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Abstract 32 

Rare variants can explain part of the heritability of complex traits that are ignored by 33 

conventional GWASs. The emergence of large-scale population sequencing data 34 

provides opportunities to study rare variants. However, few studies systematically 35 

evaluate the extent to which imputation using sequencing data can improve the power 36 

of rare variant association studies. Using whole genome sequencing (WGS) data (n = 37 

150,119) as the ground truth, we described the landscape and evaluated the 38 

consistency of rare variants in SNP array (n = 488,377) imputed from TOPMed or 39 

HRC+UK10K in the UK Biobank, respectively. The TOPMed imputation covered 40 

more rare variants, and its imputation quality could reach 0.5 for even extremely rare 41 

variants. TOPMed-imputed data was closer to WGS in all MAC intervals for three 42 

ethnicities (average Cramer’s V>0.75). Furthermore, association tests were performed 43 

on 30 quantitative and 15 binary traits. Compared to WGS data, the identified rare 44 

variants in TOPMed-imputed data increased 27.71% for quantitative traits, while it 45 

could be improved by ~10-fold for binary traits. In gene-based analysis, the signals in 46 

TOPMed-imputed data increased 111.45% for quantitative traits, and it identified 15 47 

genes in total, while WGS only found 6 genes for binary traits. Finally, we 48 

harmonized SNP array and WGS data for lung cancer and epithelial ovarian cancer. 49 

More variants and genes could be identified than from WGS data alone, such as 50 

BRCA1, BRCA2, and CHRNA5. Our findings highlighted that incorporating rare 51 

variants imputed from large-scale sequencing populations could greatly boost the 52 

power of GWAS. 53 

 54 
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Introduction 58 

Conventional genome-wide association studies (GWASs) are well-powered to detect 59 

thousands of common variants associated with human traits and diseases [1-3]. 60 

However, GWASs underrepresent rare variants due to the limitations of SNP array [4]. 61 

Rare variants have larger effects and behave differently from common variants to 62 

explain a fraction of human traits or disease heritability [5, 6]. With the emergence of 63 

next-generation sequencing (NGS) [e.g., whole genome sequencing (WGS)] based on 64 

biobank-level populations, massive rare variants [minor allele frequency (MAF)<0.01] 65 

or ultra-rare variants (MAF<0.0001) could be accurately captured [7]. For example, 66 

several studies aimed at identifying novel germline variants in cancer or rare diseases 67 

have benefited from NGS [8, 9].  68 

However, given that the application of deep WGS is limited by cost for large-scale 69 

populations [10], SNP array is a cost-effective and major approach for human 70 

genomics exploration thus far, such as UCLA ATLAS [11], China Kadoorie Biobank 71 

[12], FinnGen [13], and various case�control GWASs [14]. Even if there are 72 

high-quality population-based sequencing data, the incidence number of complex 73 

disease cases is often low and the power for identifying rare variants is insufficient 74 

compared to case�control studies based on SNP array. For example, the UK Biobank 75 

(UKB) has whole-exome sequencing (WES) data with a large sample size (n ≈ 76 

450,000) [15, 16], but most cancer cases have a sample size of less than 10,000. 77 

Nevertheless, unlike sequencing data, SNP array-based genotyping can only represent 78 

a fraction of the genetic variation in the genome. Thus, it is a more appropriate 79 

method to power association analysis to detect rare variants that were not genotyped 80 

to the SNP array by imputing from the external high-quality large-scale sequencing 81 

panels [10, 17], such as the UK10K, Haplotype Reference Consortium (HRC) and 82 

Trans-Omics for Precision Medicine (TOPMed). In TOPMed, 290 million (~97%) 83 

variants had an MAF <1%, which might be strong candidates for association analyses 84 
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[18, 19]. However, few studies have focused on evaluating the accuracy of rare 85 

variant imputation based on sequencing data panel and the extent to which it can 86 

enhance the power of rare variant exploration. 87 

Here, we present a comparative study that leverages the WGS data of 150,119 88 

individuals from the UKB as the ground truth to evaluate the coverage and accuracy 89 

of rare variant imputation using HRC+UK10K and TOPMed. We investigated the 90 

association tests of WGS data and imputed variants with 30 biochemistry biomarkers 91 

and 15 complex diseases, respectively. Finally, we harmonized WGS data and diverse 92 

