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Abstract 36 

Ageing is a heterogeneous multisystem process involving different rates of decline in 37 

physiological integrity across biological systems. The current study dissects the unique and 38 

common variance across body and brain health indicators and parses inter-individual 39 

heterogeneity in the multisystem ageing process. Using machine-learning regression models 40 

on the UK Biobank dataset (N = 32,593, age range 44.6-82.3, mean age 64.1 years), we first 41 

estimated tissue-specific brain age for white and gray matter based on diffusion and T1-42 

weighted magnetic resonance imaging (MRI) data, respectively. Next, bodily health traits 43 

including cardiometabolic, anthropometric, and body composition measures of adipose and 44 

muscle tissue from bioimpedance and body MRI were combined to predict ‘body age’. The 45 

results showed that the body age model demonstrated comparable age prediction accuracy to 46 

models trained solely on brain MRI data. The correlation between body age and brain age 47 

predictions was 0.62 for the T1 and 0.64 for the diffusion-based model, indicating a degree of 48 

unique variance in brain and bodily ageing processes. Bayesian multilevel modelling carried 49 

out to quantify the associations between health traits and predicted age discrepancies showed 50 

that higher systolic blood pressure and higher muscle-fat infiltration were related to older-51 

appearing body age compared to brain age. Conversely, higher hand-grip strength and muscle 52 

volume were related to a younger-appearing body age. Our findings corroborate the common 53 

notion of a close connection between somatic and brain health. However, they also suggest 54 

that health traits may differentially influence age predictions beyond what is captured by the 55 

brain imaging data, potentially contributing to heterogeneous ageing rates across biological 56 

systems and individuals. 57 

 58 
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1. Introduction 70 

Ageing has been defined as a multisystem and time-dependent process involving progressive 71 

loss of functional and physiological integrity (López-Otín et al., 2013). While advanced age 72 

is a primary risk factor for cardiovascular and neurodegenerative diseases, ageing is highly 73 

heterogeneous, with differential ageing rates across biological systems and individuals 74 

(Cevenini et al., 2008). This has motivated a wealth of research into better understanding the 75 

determinants of individual differences in ageing and its relevance to diverse disease 76 

processes. 77 

Several biomarkers of ageing including body composition and health traits have been 78 

proposed (Cole et al., 2019). Changes in blood lipids, adipose and muscle tissue distribution, 79 

blood pressure, heart rate, hand grip strength, and anthropometric measures such as body 80 

mass index (BMI) and waist-to-hip ratio (WHR) are all associated with ageing (Massy-81 

Westropp et al., 2011; Mielke et al., 2010; Rodgers et al., 2019; Sebastiani et al., 2017). 82 

Despite these measures being classified as markers of normal body function rather than 83 

disease-specific biomarkers, recent studies have highlighted their utility for risk detection and 84 

disease monitoring across cardiovascular disease and dementia (Brain et al., 2023). For 85 

example, research has suggested that dysregulation in lipid metabolism in Alzheimer’s 86 

disease may predict cognitive decline (Wong et al., 2017). 87 

 Age prediction using machine learning applied to brain magnetic resonance imaging 88 

(MRI) data has enabled individual-level age prediction with high accuracy based on brain 89 

white (WM) and gray matter (GM) characteristics derived from diffusion and T1-weighted 90 

MRI scans (Beck et al., 2021; Cole et al., 2017; Leonardsen et al., 2022), providing 91 

neuroanatomical markers of brain health and integrity (Cole & Franke, 2017; Franke et al., 92 

2010). Although bodily health traits have demonstrated their influence on brain ageing (Beck, 93 

de Lange, Alnæs, et al., 2022; Beck, de Lange, Pedersen, et al., 2022; de Lange et al., 2020; 94 

Franke et al., 2013, 2014; Kolenic et al., 2018; Ronan et al., 2016), rates of brain and body 95 

ageing processes may be partly distinct at the individual level. 96 

Recent work has demonstrated the relevance of age prediction based on various organ 97 

structures (Tian et al., 2023), reporting that body- and brain-specific age estimates can be 98 

differentially influenced by lifestyle and environmental factors. However, a comprehensive 99 

understanding of the unique and common variance across body and brain age models, in 100 

addition to the contribution of specific bodily health traits, warrants further investigation. For 101 

example, bodily health traits such as elevated blood pressure may potentially contribute to a 102 



4 

group-level increase in predicted age estimates relative to predictions based solely on brain 103 

MRI data. However, due to the impact of elevated blood pressure on the brain (Dintica et al., 104 

2023; George et al., 2023), this variance may already to some extent be captured by brain age 105 

models. The present study focuses on parsing inter-individual heterogeneity in the 106 

multisystem ageing process by comparing age predictions based on models trained separately 107 

on indicators of body and brain health. Specifically, we focus on identifying key health traits 108 

that influence age predictions beyond the variance captured by the brain measures. 109 

Using the UK Biobank sample (N = 32,593, mean age = 64.1, SD = 7.5), we assessed 110 

the contributions of specific health traits to discrepancies between body and brain age 111 

predictions. Bodily health traits included cardiometabolic factors, anthropometric measures, 112 

and body composition measures of adipose and muscle tissue from bioimpedance and body 113 

