been 

approved by the Comité de Protection des Personnes — Ouest 6 (Committee for the Protection 

of Persons) and by the French Agence Nationale de Sécurité du Médicament (ANSM). The study 

protocol, including inclusion and exclusion criteria for the Milieu Intérieur study, has been 

registered on ClinicalTrials.gov under the study ID NCT01699893.  

 

The EvoImmunoPop cohort 

The EvoImmunoPop (EIP) cohort comprises 390 healthy adults recruited to investigate human 

population differences in immune responses. Recruitment was conducted in Ghent, Belgium in 

2012-2013. Of the 312 subjects reported in the present study, 100 individuals reported to be of 

Central African descent (AFB, age range 20 to 50 years), and 212 reported to be of European 

descent (EUB, age range 20 to 50 years). All EUB were born in Europe, whereas >90% of AFB 

were born in Cameroon or the Democratic Republic of Congo. AFB and EUB present no 

evidence of recent genetic admixture with populations originating from another continent, 
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besides two AFB donors who present 22% of Near Eastern and 25% of European ancestries, 

respectively36. All subjects were negative for serological tests against human immunodeficiency 

virus, hepatitis B, or hepatitis C. Additional cohort characteristics can be found in Table S2. The 

study has been approved by the Ethics Committee of Ghent University, the Ethics Board of 

Institut Pasteur (EVOIMMUNOPOP-281297), and the French authorities CPP, CCITRS, and 

CNIL. 

 

METHOD DETAILS 

VirScan experimental protocol 

To investigate the pathogen-specific and viral peptide-specific antibody profiles in the serum of 

MI and EIP samples, we employed PhIP-seq using the VirScan V3 library, a pathogen-epitope 

scanning method based on bacteriophage display and immune-precipitation. The detailed 

protocol and VirScan library are described elsewhere25,27,54. In brief, a library of linear peptides 

of 56 amino acids was constructed to cover all UniProt protein sequences of viruses known to 

infect humans. Peptides were staggered along each protein sequence with an overlap of 28 amino 

acids. The phage library was inactivated and incubated with serum samples normalized to total 

IgG concentration (two replicates) and blank controls (bead samples) to form IgG-phage 

immunocomplexes. The immunocomplexes were later captured by magnetic beads, lysed, and 

sent to next-generation sequencing.  

 

Immunoassay-based serological data 

Details on the specific antigens and immunoassay methods have been described previously2. 

Briefly, blood was collected in serum-separating tubes, and the serum layer was extracted. Total 

levels of immunoglobulins IgG, IgM, IgE, and IgA were measured with a turbidimetric test on an 

Olympus AU400 Chemistry Analyzer. The immunoassay-based serologies were measured for 

IgG against the following viruses and antigens: CMV (viral lysate), HSV-1 (Glycoprotein G), 

HSV-2 (Glycoprotein G2), EBV (EBNA-1, VCA p18, EA-D), VZV (Lysate), IAV (Lysate), 

Rubella (Lysate), and Measles (Lysate). 

 

Luminex-based serological data 
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MI serum samples were tested for antibodies to a broad panel of common respiratory pathogens 

and routine vaccine-preventable diseases using bead-based multiplex assays. A 43-plex assay 

was developed that included antigens for Adenovirus, Cytomegalovirus, Epstein-Barr virus, 

Echovirus, Enterovirus CoxB3, Hepatitis A virus, Hepatitis B virus, Hepatitis C virus, Measles, 

Mumps, Rubella, Norovirus, Respiratory syncytial virus, Rhinovirus, Rotavirus, Varicella-Zoster 

virus, Human Papillomavirus, Influenza A, Human Seasonal Coronaviruses 229E, NL63, OC43 

and HKU1, and SARS-CoV-2. The proteins used were either purchased from Native Antigen 

(Oxford, UK), ProSpec-Tany Techno Gene (Israel), or Ray Biotech (Georgia, US). Samples 

were run at a final dilution of 1:200. Plates were read using the Intelliflex® technology from 

Luminex®, and the median fluorescence intensity was used for analysis. 