SNP array data to reveal the rare variant signals in lung cancer and epithelial ovarian 93 

cancer. 94 

 95 

 96 

Results 97 

Landscape of rare variant imputation results 98 

We analyzed WGS data from 150,119 individuals and genotype imputation data 99 

generated from the HRC+UK10K and TOPMed reference panels (n=488,377) from 100 

the UKB, respectively (Figure 1). The intersection of variants between WGS and 101 

imputed data is shown in Figure 2A. TOPMed imputed a substantially larger number 102 

of genetic variants that could detect approximately 26% single nucleotide variants 103 

(SNVs) of WGS data, which was higher than the 10.7% detected in HRC+UK10K. 104 

The TOPMed-imputed data could detect 22 million singleton and doubleton variants, 105 

which was far more than HRC+UK10K-imputed data but was still fewer than 333 106 

million variants in WGS data. For ultra-rare variants, the TOPMed-imputed variants 107 

could reach 66.6% of WGS and were ~3.4-fold of that in HRC+UK10K. For rare and 108 

common variants, the number of imputed variants was close to WGS (Figure 2B and 109 

Table S1). For protein-coding variants, TOPMed-imputed data detected 44,440 110 

loss-of-function (LoF) variants, 509,759 synonymous variants and 880,589 missense 111 
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variants, which was at least four-fold greater than that in the HRC+UK10K 112 

imputation (Figure 2B).  113 

To deeply understand the performance of different imputed data compared to WGS, 114 

all variants were divided into five intervals according to the minor allele count (MAC). 115 

As expected, we observed an increase in the fraction of variants as MAC increased. 116 

When MAC∈(10,20], TOPMed-imputed data had already detected ~65% variants of 117 

WGS data, HRC+UK10K-imputed data could only detect ~20% (Figure 2C and Table 118 

S2).  119 

For the imputed data, post-imputation quality control (QC) is generally performed 120 

based on INFO/RSQ filtering. The number of different INFO/RSQ variants in the 121 

imputed data is presented in Figure 2D. TOPMed-imputed data achieved substantially 122 

higher coverage of rare variants than HRC+UK10K, and as the MAC increased, the 123 

proportion of high-quality TOPMed-imputed variants with higher INFO/RSQ 124 

increased. Even for extremely rare variants (MAC∈(0,5)), the average INFO/RSQ of 125 

imputed data could also reach 0.5 (Table S3). 126 

Evaluation of genotype consistency between WGS and imputed data 127 

We used WGS data as the ground truth to conduct correlation analysis on the two 128 

imputed datasets to evaluate the consistency of rare variants in three ethnicities 129 

(White, Asian and African) (Table S4). TOPMed had a better imputation performance 130 

that was closer to WGS than HRC+UK10K in all MAC intervals, and the average 131 

Cramer’s V imputed by TOPMed was above 0.75 in three ethnicities (Figure 3A and 132 

Table S5). Even for MAC∈(0,5), the Cramer’s V of TOPMed-imputed data exceeded 133 

0.6 in all ethnicities. The difference in Cramer’s V of various intervals between 134 

TOPMed-imputed data and HRC+UK10K-imputed data reached a maximum in 135 

extremely rare variants (MAC�(0, 5)), which was 0.33 for White, 0.25 for Asian and 136 

0.17 for African (Figure 3A and Table S5). 137 
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We also described the relationship between INFO/RSQ and Cramer’s V (Figure 3B). 138 