MRI. Based on documented connections between brain and body health, we anticipated that 114 

age predictions based on bodily health traits would to a large extent resemble predictions 115 

from models trained solely on brain MRI data. However, we expected to observe individual 116 

variation in the difference between body and brain age, and that this variation would hold 117 

relevant information for better understanding the role of specific health traits. Lastly, we 118 

assessed the extent to which specific markers of bodily health, such as blood pressure, 119 

abdominal adiposity, and muscle volume, contributed to differences in individual age 120 

predictions. 121 

 122 

2. Methodology 123 

2.1.  Participants and ethical approval 124 

The sample was drawn from the UK Biobank (UKB) (http://www.ukbiobank.ac.uk). All 125 

participants provided signed informed consent. UKB has IRB approval from Northwest 126 

Multi-centre Research Ethics Committee and its Ethics Advisory Committee 127 

(https://www.ukbiobank.ac.uk/ethics) oversees the UKB Ethics & Governance Framework 128 

(Miller et al., 2016). Specific details regarding recruitment and data collection procedures 129 

have been previously published (Collins, 2007). The present study uses the UKB Resource 130 

under Application Number 27412. Participants were excluded from the present study if they 131 

reported disorders that affect the brain based on ICD10 diagnoses or a long-standing illness 132 

disability, diabetes, or stroke history (N = 210). 133 

To remove poor-quality T1-weighted brain MRI data, participants with Euler numbers 134 

(Rosen et al., 2018) ≥ 4 standard deviations below the mean were excluded. For diffusion-135 
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weighted (dMRI) data, quality control was assured using the YTTRIUM algorithm 136 

(Maximov et al., 2021). A total of N = 160 participants were removed for T1 and dMRI data. 137 

Body MRI measurements were quality checked by two independent, trained operators 138 

visually inspecting the images prior to upload to UKB and this has been followed by control 139 

of all outliers for anatomical correctness. 140 

For health traits (hereby used as an umbrella term including all body composition and 141 

health markers, outliers (values ± 5 SD from the mean) were excluded (N = 627) from the 142 

analysis by converting the values to NA, thereby keeping the participant in the sample with 143 

their respective non-outlier data. SI Figures 1 and 2 show distributions of health traits before 144 

and after quality control. SI Figure 3 shows the prevalence of NA/missing data in the final 145 

sample. Following cleaning, the final sample consisted of 32,593 individuals (Females: N = 146 

17,200, mean age = 63.6, SD = 7.37, Males: N = 15,393, mean age = 64.71, SD = 7.63) with 147 

T1, dMRI, and body health trait data. Table 1 summarises the health trait descriptive 148 

statistics. 149 

 150 

2.2. MRI data acquisition and processing 151 

A detailed overview of the full UKB data acquisition and image processing protocol is 152 

available in Alfaro et al. (2018) and Miller et al. (2016). Briefly, brain MRI data were 153 

acquired on a 3 Tesla Siemens 32-channel Skyra scanner. T1-weighted MPRAGE volumes 154 

were both acquired in sagittal orientation at 1x1x1 mm3. Processing protocols followed a 155 

harmonised analysis pipeline, including automated surface-based morphometry and 156 

subcortical segmentation using FreeSurfer version 5.3 (Fischl et al., 2002). A standard set of 157 

subcortical and cortical summary statistics were used from FreeSurfer (Fischl et al., 2002), as 158 

well as a fine-grained cortical parcellation scheme (Glasser et al., 2016) to extract GM 159 

cortical thickness, cortical surface area, and volume for 180 regions of interest per 160 

hemisphere. This yielded a total set of 1,118 brain imaging features (360/360/360/38 for 161 

cortical thickness/area/volume, as well as cerebellar/subcortical and cortical summary 162 

statistics, respectively) that were used as input features in the GM-specific age prediction 163 

model in line with recent implementations (de Lange et al., 2019; Kaufmann et al., 2019; 164 

Schindler et al., 2022). 165 

For dMRI, a conventional Stejskal-Tanner monopolar spin-echo echo-planar imaging 166 

sequence was used with multiband factor 3. Diffusion weightings were 1,000 and 2,000 167 

s/mm2 and 50 non-coplanar diffusion directions per each diffusion shell. The spatial 168 

resolution was 2�mm3 isotropic, and five anterior-posterior versus three anterior-posterior 169 
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images with b =�0 s/mm2 were acquired. Data were processed using a previously described 170 

pipeline (Maximov et al., 2019). Metrics derived from diffusion tensor imaging (DTI) 171 

(Basser, 1995), diffusion kurtosis imaging (DKI) (Jensen et al., 2005), WM tract integrity 172 

(WMTI) (Fieremans et al., 2011), and spherical mean technique (SMT) (Kaden et al., 2016) 173 

were used as input features in the WM-specific age prediction model, as described in 174 

Voldsbekk et al. (2021). Tract-based spatial statistics (TBSS) was used to extract diffusion 175 

metrics in WM (Smith et al., 2006) (see Voldsbekk et al. (2021) for full pipeline). For each 176 

metric, WM features were extracted based on John Hopkins University (JHU) atlases for 177 