 

Flow cytometry 

The generation of the flow cytometry data is described in detail elsewhere55,46. Briefly, blood 

samples were collected in Li-heparin tubes and kept at 18-25 °C for maximally 6 hours before 

sample processing was initiated. Samples were processed on a Freedom EVO liquid handling 

system (Tecan Group Ltd., Switzerland). Samples were washed once and resuspended in PBS, 

after which 100µL aliquots were mixed with ten different eight-color antibody panels and 

incubated for 20 minutes at room temperature. The antibody panels are described in 46. Cells 

were then washed in ice-cold PBS, and red blood cells were lysed with the BD FACS lysing 

solution (BD, U.S.) according to the manufacturer's protocol. Finally, samples were washed and 

resuspended in 240µL of PBS and then acquired on two MACSQuant flow cytometers (Miltenyi 

Biotec, Germany) running MACSQuantify software version 2.4.1229.1. 

 

NanoString data 

The NanoString transcript count data presented here have been described elsewhere49,56. Briefly, 

1 mL of blood with 50 IU/ml Na-heparin was added to TruCulture tubes (Rules Based Medicine, 

U.S.) containing 2 mL of a culture medium containing live H1N1 Influenza A of the PR8 strain. 

One tube containing only the culture medium was used as an unstimulated control sample. All 

samples were incubated for 22 hours at 37°C, after which a valve was inserted into the tube to 

separate the cellular pellet from the supernatant. The cell pellet was resuspended in 2 mL trizol 

and transferred to a -80°C freezer for storage. RNA was extracted using a modified version of 
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the NucleoSpin 96 RNA tissue kit (Macherey-Nagel, Germany) adapted to the Freedom EVO 

system (Tecan Group Ltd., Switzerland). Transcript counting was done using the NanoString 

nCounter system with the Human Immunology v2 Gene Expression CodeSet panel according to 

the manufacturer’s instructions. 

 

Cytokine data 

The stimulation assay and generation of the cytokine data are described in detail elsewhere 

(Saint-Andre et al., in press). As for the NanoString data (see above), 1 mL of blood containing 

50 IU/ml Na-heparin was added to TruCulture tubes containing 2 mL of a culture medium 

supplanted with live H1N1 Influenza A of the PR8 strain. One tube containing only culture 

medium was used as an unstimulated control sample. Samples were incubated for 22 hours at 

37°C, after which a valve was inserted into the tube to separate the cellular pellet from the 

supernatant. The supernatant was isolated and preserved at -80°C. On the day of analysis, 

samples were thawed, and cytokine concentrations were measured using the Luminex xMAP 

technology. The 13 analytes measured were CXCL5, CSF2, IFN, IL1, TNF, IL2, IL6, IL8, 

IL10, IL12p70, IL13, IL17, and IL23 cytokines. 

 

Microarray genotyping 

Details about SNP array genotyping of the MI cohort are available elsewhere46. Briefly, DNA 

was extracted from whole blood collected on EDTA using the Nucleon BACC3 genomic DNA 

extraction kit (catalog #: RPN8512; Cytiva, Massachusetts, USA). The 1,000 MI subjects were 

genotyped using the HumanOmniExpress-24 BeadChip (Illumina, U.S.), and 966 were also 

genotyped using the HumanExome-12 BeadChip (Illumina, U.S.). Details about SNP array 

genotyping of the EIP cohort are available elsewhere36. Briefly, PBMCs were isolated from 

blood collected into EDTA vacutainers, monocytes were removed with CD14+ microbeads, and 

DNA was isolated from the monocyte-negative fraction using a standard phenol/chloroform 

protocol, followed by ethanol precipitation. Genotyping was performed in all individuals using 

the HumanOmni5-Quad BeadChip (Illumina, U.S.) In addition, whole-exome sequencing was 

performed with the Nextera Rapid Capture Expanded Exome kit. 

 

QUANTIFICATION AND STATISTICAL ANALYSIS 
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VirScan data preprocessing 

The sequencing reads for the VirScan PhIP-seq assay were processed as in Mina et al., with 

some modifications26. Two replicates were processed for each sample to assess reproducibility. 