With the increase in INFO/RSQ bins, Cramer’s V also increased in all three 139 

ethnicities, indicating that the variants with high imputation quality could be closer to 140 

the WGS data to some extent. Moreover, for the same INFO/RSQ bin, using different 141 

reference panels would obtain different Cramer’s V, and the consistency of 142 

TOPMed-imputed data was higher than that of HRC+UK10K in each bin. Even when 143 

the imputation quality was not particularly good (INFO/RSQ ∈ (0.3,0.4]), the 144 

TOPMed-imputed data had an advantage over that from HRC+UK10K which showed 145 

a stable consistency (all Cramer’s V>0.5 in three ethnicities) (Table S6). Therefore, 146 

the rare variants imputed from TOPMed were applicable for subsequent association 147 

analysis. 148 

Rare variant association analysis for quantitative biochemistry 149 

biomarkers 150 

We performed association tests between rare variants (MAF<0.01) and 30 151 

biochemistry biomarkers in WGS (n=150 k) and imputed data (n=150 k and 480 k) of 152 

European descent. In the single-variant tests of 16 traits, compared to WGS data, the 153 

two imputed data (n=480 k) could detect more significant rare variants; 154 

HRC+UK10K-imputed data could improve 4.7% while the TOPMed-imputed data 155 

could improve 27.71% (Figure 4A-4B). However, the number of significant rare 156 

variants found in WGS data was more than that of imputed data in 12 traits, which 157 

might be due to the extremely large number of sequencing sites in WGS. Meanwhile, 158 

we noticed that the imputed data of n=150 k had a weaker ability to detect rare 159 

variants than WGS (Figure S2). On average, the number of significant rare variants in 160 

the TOPMed-imputed data was 661 and in the HRC+UK10K-imputed data was 450, 161 

which were less than 2,479 in WGS data (Table S7). 162 

We also evaluated the gene-based tests results to capture the effects of rare variants. 163 

On average, 22 genes were found in the TOPMed-imputed data and 18 genes were 164 
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found in the HRC+UK10K-imputed data (n=480 k), while the WGS data identified 165 

only 7 genes for all traits (Table S8). The average improvement ratio of the 166 

HRC+UK10K-imputed data was 55.81%, and that of the TOPMed-imputed data 167 

reached 111.45% (Figure 4B). When comparing the WGS data with the imputed data 168 

of n=150 k, the number of significant genes in the TOPMed-imputed data decreased 169 

by 27.10%, while that in the HRC+UK10K-imputed data decreased by 33.66% 170 

(Figure S2). 171 

Based on these association tests of the significant variants, we depicted the 172 

relationship between the chi-square statistics of the association analysis in WGS data 173 

and two imputed data (n=150 k). The test statistics in different imputed data both 174 

presented a strong relationship with that in WGS data, which meant their association 175 

test statistics were highly correlated (on average, Pearson’s r =�0.97 for 176 

TOPMed-imputed data and 0.95 for HRC+UK10K-imputed data) (Figure 4C and 177 

Table S9). Therefore, the rare variant-trait associations using imputed genotypes were 178 

robust. 179 

Rare variant association analysis for complex diseases 180 

We also conducted single-variant tests and gene-based tests for 15 complex diseases, 181 

including ten chronic diseases and five cancers (Table S10). In single-variant tests, the 182 

number of significant rare variants in the imputed data (n=480 k) was approximately 183 

10-fold that in WGS data, owing to its larger sample sizes with sufficient disease 184 

cases (Figure S1 and Table S13). On average, 22 significant rare variants were 185 

identified in TOPMed-imputed data, and 24 were identified in HRC+UK10K-imputed 186 

data. However, only 2 variants could be found in the WGS data on average (Figure 5 187 

and Table S11). We also found that for the imputed data with a sample size of 150 k, 188 

its ability to detect rare variants was a slightly weaker than that of WGS (Figure S3). 189 

Therefore, it could be expected that using large-scale SNP array-based data imputed 190 

from sequencing panels would greatly improve the ability of rare variant findings 191 
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compared to WGS data. 192 

In the gene-based tests, the number of significant genes in the imputed data was 193 

higher than that in the WGS data, and the performance of the TOPMed-imputed data 194 

was better. HRC+UK10K-imputed data could find 14 significant genes in total, and 195 

the TOPMed-imputed data could find 15 genes, while the WGS data only found six 196 

genes owing to low cases (Figure 5 and Table S12, S14). In addition, we also noticed 197 

that some classical genes identified in the two imputed datasets were roughly 198 

consistent but undetected in WGS. For example, IL33 has been certified to be 199 

associated with asthma and a rare mutation in IL33 could decrease the risk of asthma 200 