WM tracts and labels (with 0 thresholding) (Mori et al., 2006), yielding a total of 910 WM 178 

features, including mean values and regional measures for each of the diffusion model 179 

metrics, which were used as input features in the WM-specific age prediction model (Beck et 180 

al., 2021; Subramaniapillai et al., 2022; Voldsbekk et al., 2021). The diffusion MRI data 181 

passed TBSS post-processing quality control using the YTTRIUM algorithm (Maximov et 182 

al., 2020), and were residualised with respect to scanning site using linear models. 183 

 The methods used to generate the body MRI-derived measurements have been 184 

described and evaluated in more detail elsewhere (Borga et al., 2018, 2020; Karlsson et al., 185 

2015; Linge et al., 2018; West et al., 2018). Briefly, the process for fat and muscle 186 

compartments includes the following steps: (1) calibration of fat images using fat-referenced 187 

MRI, (2) registration of atlases with ground truth labels for fat and muscle compartments to 188 

the acquired MRI dataset to produce automatic segmentation, (3) quality control by two 189 

independent trained operators including the possibility to adjust and approve the final 190 

segmentation, and (4) quantification of fat volumes, muscle volumes and muscle-fat 191 

infiltration within the segmented regions. For liver proton density fat fraction (PDFF), nine 192 

regions of interest (ROI) were manually placed, evenly distributed in the liver volume, while 193 

avoiding major vessels and bile ducts. The total set of features included in the body age 194 

prediction model included 40 variables. 195 

 196 

2.3. Body composition and health traits 197 

Table 1 summarises the descriptive statistics of the health traits used in the study. A detailed 198 

description of each variable can be found in Supplementary Information (SI) Section 1. 199 

 200 

Table 1. Descriptive statistics pertaining to each health trait, including mean ± standard deviation (SD). 

Health trait Abbreviation Full sample 
(N = 32,593) 

Female 
(N = 17,200) 

Male 
(N = 15,393) 
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Adipose and muscle tissue 
from body MRI 

 

 Visceral adipose tissue, L VAT 3.62 ± 2.20 2.58 ± 1.48 4.78 ± 2.27 

 Abdominal subcutaneous adipose tissue, L ASAT 6.81 ± 3.10 7.79 ± 3.30 5.72 ± 2.42 

 Anterior thigh muscle volume, L ATMV 1.70 ± 0.48 1.34 ± 0.23 2.11 ± 0.35 

 Posterior thigh muscle volume, L PTMV 3.36 ± 0.80 2.75 ± 0.38 4.10 ± 0.55 

 Anterior thigh muscle-fat infiltration, % ATMFI 7.24 ± 1.78 7.73 ± 1.77 6.68 ± 1.62 

 Posterior thigh muscle-fat infiltration, % PTMFI 10.85 ± 2.33 11.43 ± 2.26 10.18 ± 2.22 

 Muscle-fat infiltration, % MFI 7.24 ± 1.78 7.73 ± 1.78 6.68 ± 1.62 

 Weight-to-muscle ratio, kg/L WMR 7.59 ± 1.32 8.34 ± 1.21 6.73 ± 0.82 

 Abdominal fat ratio, % AFR 0.49 ± 0.11 0.54 ± 0.11 0.44 ± 0.10 

 Liver proton density fat fraction, % LPDFF 4.03 ± 3.69 3.61 ± 3.49 4.50 ± 4.84 

 Total thigh muscle volume, L TTMV 10.11 ± 2.52 8.19 ± 1.16 12.32 ± 1.73 

 Total adipose tissue volume, L TAT 10.43 ± 4.45 10.37 ± 4.55 10.50 ± 4.32 

 Total abdominal adipose tissue index, L/m2 TAATi 3.64 ± 1.59 3.90 ± 1.71 3.36 ± 1.38 

 VAT index, L/m2 VATi 1.24 ± 0.71 0.98 ± 0.56 1.54 ± 0.73 

 ASAT index, L/m2 ASATi 2.42 ± 1.19 2.95 ± 1.25 1.84 ± 0.77 

 ATMV index, L/m2 ATMVi 0.59 ± 0.12 0.51 ± 0.07 0.68 ± 0.10 

 PTMV index, L/m2 PTMVi 1.63 ± 0.19 1.04 ± 0.12 1.31 ± 0.15 

 TTMV index, L/m2 TTMVi 3.50 ± 0.60 3.09 ± 0.36 3.97 ± 0.46 

 TAT index, L/m2 TATi 3.67 ± 1.60 3.93 ± 1.73 3.39 ± 1.39 

Body composition by 
bioimpedance 

 

 Body fat, % BFP 30.85 ± 8.13 35.91 ± 6.63 25.21 ± 5.51 

 Whole body fat mass, kg BFM 23.50 ± 8.50 25.33 ± 8.95 21.47 ± 7.44 

 Whole body fat free mass, kg BFFM 52.08 ± 11.03 43.35 ± 4.68 61.79 ± 7.32 

 Body-mass index body composition, kg/m2 BMI-BC 26.34 ± 4.23 25.93 ± 4.57 26.80 ± 3.76 

 Impedance whole body, Ω IWB 609.40 ± 88.94 665.90 ± 72.2 546.60 ± 58.57 

 Trunk fat, % TFP 30.48 ± 7.59 33.20 ± 7.54 27.45 ± 6.40 

Cardiometabolic and 
anthropometric 

     