We utilized the bowtie2-samtools pipeline to map the sequencing reads of each sample to the 

bacteriophage library and count the number of reads for each epitope. Afterward, the positivity 

of each epitope in serum samples was determined by a binning strategy where counts from blank 

controls were first used to group the epitopes into hundreds of bins so that the reads form a 

uniform distribution within each bin. Then, the epitopes from serum samples were allocated into 

the pre-defined bins. Z-scores were calculated for each epitope from each serum sample. The 

means and standard deviations used for the z-score calculations were the same for each bin and 

were computed using the bead samples within that bin. After generating a matrix of 115,753 

epitope Z-scores and 900 MI or 312 EIP samples, we discarded epitopes from bacteria, fungi, 

and allergens from the VirScan library, resulting in 99,460 viral epitopes. Z-score values were 

inverse hyperbolic sine- (arcsinh)-transformed in each sample. Contrarily to log transformation, 

the arcsinh function is convenient to handle both overdispersion due to outliers and zero values, 

which were common in the VirScan Z-score data.  

Outlier epitopes were identified by leveraging replicates through the following process. First, 

Z-score values missing in only one replicate were set to NA in both replicates. Then, outliers in 

each replicate were defined as Z-scores higher than the 99.5% quantile. Next, the absolute 

difference in Z-scores between replicates was calculated for all epitopes with an outlier value in 

at least one replicate. The distribution of absolute differences is bimodal, with the lower peak 

representing consistent replicate Z-scores and the upper peak representing inconsistent replicate 

Z-scores. The local minimum between the peaks was identified using the optimize function from 

the stats R package, and outliers were defined as all epitopes with absolute differences above this 

minimum. The Z-score values of both replicates for all outlier epitopes were then set to NA. The 

rate of missing values was 1.06% in the MI cohort and 1.09% in the EIP cohort. Next, epitopes 

with >50% missing values were removed from the dataset, leaving 98,757 in the MI dataset and 

98,697 in the EIP dataset. Duplicated Uniprot entries were removed, leaving 97,975 epitopes in 

the MI dataset and 97,923 in the EIP dataset for the remaining analyses.  

Next, missing values were imputed by first running a PCA on all Z-scores using the pca 

function from the pcaMethods package (nPcs = 10, scale = ‘uv’), followed by imputation using 
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the completeObs function from the same package. As individual samples were processed in 

batches on cell culture plates, samples were batch-corrected using the ComBat function from the 

sva R package, using plates as the batch variable. The final Z-scores were generated by 

calculating the mean of the two replicates for each subject. A peptide is considered significantly 

enriched if the Z-scores of both replicates are >3.5. The hit variable is defined as 1 if the peptide 

is enriched and 0 otherwise. To generate the list of public epitopes, the datasets were filtered on 

epitopes significantly enriched in >5% of test subjects for at least 2 peptides per virus. 

 

VirScan data processing with AVARDA 

Between-species antibody cross-reactivity, unequal representation of viruses in the VirScan 

library, and viral genome size can make epitope-level data challenging to interpret in some cases. 

To address these limitations and compare antibody profiles on the virus level, we applied the 

AVARDA algorithm 31. We applied the algorithm as described in 31, using the code available at 

https://github.com/drmonaco/AVARDA. Briefly, individual VirScan epitopes were aligned to a 

master library of all viral genetic sequences translated in reading frames using BLAST and to 

each other. ‘Evidence epitopes’ were VirScan epitopes that align to the master library with a bit 

score >80. For each virus, AVARDA calculated a maximally independent set of unrelated 

epitopes that explains the total reactivity towards this virus. A 'probability of infection' for each 

virus was calculated using binomial testing, comparing the ratio of the number of enriched 

evidence epitopes to the total number of enriched epitopes with the fractional representation of 

the virus in the VirScan library. Finally, cross-reactivity was evaluated by ranking all viruses 

based on the probability of infection. Pairs of viruses were then iteratively compared, where 

shared reactive epitopes were assigned to the virus with the most substantial evidence of 

infection based solely on non-shared epitopes. Once all epitopes were exclusively assigned to a 

single virus, a final probability of infection for each sample was calculated using the binomial 

testing procedure described above. Additionally, a breadth score was calculated, reflecting the 

total number of enriched epitopes of independent specificity for each virus. 

 

Serology data preprocessing 

The data preprocessing steps for the immunoassay-based serology data are described in more 

detail in 2. Briefly, the absorbance and emission values collected in each assay are used to call 
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the serostatus for each blood sample. The individual cutoff values used for calling a sample 

positive or negative are given by the manufacturer and can be found in Table S2 of 2. 