[20, 21]. For prostate cancer, the gene CHEK2 which was found only in 201 

TOPMed-imputed data has been confirmed to be a risk gene containing rare variants 202 

[22]. Most genes found in the TOPMed-imputed data had supporting association or 203 

biological evidence from previous studies (Table S21). 204 

Based on the results above, we concluded that incorporating SNP array imputed from 205 

large-scale sequencing populations could enhance the ability to detect rare 206 

variant-trait associations. 207 

Powering the rare variant hits by harmonizing WGS and SNP array 208 

Furthermore, we leveraged UKB WGS and several SNP array data imputed by the 209 

TOPMed reference panel to perform association tests for lung cancer (LC) and 210 

epithelial ovarian cancer (EOC) (Figure 6A, 6D). Compared with limited cases in 211 

WGS (nLC = 1,494 ; nEOC = 628), the SNP array could provide sufficient cases (nLC = 212 

23,168; nEOC = 23,822) that were 16-fold and 38-fold for LC and EOC respectively.  213 

In single-variant tests, no rare variants could pass the genome-wide significance level 214 

in WGS. However, when combined with SNP-array data, we detected 12 SNVs and 215 

22 SNVs, mapping to six and four independent genetic regions, respectively (Figure 216 

6B, 6E, Table S17-S18). In gene-based tests, no genes could pass P< 2.5×10-6 in WGS. 217 

In the meta-analysis, we identified BRCA2 and CHRNA5 in lung cancer, while 218 
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BRCA2 and BRCA1 were significant in EOC (Figure 6B, 6E, Table S19-S20). Using 219 

different P value thresholds, the WGS+SNP-array strategy could detect more variants, 220 

especially under stringent thresholds (e.g., 10-7 in single-variant and 10-5 in gene-based) 221 

(Figure 6C, 6F). 222 

 223 

 224 

Discussion 225 

It is a common practice to directly apply sequencing data or imputed genotype data to 226 

GWAS. Limited by the cost of NGS technology, biobank-level sequencing data are 227 

still in the minority [23], resulting in the difficulty of using rare variant analysis which 228 

provides important genomic architectures. Large-scale GWASs tend to use imputed 229 

genotype data, but few studies systematically compare the power of imputed data for 230 

rare variants. Therefore, evaluating the consistency and association power 231 

performance of rare variants imputed from sequencing data can provide better 232 

guidance and reference for rare variant exploration in complex traits. 233 

In this study, we comprehensively conducted a series of comparative analyses for rare 234 

variant imputation using SNP array data from the UKB based on TOPMed or 235 

HRC+UK10K against the WGS data of 150,119 individuals as the ground truth. We 236 

described the rare variant imputation results, and further carried out the correlation 237 

analysis in three ethnicities (White, Asian, and African) to evaluate how close rare 238 

variant imputation could be to WGS data. We further investigated association analysis 239 

on 30 biochemistry markers and 15 complex diseases to explain the ability of imputed 240 

rare variants to improve the association analysis at both single-variant and gene-based 241 

levels. 242 

Our summarized description shows that the TOPMed panel could impute more 243 

high-quality rare variants than HRC+UK10K. Although the imputed variants were far 244 

inferior to WGS in singleton and doubleton variants, the total number of rare variant 245 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted October 30, 2023. ; https://doi.org/10.1101/2023.10.28.23297722doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.28.23297722


imputed by TOPMed also had a certain scale. Even for the extremely rare variants 246 

(MAC<5), the average imputation quality of TOPMed-imputed variants was 247 

acceptable (INFO/RSQ≥0.5). Although not all rare variants can be estimated reliably, 248 

they could provide a crucial supplement in addition to WGS. 249 

For the three ethnicities, we observed that rare variants imputed from TOPMed were 250 

closer to WGS than those imputed from HRC+UK10K in each MAC interval. In 251 

Europeans, the consistency of rare variants with MAC≤20 in HRC+UK10K-imputed 252 

data is poor, which is not recommended for subsequent application. In addition, the 253 

overall correlation between TOPMed-imputed data and WGS was slightly stronger in 254 