 Waist circumference, cm WC 87.77 ± 12.41 82.41 ± 11.61 93.73 ± 10.38 

 Hip circumference, cm HC 100.60 ± 8.46 100.70 ± 9.52 100.60 ± 7.09 

 BMI, kg/m2 BMI 26.32 ± 4.23 25.90 ± 4.57 26.78 ± 3.76 

 Hand grip strength, kg HG 30.08 ± 10.18 23.04 ± 5.69 37.92 ± 8.14 

 Pulse, bpm Pulse 68.52 ± 11.93 70.26 ± 11.35 66.59 ± 12.25 

 Systolic blood pressure, mmHg SBP 140.5 ± 19.66 137.80 ± 20.49 143.40 ± 18.27 
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 Diastolic blood pressure, mmHg DBP 78.67 ± 10.64 76.96 ± 10.57 80.56 ± 10.39 

 Forced vital capacity, L FVC 3.63 ± 0.93 3.05 ± 0.58 4.30 ± 0.80 

Note: Bodily health traits extracted from the UKB, including adipose and muscle tissue from body MRI, body 

composition by bioimpedance, and cardiometabolic and anthropometric traits from physical examinations. Units are in 

litres (L), kilograms (kg), percent (%), centimetres (cm), height in metres (m), ohms (Ω), beats per minute (bpm), and 

millimetres of mercury (mmHg). For body age prediction, the model was trained with all the listed measures. 

 201 

2.4. Age prediction models 202 

Age prediction was carried out using XGBoost regression (eXtreme Gradient Boosting; 203 

https://github.com/dmlc/xgboost) in Python 3.8.0, which is based on a decision-tree ensemble 204 

algorithm (Chen & Guestrin, 2016) used in several recent age prediction studies (Beck, de 205 

Lange, Alnæs, et al., 2022; Beck, de Lange, Pedersen, et al., 2022; Beck et al., 2021; de 206 

Lange et al., 2020; Kaufmann et al., 2019; Subramaniapillai et al., 2022; Voldsbekk et al., 207 

2021). XGboost uses advanced regularisation to reduce overfitting, has shown superior 208 

performance in machine learning competitions (Chen & Guestrin, 2016), and accommodates 209 

the combination of health traits and brain imaging features based on FreeSurfer and FSL-210 

derived values. 211 

Age prediction models were first run using only brain MRI data for WM and GM 212 

features separately. Next, we ran a prediction model combining all health traits (Table 1). 213 

This resulted in three age prediction models used in the current study: T1 brain age, dMRI 214 

brain age, and body age. Parameters were tuned in nested cross-validations with five inner 215 

folds for randomised search and 10 outer folds for validating model performance using 216 

Scikit-learn (Pedregosa et al., 2011). R2, root mean squared error (RMSE), mean absolute 217 

error (MAE), and Pearson’s correlations between predicted and true values were calculated to 218 

evaluate prediction accuracy. For each model, 10-fold cross-validation was used to obtain 219 

brain age and body age for each individual in the full sample. SI Figure 4 shows the feature 220 

importance (weight) of the variables in each age prediction model, indicating the relative 221 

contribution of the corresponding feature to the prediction model. SI Table 1 shows each of 222 

the variables included in the prediction models. 223 

 224 

2.5.  Difference in age predictions by bodily health traits 225 

To investigate the degree to which each of the health traits influenced differences in body and 226 

brain age predictions, Bayesian multilevel models were carried out in Stan (Stan 227 

Development Team, 2023) using the brms (Bürkner, 2017, 2018) R-package, where 228 
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multivariate models are fitted in familiar syntax to comparable frequentist approaches such as 229 

a linear mixed effects model using the lme4 (Bates et al., 2015). We assessed the 230 

relationships between age prediction difference scores (predicted brain age minus predicted 231 

body age) and each health trait (bar body MRI index scores to reduce redundancy). For each 232 

individual, a positive difference score reflects a brain age that is higher than body age, while 233 

a negative difference score reflects a body age that is higher than brain age. The difference 234 

score (for T1 and dMRI separately) was entered as the dependent variable, with each health 235 

trait separately entered as the independent fixed effects variable along with age and sex, with 236 

subject ID as the random effect: 237 

 238 

��� �����	
��� ������	� �	��� ~ ����
� 
���
 � ��� � ��� �1|�����	
���  (1) 239 

 240 

To prevent false positives and to regularise the estimated associations, we defined a 241 

standard prior around zero with a standard deviation of 0.3 for all coefficients, reflecting a 242 

baseline expectation of effects being small but allowing for sufficient flexibility in 243 

estimation. All variables bar sex were standardised before running the analyses. Each model 244 

was run with 8000 iterations, including 4000 warmup iterations, across four chains. This 245 

setup was chosen to ensure robust convergence and adequate sampling from the posterior 246 

distributions. For each coefficient of interest, we report the mean estimated value of the 247 

posterior distribution (β) and its 95% credible interval (the range of values that with 95% 248 

confidence contains the true value of the association), and calculated the Bayes Factor (BF) – 249 

provided as evidence ratios in the presented figures – using the Savage-Dickey method 250 