For the Luminex-based serology data, the median fluorescence intensity was used directly.  

 

Flow cytometry data preprocessing 

All preprocessing steps of the flow cytometry data analysis are described in detail in46. Briefly, 

data files were converted to the FCS format and analyzed in FlowJo version 9.5.3 (FlowJo LLC, 

U.S.). Samples were gated according to supplementary figures 1-10 of 46. After quality control, 

the remaining variables included 79 cell counts, 87 MFI values, and three immune cell ratios. A 

distance-based method was used to remove 24 outlier values. Each variable was then log-

transformed. A second round of outlier removal was performed, followed by imputation using 

the missForest R package. Finally, all variables were corrected for processing batch effects using 

the ComBat function from the sva R package. Finally, we filtered on samples that overlapped 

with the PhIP-seq data, generating a final dataset of 900 samples. 

 

NanoString data preprocessing 

The preprocessing steps used for the NanoString data are described extensively in 49. Briefly, 

samples were filtered based on quality control metrics suggested by the manufacturer and total 

counts. Three samples were removed due to transcript counts <100,000. Using internal positive 

controls, expression values were normalized to correct for differences in reagent chemistries 

used for different batches and differences between stimulation conditions. An additional sample 

filtering step was applied within the IAV stimulation condition. Samples were removed if they 

were outliers in terms of the mean count of all gene probes or the mean count of positive control 

probes. Two samples fulfilled both conditions and were removed. A similar filtering step to 

identify samples with low RNA counts used the difference between the mean of all probes of a 

single sample and the mean of all samples within the same condition. Eleven samples had a 

difference larger than 2 and were removed to generate a dataset of 986 donors. Next, a gene 

probe was classified as absent in a sample if its expression value was below the mean + 2 SDs of 

six negative control probes. For 24 gene probes, expression was absent in >90% of all samples, 

and they were removed from the dataset. Finally, only samples also present in the PhIP-seq data 

were retained, leaving gene expression data for 560 transcripts in 889 samples for analysis. 



 27 

 

Cytokine data preprocessing 

The data preprocessing used for the cytokine data is described in more detail in 57. Briefly, 

samples were analyzed according to CLIA guidelines, where the least detectable dose (LDD) 

was determined by averaging the values from 200 blank runs and adding three standard 

deviations. The lower limit of quantification (LLOQ) was set from the standard curve for each 

analyte and defined as the lowest concentration that can be reliably detected and where the total 

error meets the CLIA requirements for laboratory accuracy. The lower assay limit (LAL) is the 

lowest value for each analyte after applying the standard curve and curve-fitting algorithms. 

Values below the LAL were replaced with a value of 50% of the lowest value measured in the 

dataset. The dataset was filtered for samples also present in the PhIP-seq data, generating a final 

dataset of 868 samples. 

 

Genotyping data preprocessing - Milieu Intérieur 

The genotyping data preprocessing of the MI cohort is described in detail in 46. After quality 

control filters, the SNP array data sets from the two genotyping platforms were merged. SNPs 

that were discordant in genotypes or position were removed, yielding a final data set containing 

732,341 genotyped SNPs. The data set was then phased using SHAPEIT2 and imputed using 

IMPUTE v.2, with 1-Mb windows and a buffer region of 1Mb. After imputation, SNPs with an 

information metric ≤ 0.8, duplicated SNPs, SNPs with a missingness of >5%, and SNPs with a 

minor allele frequency of ≤5% were removed, generating a final data set of 5,699,237 SNPs. 13 

subjects were removed based on relatedness and admixture46. Finally, the data set was converted 

to GRCh38 using the LiftoverVcf function from the GATK software package 58. 

 

Genotyping data preprocessing - EvoImmunoPop 

A more complete description of the genotyping data preprocessing steps can be found in 36. The 

SNP array genotyping and whole-exome sequencing data were processed separately and merged. 