Africans than in the other two ethnicities, which may be due to the low sample size of 255 

Africans (n<1,000) in WGS, and unbalanced ethnic sample sizes affect the stability of 256 

Cramer’s V. Nevertheless, the TOPMed-imputed data still had a stable imputation 257 

performance that was closer to WGS data, indicating its reliability to be applied in 258 

rare variant association studies. 259 

In the association analysis of quantitative and binary traits, although the ability of 260 

both imputed data to identify significant rare variants was weaker than that of WGS 261 

data in the same population (n = 150k), we could still identify a few rare variants or 262 

gene sets. When the sample size of the imputed data increased to n = 480 k, the ability 263 

to identify significant rare variant could improve, but this improvement was slightly 264 

different in distinct types of traits. For quantitative traits, the power of WGS data for 265 

finding significant rare variants was basically sufficient, and the two imputed data had 266 

limited improvement compared to WGS data. However, for binary traits, the number 267 

of disease cases in WGS data was far from sufficient to ensure optimistic power, 268 

causing fewer significant rare variants to be found. To improve the power, external 269 

data with additional disease cases must be supplemented. Our study indeed showed 270 

that larger SNP array data imputed from sequencing data could greatly improve the 271 

ability to find significant rare variants. 272 
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Although the natural population cohorts are large with adequate sample sizes, the 273 

disease cases are generally insufficient, which is known as a case�control imbalance 274 

problem and leads to low statistical power to identify rare variants [24]. Here, we 275 

harmonize WGS population and multiple case�control design GWASs and 276 

successfully identify classical rare variants and gene sets in two cancers, including the 277 

well-known BRCA2 [25], BRCA1 [26], and CHRNA5 [27], which could not be 278 

detected in UKB WGS. Therefore, integrating SNP-array data through imputation is 279 

of great significance for discovering rare variants. 280 

There are several strengths in our study. First, we comprehensively described the 281 

landscape of the imputed rare variants from different sequencing panels in terms of 282 

variant amount, coverage, and imputed quality. Second, we leveraged WGS data as 283 

the ground truth to perform correlation analysis by different ethnicities, and analyzed 284 

their consistency with imputed rare variants. We demonstrated the feasibility of using 285 

imputed rare variants for association analysis. Third, we conducted various 286 

association tests on 45 traits of the UKB and harmonized six GWAS case�control 287 

datasets totally. Through both single-variant and gene-based tests, we quantitatively 288 

explained the improvement of SNP array-based data imputed from sequencing data in 289 

rare variant association studies. 290 

The results we presented here also have some limitations. First, our genotype 291 

consistency evaluation was only conducted on the UKB SNP array (~50,000 UK 292 

BiLEVE Axiom array and ~450,000 UK Biobank Axiom array) that did not consider 293 

other array types, which might influence the results. Second, we currently impute the 294 

genotype in TOPMed’s imputation online server (97,256 reference samples) due to 295 

computing power limitations, but it is convenient and feasible for most genomic 296 

studies. Theoretically, the results of imputation in larger populations (e.g., UKB 297 

whole WGS population) should be more accurate [28], which needs further studies to 298 

confirm. Third, we attempted to integrate the SNP-array data and sequencing data in 299 

two exemplary cancers. The effect of integrating other various diseases in large-scale 300 
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population cohorts (n≥100,000) needs further evaluation. 301 

In conclusion, incorporating rare variants imputed from large-scale sequencing 302 

populations can greatly enhance the power of GWAS research. Our study shows that 303 

combining multi-source genomic data with a sufficient number of cases can 304 

accurately identify a wider range of rare variants, allowing us to take full advantage of 305 

different types of genetic data and to gain a deeper understanding of the causal links 306 

between rare genetic variants in human complex traits and diseases. 307 

 308 

 309 

Methods 310 

UK Biobank population and phenotypic data collection 311 

The UK Biobank (UKB) is a population-based prospective cohort of individuals aged 312 