(Wagenmakers et al., 2010). Briefly, BF can be interpreted as a measure of the strength of 251 

evidence (extreme, very strong, strong, moderate, anecdotal, none) in favour of the null or 252 

alternative hypothesis. For a pragmatic guide on BF interpretation, see SI Table 2. 253 

 254 

3. Results 255 

3.1. Brain age and body age prediction  256 

Table 2 summarises descriptive and model validation statistics pertaining to each age 257 

prediction model. Figure 1 shows the distributions of the age prediction difference scores 258 

(predicted T1/dMRI brain age minus predicted body age). SI Figure 5 shows the correlation 259 

between the T1 and dMRI-based brain age versus body age difference scores. Figure 2 shows 260 

a correlation matrix including the three models' predicted ages and age gaps. See SI Figure 6 261 



for correlation matrix showing the association between health traits and SI Figure 7 for 262 

predicted age as a function of chronological age for each age prediction model. 263 

 264 

 265 

Table 2. Average R2, root mean square error (RMSE), mean absolute error (MAE)  standard deviation, and 

Pearson’s correlations between predicted and true age (r) for each age prediction model. 95% confidence 

intervals on r are calculated using Fisher's z-transformation, adjusted for sample size, and back-transformed 

to the original scale. 

 T1 brain age dMRI brain age Body age 

r 0.76 [0.755, 0.764] 0.77 [0.765, 0.773] 0.78 [0.778, 0.786] 

r2 0.57 ± 0.015 0.62 ± 0.007 0.59 ± 0.044 

RMSE 4.93 ± 0.058 4.67 ± 0.120 4.70 ± 0.151 

MAE 3.94 ± 0.054 3.70 ± 0.070 3.73 ± 0.113 

 266 

 267 
Figure 1. Age difference score distribution (density) for T1 (Diff T1) and dMRI (Diff dMRI) weighted age 268 

models. Mean difference scores = 0.028 (T1) and -4.33 (dMRI), with standard deviation (SD) of 4.78 and 4.58, 269 

respectively. 270 



 271 

 272 
Figure 2. Correlation matrix showing the associations between the predicted ages and age gaps of the three 273 

models. 274 

 275 

3.2.  Bayesian multilevel models 276 

Bayesian multilevel modelling tested the associations between each bodily health trait and 277 

the difference score (brain-predicted age minus body-predicted age). Due to the large number 278 

of included health traits, we present associations between 1) age prediction difference and 279 

body MRI measures and 2) age prediction difference and cardiometabolic, anthropometric 280 

and bioimpedance measures separately below. The full results are available in SI Tables 3 281 

and 4. For estimated credible intervals, see SI Figures 8 and 9. See SI Table 5 for full and 282 

partial linear regressions between age and each of the health trait adjusted for brain-predicted 283 

age. See SI Figures 10 and 11 for scatterplots and Pearson’s R reflecting each of the 284 

associations between health traits and difference scores between brain age and body age 285 

models and SI Figure 12 for scatterplots reflecting associations between health traits and 286 

body age gap. Sensitivity analyses using linear mixed effects models showing the results with 287 

age-bias corrected scores versus uncorrected scores but with age as a covariate are provided 288 

in SI Figures 13 and 14. 289 
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 290 

3.2.1. Difference scores and body MRI features 291 

Figure 3 shows posterior distributions reflecting the associations between each body MRI 292 

feature and the age prediction difference scores. Values increasing from 0 to 1 show evidence 293 

of a positive association (where higher values on health traits relate to lower body age 294 

relative to brain age) and values decreasing 0 to -1 show evidence of a negative association 295 

(where higher values on health traits relate to higher body age relative to brain age). 296 

 297 

 298 
Figure 3. Associations between body MRI features and difference scores between brain-age models and 299 

body-age models (dMRI and T1). The figure shows posterior distributions of the estimates of the standardised 300 

coefficient. Estimates for each body MRI feature on dMRI difference score on the left and T1-weighted 301 

difference score on the right. Colour scale follows the directionality of evidence, with positive (blue) values 302 

indicating evidence in favour of positive associations (i.e., larger brain than body age) and negative (red) values 303 

indicating evidence in favour of negative associations (i.e., larger body than brain age). The width of the 304 

distribution represents the uncertainty of the parameter estimates. For a list of unabbreviated words, see Table 1. 305 

 306 

For both dMRI and T1 age difference scores, the tests revealed evidence of a positive 307 

association with predicted age difference score (calculated as brain age – body age) for 308 

ATMV (dMRI: BF < 0.001, β = 0.48; T1: BF < 0.001, β = 0.46), TTMV (dMRI: BF < 0.001, 309 

β = 0.33; T1: BF < 0.001, β = 0.33), PTMV (dMRI: BF < 0.001, β = 0.22; T1: BF < 0.001, β 310 

= 0.22), ASAT (dMRI: BF < 0.001, β = 0.07; T1: BF < 0.001, β = 0.08), TAT (dMRI: BF < 311 

0.001, β = 0.03; T1: BF < 0.001, β = 0.05), and LPDFF (dMRI: BF < 0.001, β = 0.03; T1: 312 