For the SNP array data, SNPs were passed through multiple QC filters, and SNPs originating 

from the sex chromosomes were removed. For the whole-exome sequencing data, reads were 

processed according to the GATK Best Practices. Discordant variants between the two datasets 

were removed before merging the SNP array and whole-exome sequencing data sets. After 
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combining the two datasets, the data was phased using SHAPEIT2 and imputed using IMPUTE 

v.2, with 1-Mb windows and a buffer region of 1 Mb. After imputation and additional QC 

filtering, 19,619,457 SNPs remained. The data set was converted to GRCh38 using the 

LiftoverVcf function from the GATK software package 58. Finally, four subjects were removed 

based on relatedness and admixture36.   

 

PhIPseq - phenotype association tests 

All the statistical associations presented here were tested by building multiple regression models. 

In all models, the dependent variable was either an AVARDA breadth score (for a given virus) 

or a VirScan Z-score (for a given peptide). The independent variable could either be (i) 

serological measurements based on ELISA and the Luminex xMAP assays; (ii) intrinsic factors, 

including age and sex; (iii) ancestry and continent of birth; (iv) candidate non-genetic factors, 

including smoking, diet, past diseases, vaccination history, health biomarkers and anthropometric 

measures; or (v) immunity-related data, including white blood cell counts, immune gene 

expression and cytokine production. As described below, the specific model and complete list of 

covariates used differed depending on the independent variables tested. 

A linear model is applied using the lm R function when the independent variable is 

continuous or binary. The beta value is used to determine the effect size of the independent 

variable. When the independent variable was categorical with more than two levels, an 

ANCOVA model was applied using the aov R function. The 2 was used as the effect size, 

calculated by the etaSquared function from the lsr R package. In the MI cohort, when using sex 

as the independent variable of interest, only age was used as a covariate, and vice versa. All 

subjects in the MI cohort have immediate ancestry from France, so ancestry was not used as a 

covariate in these analyses. In the analyses of all other independent variables, age, and sex were 

always included as covariates. In addition, for the analysis of the cytokine and gene expression 

phenotypes, the peripheral blood cell frequencies of 15 significant immune cell populations were 

included as covariates because we searched for effects of antibody repertoire on the immune 

response that are direct, i.e., that are not mediated by blood cell composition. The only analyzed 

independent variables for the EIP cohort were age and ancestry/continent of birth. When age was 

used as the metadata variable of interest, ancestry was controlled for, and vice versa. As all 

subjects in the EIP cohort are males, sex was not used as a covariate in these analyses. 
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GWAS of the anti-viral antibody repertoire 

GWAS was conducted on the asinh-transformed VirScan Z-scores in the MI and EIP cohorts. 

SNPs with a MAF < 5% and SNPs deviating significantly from Hardy-Weinberg equilibrium 

were removed (P < 10-10, calculated using the HWExact function from the GWASExactHW R 

package.). The specific covariates used differed between the two cohorts. To correct for 

population stratification, a principal component analysis was run on all SNPs separately for both 

cohorts, and the first two principal components were included as covariates. Age was also 

included as a covariate for both cohorts. Additionally, sex was included as a covariate in the MI 

cohort, as well as a curated list of 15 major peripheral blood immune cell frequencies. The 

ancestry group was included as an additional covariate for the EIP cohort. The GWAS analyses 

were conducted using the assocRegression function from the GWASTools R package, using a 

linear model as the model type and an additive model for the genotype. Manhattan plots, 

locusZoom plots, and tables were all made using the topr R package. 
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Variable N Mean Std. 
Dev. 

Min Pctl. 25 Pctl. 50 Pctl. 75 Max 

AGE 900 45 14 20 33 45 57 69 

SEX 900 
       

... Female 447 50% 
      

... Male 453 50% 
      

Height 900 169 9 148 162 168 175 198 

Weight 900 69 12 43 60 68 77 113 

Smoking_statu
s 

900 
       

... Non_Smoker 472 52% 
      

... Ex_Smoker 244 27% 
      

... Smoker 184 20% 
      

Years_smoking 897 7.3 11 0 0 0 12 47 

 

Table S1 

 

 

Variable N Mean Std. 
Dev. 

Min Pctl. 25 Pctl. 50 Pctl. 75 Max 

Ancestry 312 
       

... 
African 

100 32% 
      

... 
European 

212 68% 
      

Age 312 30 7.5 20 24 28 33 50 

 

Table S2 
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