40–69 years, enrolled between 2006 and 2010 [29]. The work described herein was 313 

approved by the UK Biobank under applications no. 92675 and 83445. All phenotypic 314 

data were accessed in July 2022. 315 

Blood biochemistry data were collected from Category 17518. The UK Biobank 316 

embarked on a project to measure a wide range of biochemical markers in biological 317 

samples collected at baseline (2006-2010) in all 500,000 participants. All 30 318 

biochemistry biomarkers were included as quantitative traits. 319 

Health-related outcomes were ascertained via individual record linkage to national 320 

cancer and mortality registries and hospital in-patient encounters. Cancer diagnoses 321 

were coded by International Classification of Diseases version 10 (ICD-10) codes 322 

from data fields 41270 (Diagnoses - ICD10), 41202 (Diagnoses - main ICD10), and 323 

40001 (primary cause of death: ICD10). Individuals with at least one recorded 324 

incident diagnosis were defined as cases. We included 15 common chronic diseases or 325 

cancers as binary traits, including insulin-dependent diabetes mellitus, 326 
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non-insulin-dependent diabetes mellitus, obesity, depressive episode, hypertension, 327 

chronic ischemic heart disease, heart failure, COPD, asthma, cholelithiasis, bladder 328 

carcinoma, breast carcinoma, non-Hodgkin lymphoma, prostate cancer, and 329 

Melanoma. 330 

UK Biobank genomics data collection 331 

We collected whole-genome sequencing (WGS) of 150,119 people in the UK Biobank 332 

(data field 23352) [30], which were sequenced to an average coverage of 32.5× (at 333 

least 23.5× per individual) using Illumina NovaSeq sequencing machines at deCODE 334 

Genetics (90,667 individuals) and the Wellcome Trust Sanger Institute (59,452 335 

individuals). Sequence reads were mapped to the human reference genome GRCh38 336 

using BWA. SNPs and short indels were jointly called over all individuals using 337 

GraphTyper (v2.7.1) [31], which provided more accurate genotype calls. This 338 

constitutes a set of high-quality variants, including 585,040,410 single-nucleotide 339 

variants (SNVs) and 58,707,036 indels. 340 

We also collected imputed genotype data based on two mainstream reference panels. 341 

The first is the Haplotype Reference Consortium (HRC) and UK10K haplotype 342 

resource, which increases the number of testable variants over 100-fold to ~96 million 343 

variants (data field 22828). The genetic data was imputed using two different 344 

reference panels. The HRC panel (64,976 haplotypes) was used wherever possible, 345 

but for SNPs not in that reference panel the UK10K + 1000 Genomes panel (12,570 346 

haplotypes) was used [32]. The raw positions are in GRCh37 coordinates and then 347 

lifted over to GRCh38.  348 

The second is imputation from genotype using the TOPMed R2 panel (97,256 deeply 349 

sequenced genomes), performed by the TOPMed Informatics Research Center [33]. 350 

After phasing the UK Biobank genetic data (carried out on 81 chromosomal chunks 351 

using Eagle v.2.4), the phased data were converted from GRCh37 to GRCh38 using 352 

LiftOver. Imputation was performed using Minimac4 v1.0.2. Imputation was 353 
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performed in 1 Mb chunks and merged back together by chromosome. 354 

Quality control of imputed SNP array data 355 

If an imputed variant on N samples has an imputation quality metric scored at α, it 356 

implies that the statistical power of association tests is approximately equivalent to αN 357 

perfectly observed genotype data [34]. To perform GWAS on the UK Biobank data 358 

with ~480,000 samples, it is typical to use variants with imputation quality higher 359 

than 0.3, equivalent to ~150,000 perfectly observed samples (WGS sample size). Thus, 360 

markers with poor imputation quality were not retained in the subsequent analysis 361 