BF < 0.001, β = 0.04), indicating that higher levels of muscle volume in the thighs, especially 313 

anterior, is associated with a positive difference score (i.e., higher predicted brain age than 314 

body age; high muscle volume relations with younger-appearing body ageing). 315 

The tests also revealed evidence of a negative association with predicted age 316 

difference score for ATMFI (dMRI: BF < 0.001, β = -0.23; T1: BF < 0.001, β = -0.20), 317 

PTMFI (dMRI: BF < 0.001, β = -0.16; T1: BF < 0.001, β = -0.14), MFI (dMRI: BF < 0.001, 318 
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β = -0.23; T1: BF < 0.001, β = -0.20), WMR (dMRI: BF < 0.001, β = -0.11; T1: BF < 0.001, 319 

β = -0.08), and AFR (dMRI: BF < 0.001, β = -0.06; T1: BF < 0.001, β = -0.04), indicating 320 

that higher fat infiltration in the muscles, especially the anterior thighs, were associated with 321 

a negative difference score (i.e., higher predicted body age than brain age). There was also 322 

evidence of a negative association for dMRI VAT (BF < 0.001, β = -0.03) and no association 323 

for T1 VAT (BF = 0.30, β = -0.02). 324 

 325 

3.2.2. Difference scores and cardiometabolic, anthropometric and bioimpedance 326 

Figure 4 shows posterior distributions reflecting the associations between cardiometabolic, 327 

anthropometric, and bioimpedance traits and the age prediction difference scores. 328 

 329 

 330 
Figure 4. Associations between cardiometabolic, anthropometric, and bioimpedance traits and difference 331 

score between brain age models (dMRI and T1) and body age model. The figure shows posterior 332 

distributions of the estimates of the standardised coefficient. Estimates for each health trait on dMRI difference 333 

score on the left and T1-weighted difference score on the right. 334 

 335 

For both dMRI and T1 age difference scores, the tests revealed evidence of a positive 336 

association with age prediction difference scores for HC (dMRI: BF < 0.001, β = 0.03; T1: 337 

BF < 0.001, β = 0.05), DBP (dMRI: BF < 0.001, β = 0.09; T1: BF < 0.001, β = 0.04), BFP 338 

(dMRI: BF = 0.05, β = 0.03; T1: BF < 0.001, β = 0.04), HG (dMRI: BF < 0.001, β = 0.23; 339 

T1: BF < 0.001, β = 0.19), BFM (dMRI: BF < 0.001, β = 0.05; T1: BF < 0.001, β = 0.07), 340 

and BMI (dMRI: BF < 0.001, β = 0.04; T1: BF < 0.001, β = 0.06). There was also a positive 341 

association for dMRI Pulse (BF = 0.006, β = 0.03), T1 WC (BF < 0.001, β = 0.03), and T1 342 

TFP (BF = 0.015, β = 0.02), but not for corresponding T1 Pulse (BF = 0.455, β = 0.02), 343 

dMRI WC (BF < 2.798, β = 0.02), and dMRI TFP (BF < 7.783, β = 0.01). 344 

In terms of negative associations with age prediction difference scores, effects were 345 

found for SBP for both modalities (dMRI: BF < 0.001, β = -0.15; T1: BF < 0.001, β = -0.19), 346 
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and T1 IWB (BF < 0.001, β = -0.04), but not dMRI IWB (BF = 1.226, β = -0.02). The results 347 

indicate that high levels of various measures of adiposity and hand grip strength are 348 

associated with a higher brain age than body age, with beta coefficients showing the strongest 349 

effect for hand grip strength. Systolic blood pressure is implicated as the largest contributor 350 

to higher body predicted age. 351 

 352 

4. Discussion 353 

Evidence of differential ageing rates across different biological systems in the same 354 

individual (Cevenini et al., 2008) has led us to conceptualise ageing as a mosaic and 355 

heterogeneous construct. One implication is that individual biomarkers studied in isolation 356 

may not accurately reflect risk of disease or outcome (Sebastiani et al., 2017), and the use of 357 

multiple models in coherence has been recommended (Cevenini et al., 2008; Cole et al., 358 

2019; Kuo et al., 2021). Our analyses revealed that an age prediction model trained on bodily 359 

health traits rendered comparably high prediction accuracy compared to the models trained 360 

solely on brain MRI data. However, only moderate correlations between body age and brain 361 

age predictions were found, indicating a degree of unique variance in brain and bodily ageing 362 

processes. Multilevel modelling showed that several elevated body health risk traits 363 

differentially contributed to a group level increase or decrease in predicted age, potentially 364 

revealing unique and common influences of bodily health traits on body and brain ageing 365 

systems. 366 

We ran Bayesian multilevel modelling to quantify the associations between the 367 

predicted age difference score and each of the health traits. The results are largely in line with 368 

our expectations of measures related to poorer and better somatic health having differential 369 

contributions to our age models, whereby poor health is manifested as older-appearing body 370 

age and better health as younger-appearing body age. In parsing unique and common 371 

influences of different health traits on brain and bodily ageing, we interpret traits with 372 

moderate effects on the age prediction difference scores as likely having more of a unique 373 

contribution to brain or bodily ageing. For example, the results indicate that thigh muscle 374 

volume and hand grip strength showed a larger effect on younger-appearing body ages 375 

relative to brain ages, as compared to e.g., liver fat, subcutaneous fat, diastolic blood 376 

pressure, BMI, hip and waist circumference, which showed negligible beta coefficients (see 377 