(excluding the Minimac4 imputation quality metric RSQ < 0.3 or IMPUTE 362 

imputation quality metric INFO < 0.3).  363 

Genotype consistency evaluation 364 

In two imputed datasets (TOPMed and HRC+UK10K) and WGS data, we divided the 365 

population into three ethnicities --- White, Asian, African based on ethnic data field 366 

21000. To evaluate the consistency between the imputed genotype and WGS data, we 367 

matched the imputed data (n=480k) with the WGS data (n=150k) according to the 368 

individual ID of each ethnicity. 369 

Then, we used PLINK2.0 to calculate the number of minor allele count (MAC) and 370 

minor allele frequency (MAF) of genetic variants in each ethnicity. Meanwhile, based 371 

on MAC and MAF, genetic variants were classified into five categories, namely (0,5], 372 

(5,10], (10,20], (20,50], >50 and MAF<0.01 (the interval was abbreviated as > 50 in 373 

the subsequent analysis). We chose Cramer’s V as the metric to evaluate the 374 

consistency of imputed variants and sequencing variants:  375 

Cramer�s V � �� ���
 

where χ2 represents the chi-square value of the current contingency table, n represents 376 

the sample size, and m represents the smaller value of the two degrees of freedom (r-1) 377 
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or (c-1) of the two variables.  378 

Single-variant and gene-based association tests 379 

Single-variant and gene-based association analyses were performed using REGENIE 380 

v3.2.6 [35]. It is a machine-learning based method to fit a whole-genome regression 381 

model for quantitative and binary phenotypes. Quantitative traits were rank-based 382 

inverse normal transformed. Saddlepoint approximation (SPA) was used to handle 383 

extreme case�control imbalance of binary traits. All association tests were performed 384 

in the population of European descent (ethnicity = “White”) only. 385 

The single-variant association tests included rare variants with MAF < 0.01. The 386 

variants were functionally annotated using Variant Effect Predictor (VEP) software 387 

[36]. The genome-wide significant threshold of single-variant tests was set to P < 5×388 

10-8. 389 

For gene-based analysis, we included rare and ultra-rare variants with MAF < 0.01. 390 

Three genetic models were considered: loss of function (LoF), LoF+missense and 391 

LoF+missense+synonymous. Of all the combinations, we reported the association 392 

results with the lowest P value to collectively capture a wide range of genetic 393 

architectures [5]. The genome-wide significance threshold of gene-based tests was set 394 

to P < 2.5×10-6. 395 

In the association analyses of quantitative traits, we adjusted the covariates including 396 

age, sex, and the top ten principal components (PCs). In the association analyses of 397 

binary traits, we adjusted the covariates including age, sex (excluding sex-specific 398 

diseases), body mass index (BMI), smoking status (binary), drinking status (binary), 399 

and the top ten principal components (PCs).  400 

SNP array data collection for lung cancer and ovarian cancer 401 

We also collected large-scale SNP array data of lung cancer and epithelial ovarian 402 

cancer to harmonize them with UKB WGS to improve the power.  403 
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For lung cancer, we investigated the association of imputed genetic variants with lung 404 

cancer in three additional cohorts from the Prostate, Lung, Colorectal, and Ovarian 405 

(PLCO) cancer screening trial [37], the International Lung Cancer OncoArray 406 

Consortium (ILCCO-OncoArray) [38], and the Transdisciplinary Research in Cancer 407 

of the Lung (TRICL) research team [39] (Table S15). 408 

For ovarian cancer, we collected data in three additional cohorts from The Follow-up 409 

of Ovarian Cancer Genetic Association and Interaction Studies (FOCI)-OncoArray 410 

[40], FOCI-Exome Chip [41], and Consortium of Investigators of Modifiers of 411 

BRCA1/2 (CIMBA) [42] (Table S16). 412 

Samples excluded were those who lacked disease status, were second-degree relatives 413 

or closer having identity by descent (IBD) > 0.2 or had low-quality DNA (call rate < 414 

95%), or sex inconsistency, or were non-European. SNPs were removed if they met of 415 

the following criteria: (1) sex chromosome, (2) MAF < 0.05, (3) call rate < 95%, and 416 

(4) Hardy-Weinberg equilibrium (HWE) test P < 1.00×10−7 in controls or P < 417 

1.00×10−12 in cases.  418 

All genotype data were imputed on the TOPMed online imputation server. Poorly 419 

imputed SNVs with imputation quality score R2 < 0.3 and SNVs on sex chromosomes 420 

were excluded from the analyses. The effect sizes and 95% confidence interval (CI) of 421 

genes were estimated by burden tests and then summarized by fix-effects 422 

meta-analysis. 423 

 424 

 425 
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Figure legends 605 

Figure 1. Study workflow 606 

The schematic of the analytical pipeline summarizes the main steps for conducting a 607 

comparative study using WGS as the ground truth. We first compared the rare variant 608 

imputation for two imputed data (TOPMed-imputed and HRC+UK10K imputed) and 609 

WGS data. Then genotype consistency evaluation was investigated on three 610 

ethnicities. The rare variant association analysis of 45 traits was carried out after 611 

above evaluation in different data. Finally, we harmonized the WGS and SNP-array 612 

data for the two cancers. 613 

Figure 2. Landscape of rare variant imputation results 614 

(A) Venn diagram showing the intersection of variants between TOPMed-imputed 615 

data, HRC+UK10K-imputed data and WGS data. 616 

(B) Bar chart showing the number of five distinct variant types for different data (left). 617 

**Variant type description： 618 

Singleton: The minor allele occurs only once in the entire sample 619 

Doubleton: The minor allele occurs twice in the entire sample 620 

Ultra-rare variant: MAF<0.0001 except singleton and doubleton 621 

Rare variant: MAF in 0.0001-0.01 622 

Common variant: MAF>0.01 623 

Bar chart showing the number of three distinct variant annotations for different 624 

data (right).  625 

(C) Line chart of variant coverage proportions in different imputed data. The x-axis 626 

represents the MAC intervals, and the y-axis represents the proportion of variants 627 

that imputed data could detect related to WGS data. 628 
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(D) The number of variants imputed by different panels and their distribution across 629 

INFO/RSQ bins. 630 

Figure 3. Consistency evaluation of the imputed datasets in different ethnicities 631 

(A) Correlation of three ethnicities between imputed data and WGS data in different 632 

MAC intervals. 633 

(B) Box plot of the relationship between the INFO/RSQ of imputed data and the 634 

Cramer’s V. 635 

Figure 4. Rare variant association analysis results for biochemistry biomarkers 636 

(A) The number of additional significant rare variants (MAF<0.01) found in the 637 

imputed data compared to the WGS data for 30 quantitative traits. 638 

(B) The average improvement ratio compared to WGS data for single-variant tests and 639 

gene-based tests. 640 

(C) Pairwise Pearson correlations between chi-square statistics produced by 641 

association tests using imputed data (n=150 k) and WGS data respectively.  642 

Figure 5. Rare variant association analysis results for complex diseases 643 

Multiple-trait Manhattan plot of single-variant tests and gene-based tests for 15 644 

diseases in different data. The x-axis labels each disease, and the y-axis shows -log10P. 645 

The red dotted line represents the significance filtering threshold of the P value (P < 646 

5�10-8 for single-variant tests, P < 2.5�10-6 for gene-based tests), and the gray dotted 647 

line represents the suggestive filtering threshold of the P value (P < 5�10-6 for 648 

single-variant tests) 649 

Figure 6. Harmonizing WGS and SNP array to perform association tests for lung 650 

cancer (left panel) and epithelial ovarian cancer (right panel) 651 

(A-C) Results of lung cancer. (D-F) Results of epithelial ovarian cancer. (A, D) Circos 652 

plots of the single-variant and gene-based association results using UKB WGS data or 653 

WGS+SNP array data. (B, E) Rare variants and genes identified in each dataset. The 654 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted October 30, 2023. ; https://doi.org/10.1101/2023.10.28.23297722doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.28.23297722


blocks are marked if the P values reach nominal significance (P<0.05). (C, F) 655 

Comparison of the identified signals in the single-variant and gene-based association 656 

tests under different P value thresholds. 657 

 658 

 659 
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