Figures 3 and 4 and SI Tables 3 and 4). The latter measures may thus represent health traits 378 

that are less likely to uniquely influence brain or bodily ageing while measures related to 379 

muscular fitness have a larger impact on a younger body age. Conversely, muscle-fat 380 
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infiltration and systolic blood pressure have a larger effect on older-appearing body ages 381 

relative to brain ages. 382 

However, some findings remain difficult to interpret. For example, we found opposite 383 

associations for systolic versus diastolic blood pressure. Previous research has also reported 384 

inconsistent effects, with a UKB study reporting higher SBP and DBP associations with 385 

greater and lower risk of dementia respectively (Gong et al., 2021). There are also several 386 

adiposity-related health traits with positive associations (indicating older-appearing brain age 387 

than body age). While these have negligible beta coefficients, the results may be 388 

counterintuitive and, based on an extensive literature on the negative effects of obesity, we 389 

would typically expect higher adiposity to be related to older-appearing body age relative to 390 

the brain. However, other studies have reported similar findings, for example greater scores 391 

on anthropometric measures associated with better health outcomes – often referred to as ‘the 392 

obesity paradox’ (Amundson et al., 2010; Tutor et al., 2023). While such findings might be 393 

influenced by different adiposity measures used across studies (Bosello & Vanzo, 2021) as 394 

well as selection biases (Ba et al., 2012; Masters et al., 2013), future research might focus on 395 

variations in body-brain relationships across age, sex, and health status (Kivimäki et al., 396 

2018; Subramaniapillai et al., 2022) to better understand these relationships. 397 

An individual may have a brain-predicted age closely aligned with their chronological 398 

age but a body age that exceeds it. One theoretical explanation for this may be the 399 

involvement of brain maintenance (Nyberg, 2017), where brain health may to some extent be 400 

preserved irrespective of bodily health status through a moderating variable such as good 401 

muscular fitness. Furthermore, individual differences in cognitive reserve (Stern, 2009, 402 

2012), or resilience to neuropathological changes typically associated with ageing, could 403 

influence differences in age-prediction scores. Future studies might therefore aim to 404 

investigate these difference scores in the context of cognitive functions known to change with 405 

age, such as memory and reaction time (Grady, 2012), as well as reserve-related mechanisms 406 

including education, socioeconomic status, and lifestyle (Anatürk et al., 2021). Although 407 

speculative, higher body age than brain age may reflect worsening bodily health that has not 408 

yet manifested in the brain, which may represent a window of opportunity for intervention. 409 

This emphasises the importance of future longitudinal studies. Moreover, it is important to 410 

note that a high brain and body age discrepancy does not necessarily mean an old brain and a 411 

young body or vice versa, but rather that the brain age is higher or lower relative to the body 412 

age. Hence, both brain and body age could be both higher or lower than individual’s 413 

chronological age. Future studies may test the relevance of different brain and body age 414 
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configurations, with the aim to characterise distinct risk profiles related to neural and 415 

cardiometabolic health. 416 

Previous studies have demonstrated that variation in predicted brain age is partly 417 

explained by individual differences in body composition and health traits, including 418 

abdominal fat (Beck, de Lange, Pedersen, et al., 2022; Schindler et al., 2022; 419 

Subramaniapillai et al., 2022), muscle-fat infiltration (Beck, de Lange, Alnæs, et al., 2022), 420 

hand-grip strength (Cole et al., 2018; Sanders et al., 2021) and muscle volume (Beck, de 421 

Lange, Alnæs, et al., 2022). Our findings support these previous reports, but also suggest that 422 

health traits may differentially influence age predictions beyond what is captured by the brain 423 

imaging measures. However, it could also be the case that the health trait variables do not 424 

influence the estimated age in a specific direction on their own, but rather, that the variation 425 

reflects the extent to which the given variable is already integrated into the individual’s brain 426 

health. Consequently, the difference score would represent a value indicative of the 427 

individual in question rather than providing a generalised insight about the health trait itself. 428 

There are also a wide range of related health, lifestyle, and environmental factors that our 429 

study did not include such as diet, physical activity, socio-economic status, education, social 430 

support, and access to healthcare, which may mitigate the effects of our results or reveal 431 

larger discrepancies. Future research might consider these aspects by stratifying samples 432 

based on different levels of education and lifestyle behaviours, or adjust for the effects of 433 

these variables in follow-up analyses. 434 

Further, the correlation (SI Figure 5) between the difference scores in T1- and dMRI-435 

based models indicate that the difference in predictions are related but not identical. As 436 

evidenced by Figures 3 and 4, most of our findings related to difference scores were similar 437 

across brain MRI modalities. However, for a few select variables, the results suggest there 438 

may be some tissue-specific effects. For example, dMRI-Pulse, T1-WC, T1-TFP revealed 439 

positive associations while there were no effects for their counterparts (T1-Pulse, dMRI-WC, 440 

dMRI-TFP). Similarly, there were negative associations for dMRI-VAT and T1-IWB but no 441 

effects for T1-VAT or dMRI-IWB. While these results could reflect subtle, differential 442 

discrepancies between tissue-specific neural ageing processes and body age, it is important to 443 

note that these discrepancies between imaging modalities may be trivial, as the reported 444 

findings for these variables reflect anecdotal evidence. In addition, the large sample size 445 

(~40k) and power of the study which may lead to even trivial differences and small effects 446 

being detected as statistically significant. As such, we focus on the beta coefficients and 447 

strength of evidence derived from those values to make more practical conclusions. Future 448 
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studies may consider more comprehensive investigations of tissue-specific and regional MRI 449 

phenotypes that may be uniquely associated with discrepancies in brain and body age 450 

predictions. 451 

Some strengths and limitations of the study must be discussed. The UK Biobank 452 

offers a rich and comprehensive dataset enriched with health-related information, including 453 

lifestyle and health factors utilised in the current study. However, selection biases (Brayne & 454 

Moffitt, 2022; Tyrrell et al., 2021) such as overall relatively higher education and 455 

overrepresentation by individuals of white European descent makes the sample less 456 

representative of the wider population. One argument in favour of recruiting relatively 457 

healthy individuals at baseline is that some will develop illnesses over the course of the study 458 

period, allowing researchers to track changes over time and identify predictors of health 459 

decline and therefore targets for intervention strategies. However, our cross-sectional study 460 

may be influenced by healthy-volunteer bias, limiting the representativeness of the sample in 461 

terms of cardiovascular risk in midlife and older age. A further limitation of the UK Biobank 462 

is the limited age range, with participants involved being between 44-82 years of age. Given 463 

the importance of tracking changes over time and the potential differences in how bodily 464 

health traits may relate to brain health across the lifespan (Kivimäki et al., 2018), and that this 465 

may also vary between males and females (Subramaniapillai et al., 2022), future research 466 

should include sex-specific models, wider age ranges, and preferably longitudinal data on 467 

more diverse and representative samples. 468 

 In terms of age prediction, all three models performed comparably well, both in terms 469 

of r values and MAE and RSME. However, while brain-based age models had approximately 470 

1000 features, the body age model only included 40. This variation in features warrants 471 

caution in interpreting model differences as being driven strictly by biological mechanisms. 472 

That said, while prediction accuracies can improve with a larger number of features included, 473 

this is not always the case. For example, in Tian et al. (2023), the least accurate organ-474 

specific model included the largest number of features (n = 33) and the best performing 475 

model including 11 features. Similarly, our previous studies show that the age-dependency of 476 

features may be more indicative of model performance than the sheer number of features 477 

included (Anatürk et al., 2021; de Lange et al., 2020), highlighting the importance of feature 478 

relevance over quantity in predictive accuracy. This underscores the need for further research 479 

to validate age prediction models related to bodily health and organ systems, assessing the 480 

optimal balance and significance of feature number versus their age-related associations. 481 
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Although we employed nested cross-validation and k-folding to limit overfitting and 482 

generate predictions for the full sample in a held-out manner, our models may not generalise 483 

due to the lack of external datasets for validation. Moreover, investigating which body-age 484 

features drive the discrepancy between brain and body age predictions, whereby the same set 485 

of health traits were used to train the body age model, may introduce circularity. Future 486 

research may improve generalisability by including independent samples for validation, as 487 

well as more comprehensive approaches to assessing brain- versus body-related age 488 

predictions and model feature importance. While we provide feature importance based on 489 

model weight scores for transparency, inherent limitations in assessing feature importance 490 

limit the generalisability of these rankings (Haufe et al., 2014). For example, weight and gain 491 

metrics may bias towards features with higher cardinality, or exclude equally age-dependent 492 

features from the model due to multicollinearity (Adler & Painsky, 2022). Additionally, these 493 

methods often overlook complex feature interactions and the nonlinear nature of models like 494 

XGBoost, leading to potential misinterpretation (Goyal et al., 2020). To enhance model 495 

transparency and interpretability, future studies might aim to address these challenges by 496 

incorporating permutation feature importance, SHAP values, and partial dependence plots 497 

(Altmann et al., 2010; Lundberg & Lee, 2017), alongside external validation on independent 498 

datasets as well as pre-modeling strategies like principal component analysis (PCA) to 499 

mitigate multicollinearity. Lastly, deep neural network models for age prediction have shown 500 

superior performance in recent years (Leonardsen et al., 2022) and should be considered to 501 

improve robustness of the methodology. 502 

To summarise, we found that age prediction using bodily health traits performed 503 

comparably well to models using brain MRI data alone, and that specific health traits may 504 

differentially influence brain and body ageing systems. Our results emphasise the relevance 505 

of considering both body and brain measures for a more comprehensive understanding of 506 

biological ageing. The current study thus contributes to the dissection of the unique and 507 

common variance across body and brain health indicators, which is key towards the aim of 508 

parsing inter-individual heterogeneity in the multisystem ageing process. Future research 509 

should attempt to better understand the clinical relevance of individual-level discrepancies 510 

between different age prediction models in relation to early life exposures, lifestyle factors, 511 

genetic architecture, and their relation to risk for cardiovascular disease and age-related 512 

neurodegenerative and cognitive disorders. 513 

 514 
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